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Abstract— Recent approaches to multi-agent reinforcement
learning (MARL) with inter-agent communication have often
overlooked important considerations of real-world communica-
tion networks, such as limits on bandwidth. In this paper, we
propose an approach to learning sparse discrete communication
through backpropagation in the context of MARL, in which
agents are incentivized to communicate as little as possible
while still achieving high reward. Building on top of our
prior work on differentiable discrete communication learning,
we develop a regularization-inspired message-length penalty
term, that encourages agents to send shorter messages and
avoid unnecessary communications. To this end, we introduce
a variable-length message code that provides agents with a
general means of modulating message length while keeping the
overall learning objective differentiable. We present simulation
results on a partially-observable robot navigation task, where
we first show how our approach allows learning of sparse
communication behavior while still solving the task. We finally
demonstrate our approach can even learn an effective sparse
communication behavior from demonstrations of an expert
(potentially communication-free) policy.

I. INTRODUCTION

Multi-agent reinforcement learning (MARL) has recently
been used to learn effective control policies for complex
multi-agent tasks, such as DOTA2 and StarCraft [1], [2], [3].
Typically, control policies learned using MARL are decen-
tralized, meaning each agent makes decisions independently
from one another, based solely on its own local observations.
This property allows the computational complexity of multi-
agent policies to scale linearly with number of agents, rather
than exponentially, as would be the case for a centralized
planner. Additionally, action selection can be fully paral-
lelized. The primary drawback to MARL with such fully
independent policies is that, because agents make decisions
based solely on their local observations, agents cannot take
advantage of all the information available to the group [4],
[5], [6], [7]. This leads to sub-optimal policies and more
limited coordination. One way to mitigate these problems
is by allowing agents to selectively exchange information
via inter-agent communication. This information exchange
enables agents to make more informed decisions, while
maintaining the scalability and parallelizability advantages
of traditional MARL.
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Several recent works have focused on the problem of
MARL with inter-agent communication [8], [9]. However,
these works have largely assumed an idealized communica-
tion channels that do not reflect difficulties associated with
real-world communication networks. For example, recent
works have either assumed agents can exchange real-valued
messages [10], [11], containing a potentially unbounded
quantity of information, or that agents can send a fixed-size
discrete message to all agents within reach of communi-
cation, regardless of how much communication is actually
necessary at a particular timestep [12], [6], [13]. In reality,
communication networks typically support discrete (e.g.,
digital) communication, and have limits on rates of infor-
mation transfer. Such a communication network may become
overburdened if all agents communicate maximally with each
other at all times. For this reason, we seek a new approach
in which agents can learn discrete communications while
communicating sparsely, that is, sending the least amount of
information necessary to achieve satisfactory behavior.

A simple approach to learning sparse communication
would be to use a standard RL communication-learning
framework, such as [12], [6], [14], and penalize agents with
a negative reward for every bit that they send. However,
this form of communication learning has been shown to
be far less efficient than those based on gradient back-
propagation [12], [15], and in theory scales poorly to large
message spaces. In contrast, our approach to sparse commu-
nication learning through backpropagation builds upon our
past approach to scalable, discrete differentiable communi-
cation [15]; however, to give agents the ability to control
the amount of information they transmit, we introduce a
variable-length coding scheme, which assigns each possible
discrete messages to a unique binary encoding of variable
length. We then derive a message regularization term that
encourages message brevity by penalizing (an upper bound
for) the expected number of bits in the message encodings.

We test our approach on a simple but illustrative example
problem, in which a group of agents must navigate to
randomly-chosen goal locations, but can only observe other
agents’ goals. This partial observability necessitates inter-
agent communication. Here we show that with higher levels
of message-length penalization, agents learn to transmit
fewer bits, while still solving the task, and our approach
therefore constitutes an effective way to achieve sparse inter-
agent communication.

An additional highlight of our approach is that, because
it builds upon communication learning through gradient
backpropagation, it enables sparse communication learning
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through imitation of expert actions alone [11], [16], [17]. In
other words, agents can learn to communicate succinct dis-
crete messages via demonstration of expert actions, without
ever having communication behavior demonstrated to them.

In this paper, we first review prior works on multi-agent
RL with communication, and specify the mathematical de-
tails of the problem. We then detail our approach to achieving
sparse discrete inter-agent communication through gradient
backpropagation, and present experimental results from a
robot navigation task.

II. PRIOR WORKS

Approaches to multi-agent RL with inter-agent commu-
nication tend to fall into two broad categories: reinforced
communication learning (RCL), and differentiable commu-
nication learning (DCL). RCL treats agent message selection
similarly to action selection, and is trained with typical re-
inforcement learning techniques, such as Q-learning [12], or
policy-gradient [6], [14]. This form of communication learn-
ing is extremely general, as it places virtually no assumptions
on the affects messages will have on the environmental
state transitions or the behavior of recipient agents. RCL
also naturally handles discrete and/or noisy channels. RCL,
however, has been shown to learn less efficiently than DCL,
requiring drastically more episodes to achieve satisfactory
policies [12].

DCL approaches, on the other hand, treat communication
as a differentiable process, and train communication behavior
through gradient backpropagation [15], [12], [13], [11], [10].
That is, since each agent’s behavioral output (i.e., its value
function or stochastic policy) is recognized by DCL to be
a function of the messages the agent receives, which in
turn are functions of the parameters of the agents who sent
the messages, gradients can be backpropagated from the
receiving agent’s behavioral output to the sending agents’
parameters. Differentiable approaches have been shown to
be far more efficient than RCL [12], [15], as agents need not
rely solely on empirical observations to determine how their
messages affects the behavior of other agents. An additional
benefit of DCL is that it avoids the combinatorial explosion
in size of the message space that exists for RCL1. Therefore,
DCL can in theory scale more efficiently to large message
spaces. One additional benefit of DCL over RCL is that it
can also be used with imitation learning, without requiring
communication behavior to be demonstrated [11].

The primary drawbacks to DCL are that it does not
naturally handle discrete communication channels, or those
with noise. Our prior work in [15] addressed these issues
by introducing a stochastic message encoder and decoder,
responsible for quantizing agents’ real-valued communica-
tion output into a discrete message, and reconstructing an
estimate of the original real-valued communication output
from a received discrete message. With this addition, the
encoder-channel-decoder system is a differentiable process,

1This exponential explosion is due to the fact that the size of the message
space scales exponentially with the number of bits contained in messages.

enabling discrete communication behavior to be learned via
gradient backpropagation. In particular, the encoder-channel-
decoder system is mathematically equivalent to an analog
communication channel with additive, independent, uniform
noise. Because the noise is independent of the messages, it
does not bias the gradient estimates obtained.

III. BACKGROUND

In this section, we define the problem of multi-agent RL
with communication, and provide background on variable-
length codes, which allows us to penalize agents’ message
.

A. Multi-Agent RL with Communication

Consider an environment containing K agents. At each
timestep, each agent selects actions independently of all
other agents, according to a policy, parameterized by θ =
(θ1, ...θK), where θi denotes the parameters for the ith agent.
These policies can either take the form of a value function,
such as in independent Q-learning [18], or a stochastic policy,
as in [6]. Actions selected by agents elicit a stochastic
environmental state transition, according to the (unknown)
state-transition distribution St+1 ∼ pS′|S,a(S

′|S = St,a =

at), where at = (a
(1)
t , ..., a

(K)
t ) represents the joint action

at time t, and St denotes the state at time t. Each agent
i then receives an observation o

(i)
t+1, distributed according

to (o
(1)
t+1, ..., o

(K)
t+1) = ot+1 ∼ po|S(·|St+1), and reward r

(i)
t

according to (r
(1)
t , ..., r

(K)
t ) = rt ∼ pr|S,a,S′(·|S = St,a =

at,S
′ = St+1). The goal of each agent i is to maximize

its expected sum of discounted rewards,
∑T
t=0 γ

tr
(i)
t , where

T represents the length of the episode. Learning is accom-
plished by updating the policy parameters according to some
reinforcement learning (RL) algorithm.

The standard MARL problem can be augmented with
inter-agent communication, which allows agents to send each
other information that they would not normally have access
to from local sensing alone. At each timestep, each agents
sends a (possibly unique) discrete message to all agents with
whom it is in contact. The set of recipients of a particular
agent’s message can be chosen either by the environment,
by the agents themselves, or a combination thereof. In our
approach, we assume the set of all agents that could possibly
receive a message is predetermined (e.g., by the environment)
and the sender of the message can choose this message
to be a “null message,” effectively choosing not to send a
message. In this paper, we assume messages sent by agents
are received, error-free, by the recipient agent at a subsequent
timestep, and form part of its observation.

B. Discrete Communication Learning via Backpropagation

Using the approach outlined in [15], it is possible to
reparameterize a discrete communication process as a dif-
ferentiable process. This is accomplished by introducing a
stochastic message encoder, which takes as input a real-
valued signal z, and quantizes z in a stochastic fashion into
a discrete message. This discrete message can then be sent
through the channel and received by another agent, who can
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then decode the message according to a stochastic decoder,
yielding an approximate reconstruction of the original real-
valued signal generated by the sending agent. As shown in
[15], the reconstruction differs from the original signal by
additive, zero-mean, independent uniform noise, allowing the
encoder/channel/decoder system to be reparameterized as a
simple analog communication channel. Because under this
reparameterization gradients can be backpropagated through
the channel, inter-agent communication can be performed
using an efficient DCL approach.

C. Variable-Length Codes

A code C : S → T is a unique mapping from symbols in a
source alphabet S (e.g., the Latin alphabet) to a target domain
T (e.g., the set of bit sequences T = {0, 1}∗). Elements
of the target domain are called codewords. Variable-length
codes, such as Huffman coding and arithmetic coding, use
codewords of variable length. Variable-length codes are
useful in data compression, because more common symbols
in the source domain can be represented with shorter code-
words, allowing the data to be represented with a number
of bits closer to the theoretical minimum determined by the
entropy of the source [19]. In our approach, we incorporate
a variable-length code to provide agents with a means by
which they can regulate the number of bits they send at a
given timestep.

IV. SPARSE DIFFERENTIABLE DISCRETE
COMMUNICATION LEARNING

For agents to learn to communicate sparsely, they must
have the freedom to regulate the amount of information
they send at each timestep, which so far has not been a
feature of differentiable communication learning approaches.
Rather than representing this choice with an additional set of
actions available to the agents, we can incorporate this choice
implicitly into agents’ standard communication behavior
by adopting a variable-length coding scheme for discrete
messages. As in our previous work, we assume agents’ real-
valued communication output z is quantized into discrete
message m (where timestep and agent indices are omitted for
brevity). In this work, we introduce an additional coding step:
following message quantization, message m is converted to
a bit string, according to the variable-length code C, which
we fix a priori. This binary message is what is subsequently
sent through the communication channel. The variable-length
code can be thought of as providing a means for agents to
perform data compression on their messages. Whereas in
typical data compression, the frequencies of source symbols
are fixed, and a code is chosen to maximally compress the
the source data, in our case we take the code to be fixed, and
allow agents to modulate the frequencies of source symbols
(in this case, discrete messages). In the ideal case, agents
would choose to use messages with shorter binary representa-
tions more frequently, and use longer messages infrequently
(only when needed). In our experiments, we adopt a coding
scheme that maps successive values of discrete messages
to successively higher binary representations, with m = 0

mapping to the null message (a message is not sent), m = 1
mapping to 0, m = 2 mapping to 1, m = 3 mapping to 01,
and so on.

To encourage agents to send both shorter messages and
communicate less frequently (only when necessary), we
introduce a penalty term to the typical RL objective that
corresponds to a cost for longer messages, yielding the
objective

J(θ) = E

 T∑
t=0

γtrt − λ
K∑
i=1

K∑
j=1

`(length(mi→j
b,t ))

 , (1)

where length(mi→j
b,t ) is the length of the binary message

sent from agent i to agent j, ` is the penalty function, and λ
is the penalty weighting. While ideally one might impose a
constant cost per message bit, such a penalty term would not
be differentiable. Instead, we adopt a surrogate penalty term
computed from agents’ real-valued communication outputs
zi→jt (where i and j denote the indices of the sending
and receiving agents, respectively), given by `(zi→jt ) =

log2

(
|M |zi→jt + 1

)
, where |M | denotes the size of the set

of discrete messages that agents may choose to send. The
choice of this ` is based on the fact that ` can be shown to be
an upper bound for expected number of bits in mi→j

b,t given
zi→jt . This is because E

[
mi→j
t

∣∣zi→jt

]
= |M |zi→jt (where

mi→j
t represents the discrete, but non-binary, message from

i to j). For our code, length(mi→j
b,t ) ≤ log2(m

i→j
t +

1). Taking the conditional expectation given zi→jt , we
have that E

[
length(mi→j

b,t )
∣∣zi→jt

]
≤ E

[
log2(m

i→j
t +

1)
∣∣zi→jt

]
. Applying Jensen’s inequality, we arrive at

E
[
length(mi→j

b,t )
∣∣zi→jt

]
≤ log2

(
E
[
mi→j
t

∣∣zi→jt

]
+ 1
)

=

log2

(
|M |zi→jt + 1

)
. This penalty term can be thought of

as a log-regularizer on zi→jt , encouraging it to be as small,
and messages to therefore be short.

It might appear at first that our coding scheme is overly
idealistic, since it assumes no additional overhead bits are
necessary for error correction or to make messages uniquely
decodable. However, the message penalty we derive is
equally suited to any code with codewords that differ in
length from ours by multiplicative or additive constants.
This is because multiplicative constants can be absorbed into
the penalty weight, and additive constants simply impart a
constant offset to the objective function and therefore do
not change the optimal solution. This property allows our
approach to function with a wide range of possible codes.

These modifications result in the final objective function
for our problem:

J(θ) = E

 T∑
t=0

γtrt − λ
K∑
i=1

K∑
j=1

log2

(
|M |zi→jt + 1

) .
(2)

A Monte-Carlo estimate of the gradient of J can be formed
according, according to:
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∇θJ(θ) ≈ gpg − λ∇θ

 K∑
i=1

K∑
j=1

log2

(
|M |zi→jt + 1

) ,

(3)
where gpg denotes a policy-gradient estimator.

The message-length penalty term can also be combined
with imitation learning. In this case, the objective function
becomes

J(θ) = −LIL(θ)− λ
K∑
i=1

K∑
j=1

log2

(
|M |zi→jt + 1

)
, (4)

where LIL(θ) is the imitation loss. One possible choice
of imitation loss is to minimize the negative log-
likelihood of expert actions, in which case LIL(θ) =
−E [log π(aexp,t|St)], where π is the joint policy of the
imitation learners, and aexp,t the expert action at time t.

V. SIMULATION EXPERIMENTS

In this section, we describe the experiments we carried
out in simulation to verify our approach on a multi-robot
navigation task, and present results from reinforcement and
imitation learning.

A. Robot Navigation Task

We demonstrate the ability of our proposed technique
to simultaneously learn high-quality behavioral and sparse
communication policies, on a simple but illustrative example
task. We choose this task to demonstrate our technique be-
cause, while it is simple, it possesses some key difficulties of
many MARL problems, such as problems of delayed reward
(agents actions early in the episode affect reward many
timesteps in the future), and difficulties in credit assignment
due to shared reward (agents are rewarded based on the
quality of not only their actions, but the actions of the other
agents in the environment). We consider environments with
3 agents that can continuously move in the 2-dimensional
plane. Each agent is tasked with finding its goal location,
which can be located anywhere within a square of side length
2, centered at the origin. Agents do not observe their goals
directly, and instead observe only the goals of the other two
agents, in addition to their own coordinates and velocities.
Agents must therefore communicate with each other to find
their goals. Goals move randomly according to the following
motion model: with a 0.05 chance at each timestep, goals
discretely move to a new location sampled from a uniform
distribution over the 2 × 2 square area in which goals can
appear. The size of the square and acceleration of the agents
is such that it is physically possible for agents to reach a
goal placed anywhere in the square.

Agents are modeled as point masses, and select actions
at each timestep, corresponding to a force in either the
up, down, left, or right directions, or no force. Agents
move according to the second-order dynamics model of such
a point mass with an applied force, i.e., acceleration of
the agent is proportional to its applied force. The episode

terminates either when all agents are within 0.1 units of their
goals, or 256 timesteps have elapsed.

At each timestep, agents are able to send a discrete
message to both of the other agents in the environment.
To compute these discrete messages, agents first output a
real-valued 10-element communication signal z, where each
element z[i] ∈ [0, 1], which is then quantized according to
the stochastic encoding scheme described in [15], yielding
an integer. This integer is then converted to a bitstring
according to the code descried in IV. Upon receiving a
bitstring message, agents first convert this bitstring back to
an integer, and then to a real-valued reconstruction of the
sending agent’s original communication signal according to
the stochastic decoder described in [15]. This real-valued
reconstruction then becomes part of the recipient agent’s
observation. Communications are penalized according to the
method explained in IV.

To highlight the flexibility of our technique, we train
agents with two distinct methods: RL, where we test our ap-
proach with penalty weights of λ = 0.01, 0.005, 0.001, and
0, and imitation learning (IL), where we test our approach
with penalty weights of λ = 0.001, 0.0007, 0.0004, and 0.
For RL, we use the actor-critic algorithm [20], in which the
policy gradient estimator described in Eq.(3) is given by

gpg = ∇θi log π(i)(at|o≤t)

(
T∑
k=t

γk−tr
(i)
k − V

(i)(St)

)
,

(5)
where r

(i)
k denotes the ith agent’s reward at time k, and

π(i)(at|O≤t) denotes the ithe agent’s policy, which we pa-
rameterize as a recurrent neural network, and is conditioned
upon all past observations O≤t. V (i)(St) is a learned value
estimate, parameterized by a feedforward neural network.
We allow the value estimate to be conditioned on full
state information, consistent with the centralized-training
decentralized-execution paradigm.

When all agents have reached their goals, each agent
receives a reward of 1200 and the episode terminates. When
not every agent has reached its goal, the agent’s reward
rt, for t = 0, ..., T , is computed as a linear combination
of an individual component, as well as a group component
to encourage cooperation. The agent’s individual component
consists of either a negative reward equal to the negative of
the squared distance between itself and its goal, computed
at every timestep, or a positive reward of magnitude 250 for
being within 0.1 units of its goal. The group component is
equal to the sum of the agents’ individual components.

When using imitation learning, we train agents to predict
the actions of an expert in a supervised manner, as described
in IV. In our experiments, our expert is composed of a group
of agents fully trained with reinforcement learning. During
training, the imitation learner has access only to the agents’
expert actions, but not their messages.

B. Results

For all three message-length penalty weights we tested, the
agents successfully learned to communicate, as evidenced
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Fig. 1. Average episode reward (top) and length (bottom) as training
progresses. For all three values of message penalty weight (λ), agents are
able to solve the task; however, note that performance declines with higher
values of λ, as agents are not able to communicate as freely.

by the fact that agents were able to find their goals at
a substantially higher frequency than if no communication
was permitted (in which case, agents virtually never find
their goals by the end of an episode). As expected, we
found that agent communication reliably decreased as the
penalty weight increased, indicating that the penalty weight
provides a useful means by which to regulate the amount of
communication agents engage in. Moreover, as the penalty
weighting increased, the final average reward agents attained
was not substantially impacted, except for the largest value
of message penalty weight tested, despite over a 2-fold
reduction in information transmission (Fig. 2), indicating that
agents learned to trim predominately unnecessary informa-
tion from their messages (Fig. 1, Fig. 2).

Our experiments with imitation learning showed that
agents trained to imitate expert actions also learned sparse
communication capabilities. Here, agents were capable of
achieving nearly the same reward and episode lengths even
when sending far fewer bits than their unconstrained values
(Table I).

Penalty Weight λ Mean Episode Length Mean Group Rewards
0.0001 139.5 13053
0.0004 144 13023
0.0007 146.6 13026
0.001 254.6 3710

TABLE I
MEAN EPISODE LENGTH (LOWER IS BETTER) AND GROUP REWARDS

(HIGHER IS BETTER) FOR DIFFERENT VALUES OF λ DURING IMITATION

LEARNING.

Fig. 2. Mean number of message bits transmitted per timestep during
training. As expected, larger values of the message penalty weight (λ) result
in fewer bits transmitted.

VI. CONCLUSION

In this paper, we demonstrated a method for simultane-
ously learning action selection in a multi-agent setting, as
well as sparse, discrete inter-agent communication. We built
upon past approaches to differentiable discrete communica-
tion learning with a variable-length coding procedure, that
allows the choice of the number of bits transmitted by agents
to be implicit to message selection. We additionally derive
a differentiable message-length penalty that corresponds to
an upper bound on expected number of message bits sent
by agents, and incorporate this into the learning objective
function, to encourage sparse communication. This penalty
term can be thought of as a log-regularizer on the real-
valued communication output that agents generate. Through
experiments on a robot navigation problem, we demonstrate
that this approach learns multi-agent policies that requires
little bandwidth while still solving the task. We also find
that agents transmit fewer bits when trained with a higher
message-length penalty weight, allowing us to conclude
that our message-length penalty provides a useful tool to
adjust the extent to which agents communicate. Finally, We
demonstrate our approach is able to learn effective behavior
through either reinforcement learning or imitation learning.
In this case, message bits could be decreased substantially
(>2x) from their unconstrained values, while expected re-
ward remained relatively unaffected for all but the largest
weight penalty. During imitation learning, communication
behavior need not be demonstrated, enabling a very flexible
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Fig. 3. Imitation loss and mean number of message bits transmitted per
timestep during imitation learning-based training. As expected, larger values
of the message penalty weight (λ) result in fewer bits transmitted.

choice of expert (for example, a centralized expert that does
not undergo inter-agent communication).

In future works, we will investigate learned coding pro-
cedures. In this work, we fixed a code a priori that mapped
larger values of discrete messages to longer binary messages.
We believe it may be more effective to allow agents to learn
their own mapping, so that message length can be decoupled
from message value.

We will also consider communication channels with noise,
which differentiable communications learning approaches,
other than our prior work, have not considered. Our approach
already permits the use of more sophisticated codes than
the simplistic one we described, such as codes that incor-
porate redundancy into messages to enable error-correction
(error correcting codes). Past work has explored learned
channel coding, with the objective of learning optimal error-
correcting codes for particular channel noise models [21],
[22]. This work suggests it may be possible, in environments
with channel noise, to learn a coding scheme that optimizes
the trade-off between number of bits transmitted, message
expressively, and error rates. Longer messages can be more
expressive or less prone to errors, but place a greater burden
on the communication network.

REFERENCES

[1] OpenAI, “Openai five,” https://blog.openai.com/openai-five/, 2018.
[2] M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris, G. Lever, A. G.
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