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Abstract— Touch is arguably the most important sensing
modality in physical interactions. However, tactile sensing has
been largely under-explored in robotics applications owing
to the complexity in making perceptual inferences until the
recent advancements in machine learning or deep learning in
particular. Touch perception is strongly influenced by both
its temporal dimension similar to audition and its spatial
dimension similar to vision. While spatial cues can be learned
episodically, temporal cues compete against the system’s re-
sponse/reaction time to provide accurate inferences. In this
paper, we propose a fast tactile-based texture classification
framework which makes use of the spiking neural network
to learn from the neural coding of the conventional tactile
sensor readings. The framework is implemented and tested on
two independent tactile datasets collected in sliding motion on
20 material textures. Our results show that the framework is
able to make much more accurate inferences ahead of time as
compared to that by the state-of-the-art learning approaches.

I. INTRODUCTION

The sense of touch allows humans to make perceptual
judgement on the environment that the skin comes into
contact with, make timely decisions to correct a taken action
and even infer social cues from interactions with others.
Although it forms an indispensable part of our senses, we
can hardly find tactile sensors on most social and service
robots – the biomimetic agents to increasingly assist in our
daily living. Unlike other senses, the sense of touch is a high-
dimensional distributed system across the skin which gathers
both spatial and temporal sensory cues. This nature makes
it complex to be implemented and modelled in artificial
systems. With the recent advances in material science and
machine learning, research on tactile sensor-based perception
and control starts to pick up momentum, including material
classification [1], [2], object and shape recognition [3], [4],
grasping [5], [6], slip detection [7] and manipulation [8],
[4]. There is also a growing body of work on multimodal
perception using both tactile and visual sensing modalities
[9], [10] to improve inference performance.
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Because of the importance of the temporal dimension
in the sense of touch, many state-of-the-art frameworks on
tactile perception need to acquire long temporal sequences
of the tactile readings for both model training and inference
[11], [2], [12]. This process is usually both power and data
hungry. For a real-life system which depends on the sensory
feedback for control-loop closure, such implementations
may not be ideal. For example, when a robot comes into
physical interaction with another agent or the environment,
fast discrimination of material textures may be essential
to correct any potentially unintended or dangerous actions,
e.g. accidentally slapping a person, bumping into a wall
versus a rope. Human, a power-efficient biological system
on the other hand, seems to be capable of making fast tactile
perceptual inferences.

In this paper, we propose a power-efficient tactile texture
classification framework which makes use of the spiking
neural network (SNN) to learn from the neural coding of the
conventional tactile sensor measurements. This framework
draws inspiration from the fact that the biological system
largely codes and transmits signals through neurotransmit-
ters, a.k.a spikes between the sensory receptors, neurons
in the nervous system, and target muscle cells [13]. To
validate the performance of this framework, independent
tactile datasets collected from two unique tactile sensors
with non-event-based outputs (the iCub RoboSkin and the
SynTouch BioTac) sliding on 20 material textures are used
for our experiments. The noise profile of the sensors and
the data collection constraints are different for the two
datasets, which allow us to scrutinise the different aspects of
the framework. In particular, the BioTac dataset has higher
temporal resolution and less sensor noise. It is attached onto
a highly precise and accurate industrial collaborative robot
– the KUKA LBR iiwa – to carry out the data collection
in strict conditions of movement velocity and contact force.
On the other hand, the RoboSkin dataset has lower temporal
resolution and is collected in a more natural approach [2].
We hypothesise that for the cleaner BioTac dataset, given a
suitable neural coding to encode the data into spike train,
a simple linear classifier is sufficient to make inferences at
early stage while SNNs can be used as a general approach
for both scenarios for better inference performance.

In summary, the main contributions of this paper are:
• An overall texture classification framework that is com-

putationally efficient and able to make fast inference.
It can also be run on a neuromorphic chip such as the
Intel Loihi;

• A neural coding scheme to convert raw tactile data from
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Fig. 1: An overview of texture classification using tactile data: raw tactile data of surface is encoded into spike trains. These
spike trains are then learned to classify the material texture.

non-event-based sensors into sparse spike trains which
encode important temporal information of the tactile
signal;

• An SNN-based architecture tested on two tactile
datasets to classify textures with high accuracy.

The rest of this paper is organized as follows: In Section
II, related works on tactile-based perception are reviewed.
The proposed framework is described in details in Section
III. Section IV describes the experimental setup while the
results and discussions are presented in Section V. Section
VI concludes our research findings and proposes future work.

II. BACKGROUND AND RELATED WORK

Tactile perception is becoming a very active research area
which includes tactile-based object classification [14], object
manipulation [15], grasp stability prediction [16] and texture
identification [10].

In this work, we focus on texture classification. In par-
ticular, we explore how spike trains can be generated from
tactile data and how those spikes learnt to make decision.
One prior work by [17] uses Izhikevich neuron model [18]
to generate spike trains, particularly regular spiking neurons.
It extracts coefficient of variation for interspike interval (ISI)
and trains these features using k-NN algorithm. An accuracy
of 78 % was achieves for 10 textures.

Friedl et al. [19] simulate two fast adapting and one
slow adapting human mechanoreceptors in our skin. These
are Pacianian cells (PC, operate at 30 - 700 Hz), Meisser
cells (RA, operate at 1-60 Hz) and slow adapting Merkel
cells (SA1). Merkel cells are mostly responsible for identi-
fying static pressure. The spike trains for these neurons are
generated using adaptive leaky-integrate-and-fire (aLIF) [20]
neurons. These spike trains are learnt using one layer leaky-
integrate-and-fire (LIF) neuron before frequency features are
extracted from the output of this layer. These features are
then trained using linear support vector machine (SVM). The
model achieves 65.6 % accuracy in classifying 18 different
materials.

Yi et al. [21] utilize the Izhikevich neuron model to
generate spike trains. The Izhikevich model is defined by
several parameters. Particularly, the parameters control the
sensitivity of spikes and decay rate and also regulate the reset
and adaptation times. The most typical Izhikevich neurons,
namely the regular spiking neurons [17] are used. They
collect different features from spike trains such as the Victor-
Purpura Distance [22], the van Rossum Distance [23], ISI

and the first spike latency. These features are then trained
using a k-NN model which achieves ≈ 77.6 % (k = 11)
accuracy for 8 different textures.

The latest work, to the best of our knowledge, for tex-
ture identification using spike trains is done by [24]. They
generate spike trains, similar to [17], [21] using Izhikevich
neuron model. However, unlike prior arts, this work generates
three different spike trians: Slow Adapting (SA), based on
regular spiking, FA-Rising and FA-Falling, both based on
fast spiking neurons. Then these spike trains are trained using
the Extreme Learning Machine (ELM), one layer SNN. This
work is implemented in a neuromorphic chip and achieved
an accuracy of 92 % for 10 objects.

The aforementioned works for texture classification have
encountered some challenges. Firstly, it is difficult to tune
Izhikevich neuron model. Its performance is very sensi-
tive to its parameters while the parameter space is large.
Secondly, using hand-crafted features may be task-specific
and inefficient, since it is difficult to measure similarity
between two spike trains. Thirdly, ELM may not be an
appropriate method for applications in complex scenario, e.g.
a significant increase in the number of textures.

Our work in this paper is a first attempt to address these
challenges. We simplify the encoding scheme, while keeping
the ability to represent more complex temporal information.
We also propose a multi-layer training approach for texture
identification using state-of-the-art SNN training framework.

III. METHODOLOGY

This section describes the proposed method to classify
textures using non-event-based tactile data. Firstly, raw con-
tinuous temporal tactile data are encoded into spike trains.
Here, we refer to spike trains as event-based temporal data
in which it can be either 0 (non-spiking state) or 1 (spiking
state) at any instance. Then, a texture classifier is trained
using a Spiking Neural Network (SNN). The overall architec-
ture for our approach is depicted in Fig. 1. Implementations
using Artificial Neural Network (ANN) and SVM are used
for benchmarking against SNNs.

A. Neural Encoding

We explore the use of simple thresholding technique to
encode the raw tactile data into spike trains [25]. It uses K
thresholds to generate spikes from a given time series data.
Given raw tactile signal for i-th taxel, yi(t), the encoded
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Fig. 2: An example of threshold encoding on tactile data
when K = 2.

spike train for k-th neuron, ski (t), is defined as:

ski (t) =


1, k ≤ K, yi(t) ≥ k, yi(t− 1) < k

1, k + 1 ≤ k ≤ K, yi(t) ≤ k/2, yi(t) > k/2

1, k = 2K + 1, yi(t) = max{yi(t)}
0, otherwise.

(1)
where k ∈ [1, ...,K, ..., 2K + 1]. In total, it outputs 2K + 1
spike trains. Generally, K is to be kept as small as possible
as it scales the dimension for temporal data. We empirically
chose K = 2 for both BioTac and RoboSkin data. An
example of our neural encoding technique is given in Fig. 2.

B. Spike Response Model

We use the Spike Response Model (SRM) [26], [27] as our
neural model for the training process. It is a generalization
of the leaky integrate-and-fire model. Spikes are generated
when membrane potential u(t) exceeds a predefined thresh-
old ϕ. The neuron in SRM depends on the incoming spikes
to be convolved by a response kernel, ε(·), and a refractory
response, ν(·):

u(t) =
∑

wi(ε ∗ si)(t) + (ν ∗ o)(t) (2)

where wi is a synaptic weight, ∗ indicates convolution,
si(t) are the incoming spikes from input i, and o(t) is the
neuron’s output spike train.

C. Spike Data Training

The biggest challenge in training with event-based data
is that the derivative of the spike generation function is
undefined. There are possible ways to overcome this. For
this work, we use Spike Layer Error Reassignment in Time
(SLAYER) [27]. SLAYER uses a temporal credit assignment
policy to back-propagate errors to preceding layers for up-
date. SLAYER is simulated and trained in GPU hardware in
offline manner. However, once trained in SLAYER, the SNN
model can also be transferred to the neuromorphic hardware
for efficient execution.

We use a simple 2-layer fully connected (FC) architecture
for our models. The hidden layer size is set to 60 and 1200
for BioTac and RoboSkin respectively. Our neural encoding
with K = 2 icreases raw tactile data size by five times.
Hence, the input size for BioTac spike train is 5× 19 = 95
where 19 is number of BioTac electrodes. The input size for
RoboSkin is 5× 60 = 300 where 60 is number of taxels on
the RoboSkin of the iCub’s forearm. Total sequence length
for BioTac and RoboSkin tactile data is 400 (4s sampled at
100 Hz) and 75 (1.5s sampled at 50 Hz) respectively.

The input to the models is encoded spike train and output
is also spike train with the size of number of classes. Thus,
each output spike train corresponds to one specific class. We
make decision for classification by looking at the highest
number of spikes in output layer. The model is trained using
the following loss function:

L =
1

2

T∑
t=0

(∑
so(t)−

∑
s̃o(t)

)2
(3)

where
∑

so(t) is a number of spike trains in the output layer
and

∑
s̃o(t) is a desired spike counts.

SLAYER requires to define the desired output counts. For
BioTac data, we set positive and negative spike counts to 250
and 30 respectively. For RoboSkin data, 70 and 3 are used
respectively. These values are chosen empirically.

D. Comparison Models

ANN models: The ANN architecture consists of Long-Short-
Term-Memory (LSTM) units [28]. LSTM is well-known for
ability to learn temporal sequences [29]. It consists of cell
state and hidden state, which are updated depending on the
temporal pattern of the input data. The input to the models is
raw tactile signal. The input sizes are 19 and 60 for BioTac
and RoboSkin data respectively. In both cases, we keep
hidden size as 60 and number of layers as 2. For RoboSkin
data, we use Convectional Neural Network (CNN) to get high
level features and supply them to LSTM. We apply softmax
to the last value of the output sequence of LSTM to obtain
the probability of belonging to a specific class.

SVM models: In order to assess the encoded spike trains on
ability to represent the tactile signal, we use SVM with linear
kernel on two different inputs. Firstly, we collapse raw tactile
data in time dimension and use it as input features for SVM.
Secondly, we perform the same operation on the encoded
spike trains and use the resulting spike counts as inputs.
While the input is a temporal sequence, we hypothesize
that texture information is rather homogeneous in time. Rate
coding [30], whereby input is coded as mean firing rates of
neurons, may suffice in separating the classes. As such, spike
counts may already achieve good classification accuracy for
our data. Therefore, a simple SVM is used to investigate in
both datasets.

We split the tactile data into training and testing sets with
ratio of 7:3. Each model, except ANN models, are trained
5 times. Due to the computational cost, ANN models are
trained only twice. We then report the mean accuracy results.
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SNN models are trained for 300 epochs while ANNs are
trained for 2000 epochs. ANNs are trained for longer because
of the much higher number of trainable parameters involved.

IV. EXPERIMENTAL SETUP

In this section, we describe the sensors and robot setup
used for data collection.

A. iCub RoboSkin Tactile Sensor

The iCub is a tendon-driven humanoid robot with Ro-
boSkin, capacitive tactile sensors on its skin [31]. The
capacitive tactile sensor works on the principle of dielectric
deformation [32]. The RoboSkin is distributed among hand,
forearm, upper arm and torso with 18 patches. Each patch is
made of triangular modules; and each module has 10 taxels.
In our experiment, we use taxels from 6 patches from the
forearm. In most cases, not all taxels are activated [2].

B. SynTouch BioTac Sensor

The SynTouch BioTac [33] is a multimodal tactile sensor
that mimics touch sensory ability of a human finger. The
sensor is filled with liquid. An externally exerted force is
transmitted to the internal acoustic pressure sensor through
this liquid medium. The BioTac sensor can sense pressure,
vibrations and temperature simultaneously. In our experi-
ment, we only use its pressure modality which comes from
19 electrodes.

C. iCub Data Collection

This dataset has been made publicly accessible with de-
tailed data collection procedure given in [2]. Its setup has two
major differences from other setups given in the literature for
tactile texture identification:

1) Due to the natural passive compliant nature of tendon-
based actuation, the robot motion is not strictly under
constant speed control.

2) No force control is exerted to the motion.
Originally, the RoboSkin dataset contains samples for

23 materials. However, to have better comparison with the
BioTac dataset which is collected in [34], we only use the
common 20 materials for this work. Each material consists
of 50 samples. The RoboSkin is depicted in Fig. 3c.

D. BioTac Data Collection

The setup is very similar to [35]. However, instead of using
a simple linear actuator, a KUKA LBR iiwa robot is used
for data collection [34]. The iiwa robot is a 7-DoF robot
known to be very precise and robust in task performance.
The BioTac sensor (illustrated in Fig. 3b) is attached to the
end-effector of iiwa robot as shown in Fig. 3a. The sliding
movements are subject to constant force and velocity control
as shown Fig. 4.
Force Control The change in the pressure value of BioTac
sensor is linear to the magnitude of the contact normal force
within range of 0-2 N as given in [35]. For instance, change
in pressure value 40 corresponds to 0.4 N. Slight fluctuations
on pressure value during sliding are expected.

(a)

(b)

(c)

Fig. 3: a) The KUKA LBR iiwa robot setup with BioTac
Sensor [34]; b) BioTac sensor; and c) RoboSkin sensors.
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Fig. 4: An illustration of the force and speed profile of the
BioTac sliding motion.

Velocity Control The KUKA LBR iiwa’s Sunrise pack-
age [36] implemented with constant velocity control is used.
It works on the principle of closed-loop control and receives
the velocity feedback using Jacobian matrix. An illustration
of the velocity profile is shown in Fig. 4.

While the exact data collection procedure can be found in
[34], it is worth noting that the BioTac sensor moves over a
linear trajectory for 20 cm with a constant speed of 2.5 cm/s,
which is the optimal speed for texture classification given
in [35]. With this setup, 20 different materials are collected
with 50 samples each. The dataset has also been made public
available by [34].

Due to the noise during the sliding motion, we only use
data points between the 1st and 5th seconds.

V. RESULTS AND DISCUSSIONS

A. Classification Results

Classification results for both BioTac and RoboSkin
datasets are summarized in Table I. The accuracy scores
for the BioTac dataset are similar for all models. It is
approximately ≈ 94%. This is expected as the data collection

TABLE I: Texture Classification Accuracy Scores

Models BioTac iCub
SNN 0.946 (0.013) 0.922 (0.005)
ANN 0.945 (0.015) 0.935 (0.005)
SVM (spike) 0.935 (0.015) 0.633 (0.018)
SVM 0.942 (0.007) 0.505 (0.056)
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Fig. 5: Accuracy score over time for BioTac data using
different models.

setup for BioTac is much stricter than that for RoboSkin, thus
presenting a very clean dataset for easier inference.

The ANN for the RoboSkin dataset performs marginally
better than SNN (≈ 1 % difference). However, the SVM
models are far more inferior to SNN and ANN. The classi-
fication reports for full spike counts (4 s - BioTac, 1.5 s -
iCub). This suggests that iCubs data is more complex and/or
noisy.

B. Fast Classification

One of the main advantages of SNN is to be able to make
decision fast, at the early stages of output spike trains. This
can be easily seen from output spike trains shown in Fig.
6. The correct class (indicated with red color) spikes more
frequently than the rest.
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Fig. 6: Spike trains in output layer. Red indicates correct
class.

Fig. 5 shows that SNN outperforms all other models in
predicting correct class at early stage for BioTac tactile
data. SVM on encoded spike counts performs very similarly
to the SNN. This suggests that the encoded spike count
already contains sufficient information to correctly classify.
This helps to confirm our hypothesis that clean tactile data is
primarily homogeneous in time. Hence spike counts based on
how data is distributed across different threshold values alone
gives comparable classification results with fully trained
SNN. Surprisingly, SVM on raw data also gives comparably
good result, further indicating the homogeneity of the input

data even without being encoded to spike train. We note
the accuracy dropping in SVM for raw tactile data at time
1.5 s. This maybe due to the spike in raw tactile data. To
sum up, the threshold encoding helps to improve the linear
separability of the data, and is useful in both SVM and SNN
cases. Fig. 7 shows that t-SNE [37] on encoded data already
divides the classes in visually separable clusters.
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Fig. 7: t-SNE on encoded spike trains. We use van Rossum
Distance [23] to calculate similarity between spike trains.
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Fig. 8: Accuracy score over time for iCub data using different
models.

Similarly, SNN outperforms other models for the Ro-
boSkin tactile data to classify textures at early stages. How-
ever, given the full sequence, the ANN outperforms the SNN
model. ANN and SNN models have similar result at ≈ 1 s.
At the early stages, classification accuracy for ANN is much
higher than the SVM models. This suggests that the data
is more complex in nature and linear classifier on threshold
encoding is insufficient to describe the data. The complexity
of the data may not come from the observed (tactile surface)
but from the observer (robot). Note that both SVM and ANN
are trained for each time instance indicated with markers in
Fig. 5 and 8.

It is also worth noting that for the non-spiking models,
hand-crafted bin size in the temporal domain need to be
empirically defined. While the smaller the bin size, the
faster the robot can make a decision and a follow-up action.
However, this bin size is task-specific and less practical for
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deployed system. However, SNN models do not pose such
concerns as it makes inferences as each sample instance
arrives.

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed an efficient texture classification
framework for conventional tactile-sensors. We used
thresholding encoding technique to generate spike trains
for two sets of tactile sensor data. In the less set of noisy
data, the spike trains are homogeneous in time and can
be easily classified using a simple linear classifier. In a
general scenario, the encoding can be used to train an
SNN to improve the classification accuracy comparable
to ANN but with fast inference. Future work includes the
investigation on the representation of the spatial information
in the model to better predict the tactile events. Our
dataset and code for our models are available online
at https://dexrob.github.io/dexrob/fast_
texture_classification_iros_2020/.
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