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Abstract— Multi-robot systems are widely used in envi-
ronmental exploration and modeling, especially in hazardous
environments. However, different types of robots are limited by
different mobility, battery life, sensor type, etc. Heterogeneous
robot systems are able to utilize various types of robots
and provide solutions where robots are able to compensate
each other with their different capabilities. In this paper, we
consider the problem of sampling and modeling environmental
characteristics with a heterogeneous team of robots. To utilize
heterogeneity of the system while remaining computationally
tractable, we propose an environmental partitioning approach
that leverages various robot capabilities by forming a uniformly
defined heterogeneity cost space. We combine with the mixture
of Gaussian Processes model-learning framework to adaptively
sample and model the environment in an efficient and scalable
manner. We demonstrate our algorithm in field experiments
with ground and aerial vehicles.

I. INTRODUCTION

Multi-robot systems can be widely used in complicated or
dangerous tasks for humans including coverage, sampling,
and exploration in an unknown environment. One important
application is to monitor the thermal mapping of a wildfire-
affected area, e.g., the Australian bushfire, as a substitute
for human observations[1]. In these scenarios, robots are
expected to explore the environment, conduct sampling sur-
veys, and build environment models including but not limited
to: thermal, humidity, radio strength, etc. The problem of
efficiently navigating robots to best construct environmental
models is referred to as adaptive sampling[2], or informa-
tive sampling[3]. Multi-robot systems, by their distributed
nature, can perform sampling tasks in parallel, which greatly
increase the efficiency, adaptation, and performance.

Many of the state-of-the-art approaches related to this
topic are developed based on multi-robot systems with
identically designed robots, namely homogeneous multi-
robot systems (e.g. [2], [3]). Although these systems are
favored for simplicity in implementation and scalability,
introducing heterogeneity into the system grants a better
balance of cost, capability, and efficiency when conducting
informative sampling [4]. Heterogeneity helps compensate
for the inherent limitations of each type of robots and allows
them to develop proficiencies in different aspects of the task
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[4]. For example, a homogeneous system with unmanned
ground vehicles (UGVs) cannot utilize useful samples above
bushes or rocks due to the limited reachability. Introducing
unmanned aerial vehicles (UAVs) into the system helps
overcome mobility constraints. Likewise, UAV’s deficiency
in its average battery life is counterbalanced by the UGVs
continuing the sampling task while the UAVs are temporarily
down for recharging.

Heterogeneity yet brings more concerns in robot coordi-
nation. It is challenging to effectively coordinate robot capa-
bilities as they vary in characteristics and influences towards
robot task performance. Some of those are complimentary,
while others may result in conflicting task assignment deci-
sions. For instance, UAV is encouraged to cover distant areas
due to its agility, whereas its critical battery life constrains
the range UAV can travel. The number of capabilities that
need to be considered in coordination increases drastically
when scaling up the system with more types of robots.

We address the heterogeneous coordination problem
through a task region partitioning with high-dimensional
heterogeneity cost space that captures the multifaceted ca-
pabilities of the robot team. This formulation allows the
heterogeneity constraints to be imposed during task assign-
ments, and multiple criteria can easily be incorporated by
increasing the dimension of the cost space. To the best of
our knowledge, our method is the first generalized framework
supporting multiple heterogeneity criteria for multi-robot
informative sampling.

The contribution of this paper lies in three aspects. First,
we propose a novel heterogeneous environment partitioning
approach that effectively leverages the capability diversity
by reforming the partitioning problem in a uniformly defined
heterogeneity cost space. Second, we present a system archi-
tecture for heterogeneous multi-robot informative sampling
with a modularized design that allows for flexible scale-ups
and extensions in both robot characteristics and team size.
Third, we encapsulate our approaches into an open-source
toolbox that can be easily deployed to different multi-robot
sampling systems and tested it with real robots.2

II. RELATED WORKS

The general problem of adaptive informative sampling has
been widely studied in the field of robotics. Manjanna and
Dudek [5] formulates the problem as a Markov Decision
Process and solves the optimal policy using value iteration.
In this formulation, the implicit reward function needs to be
appropriately designed for different tasks. The work [6] by
Kemna et al. uses single-GP regression to model the survey
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environment, and greedily selects the point with globally
highest posterior entropy as the next sampling location. Luo
and Sycara propose an informative sampling paradigm with
the mixture of GPs model [7] that can more accurately
predict distribution with multiple distinctive components.
This method selects the next sampling points by utilizing
the Gaussian Process Upper Confidence Bound (GP-UCB)
[8] to optimize an information-theoretic criterion defined by
the model parameters. Our method extends Luo and Sycara’s
informative sampling paradigm [7] with a novel environment
partitioning approach that accounts for the heterogeneity of
multi-robot systems with different types of robots.

Most of the state-of-the-art approaches utilize Voronoi
partitioning to reduce the overlap of actions and increase
sampling efficiency [2] [9] [10]. Kemna et al. [2] deploy
dynamic Voronoi partitioning based on Euclidean distance
in a communication-constrained multi-robot system. Similar
to our method, the Voronoi partitions are recalculated during
the sampling process. The work [11] by Cortes consid-
ers the possibility of an extra area constraint in normal
Voronoi partitioning. This method formulates the problem
as a constrained optimization problem that creates a map-
ping from the area constraint to weights associated with
Voronoi cells and uses the weighted Voronoi partitioning
to ensure the fulfillment of the constraint. Similarly, [12]
solves a partitioning optimization with a congestion heuristic
to enforce the collision-free constraint between robots of
different sizes. These approaches are limited to regular parti-
tioning based on Euclidean distance or with extra constraints
that require customized formulations. Our method defines
a unified formulation, a heterogeneity cost space, that can
easily incorporate multiple constraints and heuristics, which
is usually desired in heterogeneous multi-robot systems.

An approach of applying the heterogeneous multi-robot
system in water sampling is presented by Manjanna et al.
in [13]. The paper proposes a system of heterogeneous
robots with different functionalities. The two robot boats
were assigned with different tasks of exploration and physical
sampling, instead of increasing efficiency and quality of one
task using different capabilities of heterogeneous robots. Pra-
neel et al. [14] developed a hierarchical system with robots
of different computational capabilities completing map build-
ing and exploration tasks. However, the different mobility
of robots and task region partitioning are not considered.
Different from these approaches, the emphasis of our work
lies in enhancing the task efficiency and generality of a multi-
robot system by leveraging multiple varying capabilities of
the heterogeneous robots.

III. PROBLEM FORMULATION

Consider a set of n heterogeneous robots moving in a
bounded environment Q ∈ R2 and assume the environment
can be discretized into a set of sensing points q∈Q, with the
position of each robot i∈ {1,2, ...,n} denoted by xi ∈Q. The
objective of heterogeneous informative sampling task is to
coordinate this heterogeneous robot fleet to efficiently learn
the underlying mapping φ̂(·) : Q→R+ from spatial location

q to a scalar value of the environmental phenomenon φ(q).
Very limited prior knowledge of φ(q) is assumed, yet the
robot group has access to the geometry map of Q.

The entire problem can be divided into two interconnected
sub-problems: environment modeling and heterogeneous in-
formative goal selection. In modeling, we learn a model φ̂(q)
with samples y1,y2 . . .yn collected by robot 1,2 . . .n. The
sample collected by robot i at location qi is yi = φ(qi)+ ε

which is a combination of truth phenomenon value at this
location φ(qi) and white noise ε . This model provides the
informativeness over the environment, which is used in
heterogeneous informative goal selection.

In heterogeneous informative goal selection, the objective
is to identify a new sensing location qi for robot i that can
best improve the learned model φ̂(q) while considering all
the heterogeneous capabilities and constrains of robots.

In order to guarantee convergence and reducing the repet-
itive work as well as robot interference, we first partition
the 2D environment, i.e. all sensing points ∀q ∈ Q, into
n cells Vi, i ∈ {1,2, ..n} with a cost L(q) of robots that
numerically reflects their constrains and capabilities such that
locations with lowest cost for robot i to explore are within
Vi =

{
q ∈ Q‖L(qi)≤ L(q j),∀ j 6= i

}
.

The goal location can be determined by solving the local
optimization problem of finding q∗ ∈ Vi that maximizes
the informativeness I(qi) ∈ R+ which reflects the ability
to improve the model q∗i = argmaxq∈Vi

I(qi). Therefore, the
overall objective is to coordinate heterogeneous robots to
navigate to locations that utilize heterogeneous abilities of
robots and best describe the environmental model in order
to learn the model φ̂(q) efficiently.

IV. APPROACH

A. System Overview

As is illustrated in Figure 1, the system is modular-
designed with a scalable number of robots and centralized
to a master computer that processes all the samples Y =
{y1,y2, ...,yn} to build the environment model φ̂(q) and is
responsible to send the target positions qi to robot i. Robots
contribute to the heterogeneous mobility to the system and
report environment samples back to the master computer.

The master computer reads in and stores the geometric
map of the area of interest Q. Given the geometric map, the
master computer initializes a global temperature distribution
model φ̂(q) and keeps updating this model in real-time after
receiving each sample yi from the heterogeneous agent robot
i. Once φ̂(q) is updated with sample yi, the master computer
selects and assigns the next interest point q′i to robot i using
the Heterogeneous Informative Goal Selection algorithm
(described in section IV-C).

Agent robots are deployed to the bounded area of interest
Q and each robot i stores a separate geometric map of area
Q in its local planner. Robot i is equipped with localization
sensors and used wireless LAN to communicate with the
master computer. We assume each robot could stay con-
nected with the master computer at all times for exchanging
information. If the communication range is limited, we can
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Fig. 1: The architecture of the proposed heterogeneous multi-robot sampling
system. The master computer consists of the Mixture of Gaussian Modeling
(described in section IV-B) to build the environmental model φ̂(q) as well
as an Heterogeneous Informative Goal Selection algorithm (described in
section IV-C) that allocates sample location qi to different robot i based on
their mobility. Robot i locally process the way-point navigation control loop
to achieve the target pose qi sent from the master computer and report new
measurement sample yi back to the master computer.

synthesize the connectivity controller [15] to constrain the
robots’ motion so that the robots and the master computer
are always within the effective communication range and
hence the assumption of continuous communication is al-
ways held true. During the sampling process, robot i requests
and receives a target pose qi from the master computer with
qi ∈ Q and processes the navigation control loop to archive
the target pose. If the way-point navigation succeed within
the user-defined sampling execution period tsamp, robot i
will report a new measurement sample yi paired with the
location qi back to master computer. Otherwise, robot i will
report a failure of navigation to master computer so that
the feasibility of robot i at qi can be updated. The entire
process is running on-line and the goal of the system is to
reach the convergence between the model φ̂(q) and the true
environmental phenomenon φ(q).

B. Mixture of Gaussian Modeling

In this section, we briefly summarize the modeling al-
gorithm [16], [7] adopted in our approach. Due to the
decentralized nature of the multi-robot sampling task given
the robots spreading out over the surveyed area, we utilize
a mixture of Gaussian Processes (GP) model to estimate
the underlying data distribution. The mixture of GPs model
[17] is a parametric probability density function defined as
a linear combination of multiple GPs, which makes it ideal
for handling distributions with multiple components [18].

In our problem, we assume the underlying data distribution
to be investigated can be modeled by a mixture of m GPs
{GP1, ...,GPm}, where we assume each local GP is learned by
each robot. For any point in the environment q∈Q, we define
the probability of q being best described by the GP learned
by the robot i as P(z(q) = i). Then, we yield a mixture of GP
models as a linear combination of {GP1, ...,GPm}, weighted
by the P(z(q)= i) at any location q∈Q. The model is defined
through the mean µ∗q|Ṽ ,Y and variance σ∗

2

q|Ṽ ,Y.

µ
∗
q|Ṽ ,Y =

n

∑
i=1

P(z(q) = i) ·µq|Ṽi ,yi
(1)

σ
∗2
q|Ṽ ,Y =

n

∑
i=1

P(z(q) = i) · (σ2
q|Ṽi ,yi

+(µq|Ṽi ,yi
−µ

∗
q|Ṽ ,Y)

2) (2)

where {Ṽi,yi} denotes the set of samples collected within
the Voronoi partition of ith robot Ṽi = [qi

1, ...,q
i
Ni
]T with data

values yi = [yi
1, ...,y

i
Ni
]T . {Ṽ ,Y} represents the union set of

samples of value Y = {y1, ...,yn} collected by all robots in
their assigned Voronoi cells Ṽ = {Ṽ1, ...,Ṽn}.

Different from single-GP, we cannot simply apply Maxi-
mum Likelihood on the mixture of GPs to estimate the value
of parameters, due to the lack of knowledge about the un-
derlying weight distribution. The Expectation-Maximization
(EM) algorithm [19] has been extensively used as a max-
imum likelihood estimation for probabilistic model param-
eters with hidden variables. The EM algorithm is an itera-
tive process with two steps. In our problem, the algorithm
calculates the weight distribution in the expectation step (E-
Step) and then updates the parameters of local GPs with the
estimated weight distribution in the maximization step (M-
Step). Prior to the initial iteration, the weight distribution for
any arbitrary query data point qa is initialized to

P(z(qa) = i)≈
{

1 if qa ∈ Ṽi
0 Otherwise ∀i = 1, ...,n (3)

E-Step. The algorithm updates the weight probability
P(z(qa) = i) of every query point qa for every GP model
GPi based on previous estimation. We borrow the notation
Ni(qa) from [7] to represent the probability of observing qa
with the local GP GPi. Then, the weight probability can be
calculated as follows.

P(z(qa) = i) :=
P(z(qa) = i) ·Ni(qa)

∑
n
k=1 P(z(qa) = k) ·Nk(qa)

(4)

M-Step. The algorithm estimates local GP parameters after
incorporating the weight probability distribution given by the
E-Step. The GP parameter update rule is summarized in [16],
[7] as

µqtest |Ṽi ,yi
= k(qtest)

T (KṼi
+Ψ

iI)−1yi (5)

σ
2
qtest |Ṽi ,yi

= ker(qtest ,qtest)−k(qtest)
T (KṼi

+Ψ
iI)−1 ·k(qtest) (6)

where the diagonal hyper-parameters in Ψi are Ψi
aa =

σ2
n

P(z(qa)=i) . ker(q,q′) is the kernel function that described the
correlation between two points q and q′. Following [7]’s defi-
nition, we use the same squared-exponential kernel function.

k(qtest) =
[
ker(qi

1,qtest), ...,ker(qi
Ni
,qtest)

]T
is a vector that

captures the correlations described by ker(q,q′) of all points
qi lies within the Voronoi partition of ith robot Ṽi w.r.t. a
testing location qtest ∈ Q. KṼi

denotes the positive definite
symmetric kernel matrix [ker(q,q′)]q,q′∈Ṽi∪qtest

. The optimal
hyper-parameters θ ∗i of the kernel function are obtained
by maximizing of the marginal likelihood p(yi|Ṽi,θi) as
described in [7].

C. Heterogeneous Informative Goal Selection

1) Environment Partition using Heterogeneity Primitives:
Voronoi diagram is widely used [3], [7], [18] for multi-robot
coordination tasks to minimize repetitive work and ensure
optimal coverage and partition over the 2D Cartesian space.
Each robot is associated with a Voronoi cell, and this robot
has the minimum distance cost to reach any location in
its cell compared with other robots. However, heterogeneity
can add disturbance to the Voronoi partition. For example,
a water area can fall into a ground robot’s Voronoi cell
in terms of 2D Euclidean distance, but the robot cannot
accomplish any task within this water area. Therefore, the
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normal Voronoi diagram can no longer provide a reasonable
partition for heterogeneous multi-robot systems. To take
robotics system’s heterogeneity into consideration, we define
the heterogeneity space H = [h1, . . . ,hk] ∈ Rk, where each
dimension hu,u ∈ {1,2, . . . ,k} considers robots’ ability for
one specific heterogeneity (e.g., speed and battery life). We
form the cost function of each dimension as Cu(δ u

i ), where
we call δ u

i heterogeneity primitive indicating the ability of
robot i in terms of the uth heterogeneity. The definition of δ u

i
is aligned with the type of cost function. Here we propose
two types of cost functions:

a) Distance-dependent cost Cd: Suppose the Euclidean
distance between the next targeting location and robot’s
current location is d. There exists a group of heterogeneities
closely correlated with this distance. These properties can
be either positively or negatively related to distance. For
example, speed represents the distance a robot can travel
within unit time, and the relationship is positive. While
certain legged robots’ gaits may make it very hard for them to
move a short distance, then its mobility is negatively related
to distance. Therefore, we formulate the cost function as

Cu
d(δ

u
i ,d) =

{
tanh(δ u

i ·d) δ u
i ≥ 0

tanh(δ u
i ·d)+1 δ u

i < 0 (7)

The heterogeneity primitive δ u
i ∈ [−1,1] here is a user-

defined scalar. Its sign reveals the relation with distance, and
its value relative to the other robot’s primitive indicates the
comparison of ability. For example, a faster robot should
have a smaller positive speed primitive than a slower robot.
This cost function can also be applied when considering
battery-life, sensor coverage, etc. It worth noting that we
calculate 2D distance cost using the same cost function with
δ u

i = 1 for all robots.
b) Topography-dependent cost Cq: Equation (7) de-

fines a continuous and monotonic cost function depending
on distance, while topographic features can also make het-
erogeneous robots very different. Consider a group of robots
is performing a sensing task but equipped with sensors of
different operating temperatures, then the task cost heavily
depends on local terrain information. In this case, we define
the heterogeneity primitive δ u

i ∈ [0,1] as the cost, conditioned
on the topography utility. Its user-defined value still needs
to reflects the comparison in utility. For the sensory case
(u = sensory), the topography-dependent cost function can
be expressed as

Csensory
q

(
δ

sensory
i ,q

)
=

{
0 Temperature at q within i’s sensor range
δ

sensory
i Otherwise

(8)
We concatenate the Euclidean distance and the costs in

Heterogeneity space to a cost vector cq = [C1,C2, . . . ,Ck]
representing the cost to for robot i to collect a sample at
point q. Each element in the cost vector is also coupled with
a user-defined weight wu ∈R+, for u∈ {1,2, ...,k} to bias the
importance among coverage or heterogeneity considerations.
We compare the cost by the weighted sum and compute the
final Voronoi cell for each robot

Vi =

{
q ∈ Q|‖

k

∑
u=1

wu · cu
qi
‖ ≤ ‖

k

∑
u=1

wu · cu
q j
‖,∀ j 6= i

}
(9)

2) Informative Goal Selection: The informativeness of a
sample location can be defined as the ability to reduce the
uncertainty of the predicted model φ̂(q) as well as capture
the distinctive features of the surveyed distributions. Hence
we applied the Gaussian Process Upper Confidence Bound
(GP-UCB) [8] strategy to balance the trade-off between
exploration and exploitation. The value of informativeness
at each location q is defined as [7]

I(q) = µ
∗
q|Ṽ ,Y +βσ

∗2

q|Ṽ ,Y (10)

where µ∗q|Ṽ ,Y and σ∗
2

q|Ṽ ,Y are defined in (1) and (2). β is a
user-specified constant to balance the trade-off of minimizing
the uncertainty of the GP model and maximizing sampled
value. The GP-UCB strategy we applied is sequentially se-
lecting the most informative sample position qi ∈Vi for robot
i that maximizes (10) and update the GP model consequently
to reach the balance.

V. EXPERIMENTAL RESULTS

We implemented and evaluated our system using both
simulation and real robots. The codebase was built on the
Robot Operating System (ROS). Our algorithm can be used
for general environmental feature modeling tasks, including
thermal, humidity, and radio strength, etc. However, most
of these environment features are either difficult to set up
and capture, or relatively constant within our limited range
of testing site, we chose to conduct WiFi signal strength
sampling tasks to demonstrate our approach. We collected a
real-world 2D WiFi signal strength distribution dataset for
the experiments. In a 9m x 14m open area, we randomly
placed 2 or 3 WiFi signal generators and manually measured
WiFi strength every 1 meter, resulting in 150 samples in total
for each trail. We first conducted a modeling performance
comparison between the mixture of GPs and the uni-modal
GP. We then compared our method with informative sam-
pling without considering robots’ differences in simulation.
In field experiments, we deployed a heterogeneous multi-
robot system consists of one UAV and one UGV to perform
the real-world task.

A. Modeling Performance Comparison
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(b) 3 WiFi signal generators

Fig. 2: Model prediction performance comparison between the mixture of
GPs with m = 3,5,7 and uni-modal GP on two real-world WiFi signal
strength datasets with (a) two and (b) three WiFi signal generators. Each
line represents the mean RMS error over 10 random trials.

We applied different mixture of GPs (m = 1,3,5,7) models
and a uni-modal GP on two datasets, one with two (Fig.2a)
and the other with three WiFi signal generators (Fig.2b). We
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randomly selected a certain number of training samples from
the dataset and computed the predictions on all available
sampling positions. We then compared the predictions with
the ground truth collections to compute root-mean-square
error (RMSE). The results in Fig.2 show that the mixture of
GPs outperforms the uni-modal GP in both scenarios given
the same number of training data, showing its greater ability
to model non-trivial environmental phenomenon.

B. Simulation

We deployed three robots in the simulation: one aerial and
two ground robots. The simulation field range aligned with
that in our collected dataset. We randomly spawned 1 - 2
circular (0.5m radius) obstacles for each test. The ground
robots need to avoid the obstacles while the aerial robot
can traverse over the obstacles. We assumed each robot has
optimal waypoint following control and perfect localization.
All robots are using the same optimal trajectory planner, and
we implemented a dynamic window approach (DWA)[20]
obstacle avoidance algorithm for ground robots. All robots
can measurement WiFi signals from the ground truth data
with a Gaussian noise ε ∼N

(
0,0.652

)
. To provide ground-

truth measurements at more locations in simulation, we inter-
polated the WiFi signal dataset using a 5th order polynomial
fit by the MATLAB Polynomial Toolbox.

The robots in our simulation are different in speed, battery
life and traversability with detailed configurations listed in
Table. I. The three differences come up with three hetero-
geneity cost functions. Speed and battery costs are distance-
dependent, and their heterogeneity primitives are also listed
in Table. I. We want to penalize the costs for ground robots
to collect samples falling on obstacles. Then we set the
topography-dependent traversal cost for ground robots to
be 1 for obstacle-occupied locations and 0 otherwise. The
traversal cost for the aerial robot is always 0 over the entire
region. The weights for each cost are 2.0, 1.5, and 106 re-
spectively, and we assigned the weight for Euclidean distance
to be 1 for all tests. For the simplicity of implementation,
we set a battery life as a termination threshold in ROS time.

Robot
ID

Robot
Type

Speed
(m/s)

Battery
Life
(s)

Traverse
Obstacle

Speed
Primi-

tive

Battery
Life

Primi-
tive

1 UGV 1 200 False 1.0 0.75
2 UGV 2 200 False 0.5 0.75
3 UAV 5 25 True 0.2 1.0

TABLE I: Robot Configurations in Simulation.

We compared our algorithm with the homogeneous infor-
mative sampling method[7], the region partition of which
is a normal Voronoi diagram without considering robots’
differences, as shown in the leftmost plot in Figure 3. The
additional speed cost considered in the Heterogeneous Parti-
tion (HP) 1 results in the fastest robot (aerial robot in green)
covering more regions , but it also suffers from a shorter
battery life compared to ground robots. Therefore, we want

it to spend more time collecting samples instead of traveling
within its short operation time. Adding the corresponding
cost gives us the HP2, in which the aerial robot’s region
shrinks compared to the HP1. It is a wasted and dangerous
move to let ground robots collect samples above obstacles,
for this reason, we significantly increased the weighting
factor for traversability cost. Then the obstacle falls into
the aerial robot’s partition even if it is a great distance
away (HP3). The results in Figure 3 show that considering
heterogeneity space costs would give heterogeneous multi-
robot systems a more reasonable region partition.

Fig. 3: The red, blue and green dots represent the current locations of
the ground robot 1, 2 and the aerial robot respectively. The corresponding
shallow areas are their responsible regions. The black circle denotes an
obstacle that the robot 1 and 2 need to avoid. The first partition from left
uses normal Voronoi Diagram; the second adds speed heterogeneity; the
third adds battery life, and the last adds traversability.

We initialized the sampling tasks with six randomly se-
lected samples. We showed our algorithm’s strength over
the homogeneous method in Figure 4. Our method outputs a
smaller RMSE through the entire simulation. Notably, the
heterogeneous RMSE dropped much faster than homoge-
neous RMSE with slightly more collected samples before
the aerial robot stopped operation, and the convergence rates
do not get closer before convergence. The final RMSE dif-
ference is also smaller than the difference during sampling.
These results show our algorithm does not naively facilitate
informative sampling by assigning aerial robots to obstacles
but does help improving sampling efficiency and model-
ing accuracy. Our method outperforms the homogeneous
method by giving a better convergence rate, a more accurate
prediction and more sample collections for the informative
sampling task. Our approach can finish tasks faster under
the stopping criteria using RMSE or the number of samples
when the ground truth data is not available, which is usually
the case in real environment deployment.

C. Field Experiments

We deployed the heterogeneous multi-robot informa-
tive sampling system on hardware robots with one UGV
(Clearpath Jackal) and one UAV (AscTec Pelican), both
equipped with an RTK-GPS for localization and a Panda
PAU09 wireless adapter to monitor the WiFi signal strength.
The experiment was conducted in a 10m× 10m outdoor
test field on the campus of Carnegie Mellon University. We
placed three WiFi signal generators above three obstacles at
different positions. Robot agents were deployed to perform

11722



0 50 100 150 200
ROS Time (s)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

R
M

S
 E

rr
o
r 

(u
W

)
homogeneous RMS error

heterogeneous RMS error

homogeneous number of samples

heterogeneous number of samples

−20

0

20

40

60

80

100

120

140

160

N
u
m

b
e
r 

o
f 

S
a
m

p
le

s

Ariel Robot 
Battery Died

Fig. 4: Informative sampling performance comparison between heteroge-
neous and homogeneous multi-robot sampling algorithms. We run each
algorithm on the same dataset 45 times with random robot initial locations
and obstacle positions. The shallow areas represent the variance range. The
red vertical line indicates the time when the aerial robot stopped operation.

the sampling task. The UAV took samples at the same height
as the UGV. We ran the experiments for 12 minutes and the
UAV terminated earlier. We obtained an RMSE of 2.93 µW
comparing to the ground truth model built with 150 hand
collected samples (Figure 5). The result is not as ideal as in
simulation due to difficulties in real-world operation.
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Fig. 5: Field experiment result: The predicted model can capture general
features of the distribution in a limited time. Although the performance is
not as ideal as in simulation, it validates our proposed system’s functionality.

VI. CONCLUSION

This paper presented an informative sampling approach for
heterogeneous multi-robot systems to model environmental
phenomena. By partitioning task regions with uniformly
defined high-dimensional heterogeneity cost and applying the
GP-UCB algorithm, we are able to leverage diverse robot
capabilities and increase the informativeness of samples to
extensively improve the sampling efficiency. The high di-
mensional heterogeneity cost space we defined joins different
heterogeneity properties on the same scale and provides great
scalability in terms of the number of heterogeneity primitives
considered. This novel approach also provides the foundation
of our modular-designed heterogeneous multi-robot system
architecture. Besides, we used a mixture of Gaussian Pro-
cesses for modeling to better capture the multi-modal dis-
tribution of real-world environmental phenomena to further
improve the accuracy of the predicted model. Simulation
results have shown the superiority of our algorithm compared
to the previous approach of homogeneous sampling [7].
In the future, we will investigate the online heterogeneous

environment partitioning with no prior knowledge of the
geometry map and the auto-tuning of parameters.
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