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Abstract— This paper addresses the problem of path negotia-
tion among self-interested multirobot operators in shared space.
In conventional multirobot path planning problems, most of the
research thus far has focused on the coordination and planning
of collision-free paths for multiple robots with some common
objectives. On the contrary, the recent progress of technologies
in autonomous vehicles, including automated guidance vehi-
cles, unmanned aerial vehicles, and manned autonomous cars,
has increased demand for solving coordination and conflict
avoidance in these autonomous and self-interested agents that
pursue their own objectives. In this research, we tackle this
problem from the operator perspective. We assume a problem
setting where collisions between robots are avoided based on
path reservation and negotiation. Under that circumstance, we
propose a task-oriented utility function and a path negotiation
algorithm for robot operators to maximize their task utility
during path negotiation. The simulation and experiment results
demonstrate the effectiveness of our task-based negotiation
method over a simple path-based negotiation approach.

I. INTRODUCTION

Recent progress in the technological development and
widespread use of unmanned aerial vehicles (UAVs), or
drones, has increased the demand for the safe and efficient
utilization of a shared airspace. Thus, traffic management
systems and architectures have been widely discussed and
developed worldwide [1], [2], most of which use the so-
called first come, first served (FCFS) mechanism to avoid
conflicts with UAVs and manned aircraft. Some of them have
also been considering incorporating negotiation protocols
into the traffic management framework where two or multiple
UAV operators communicate their plans and negotiate for the
airspace required for their missions. In addition, coordination
and conflict avoidance between autonomous driving vehicles
[3], [4], as well as between autonomous transport/delivery
vehicles operating in shared spaces, are additional examples
of the problem in which the vehicles or drivers have their
own objectives, e.g., to arrive at a target location as early
as possible or within a certain limited time. With these
problems, all vehicles or vehicle operators act as a self-
interested agent pursuing their own mission objectives and
do not necessarily take cooperative actions with other agents
unless the rules are posed.

Studies have been conducted in the fields of mechanism
design and game theory to address conflicts between self-
interested agents. For example, [5] proposed a combinatorial
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Fig. 1. Sample problem employed in this study, addressing the problem of
path negotiation among multiple robotic vehicles working in a shared space
with their own objectives and task deadlines.

auction mechanism for solving multiagent path planning
problems with self-interested agents, where the auction
mechanism allocates paths to each agent such that the sum
of the path costs of all agents is minimized. In addition, in
[6], the authors proposed a negotiation mechanism in which
a pair of two self-interested agents negotiates for conflict-
resolving trajectories.

For the path coordination, these studies assume that each
agent evaluates its plan based on its path cost (e.g., length,
duration, or energy usage). However, such a path-based
evaluation is not always adequate to maximizing the profit of
the agent. For example, when an agent’s task has a deadline,
it might not be met even if the agent can obtain a shorter
path by negotiation if the agent only cares about reducing the
path cost. By contrast, the agent might be able to successfully
complete the task by evaluating its plan and negotiation deals
based on a higher, task planning level.

In this study, we address the path negotiation problem
among self-interested operators from an agent perspective
(Fig. 1). We propose a task-oriented negotiation algorithm
with which an operator evaluates its path and negotiated
deals based on its task utility instead of each path cost. We
conducted numerical simulations and physical experiments
to evaluate the effectiveness of the proposed approach.

II. RELATED STUDIES

The problem of planning a set of conflict-free paths for
multiple robots is generally called multirobot path planning
(MPP) or multiagent path finding (MAPF) [7], [8]. Several
algorithms for efficiently finding optimal or sub-optimal
solutions have been proposed so far with centralized [9],
[10] and decentralized [11]–[13] paradigms.

Thus far, the main focus of MPP–MAPF research has been
on multiple robots within a team having a common mission,
e.g., minimizing the sum or maximum travel duration of
all robots. The main applications of these problems are
autonomous transport vehicles in warehouses and logistical
centers [14], [15]. In this study, by contrast, we address the
problem in which there is more than one non-cooperative,
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self-interested agent, each of which acts to maximize its own
task utility without regard to the welfare of the other agents.
In addition, we assume that their objective functions are not
shared with the other agents.

Owing to this nature of self-interested agents, one of
the main difficulties in a self-interested MPP problem is
that we cannot utilize approaches that are widely used in a
conventional single-team, cooperative MPP problem where
a central system or a local leader agent can coordinate a
set of path plans or decide which agent goes first based
on their common objective. To deconflict self-interested
agent motions, implicit coordination mechanisms have been
proposed. For instance, in [16], the authors proposed tolling
mechanisms that increase the cost of using areas through
which multiple agents intend to pass. In [4], [5], auction
mechanisms were introduced to allocate spatial resources to
agents in which each agent bids on its preferable path.

In addition to these cost-adjustment-based approaches,
negotiation-based deconfliction mechanisms have been inves-
tigated (e.g., [6], [17], [18]). In such negotiation mechanisms,
agents communicate to one or more other agents regarding
their actions to avoid conflicts. Among the studies conducted,
in [6], a negotiation mechanism is proposed that guarantees
the confidentiality of each agent’s mission information, such
as the destination and utility function, to a certain extent. In
general, mechanisms and strategies for negotiations among
multiple agents have been studied for decades in the field of
automated negotiation [19], [20].

The main purpose of the above-mentioned research is to
design mechanisms that can avoid conflict between self-
interested agents. This study, by contrast, focuses on the
problem of generating a better operation plan that improves
the task utility of self-interested agents from each agent’s
perspective, given a negotiation mechanism. We consider a
setting in which each agent negotiates with another agent to
obtain a partially shared space for its task objective. The
contributions of this study include the development of a
path negotiation algorithm and a task-oriented metric for
evaluating each negotiation. In addition, we implemented
the proposed algorithm on test systems and performed ex-
periments of path negotiations with physical robots. The
experiments, along with numerical simulations, demonstrate
the effectiveness of the proposed approach.

III. PROBLEM DEFINITION

In our problem, we are given K robot operators o1, · · · ,oK
in a shared space, with each operator owning a single robot
rk. Each robot rk has its start location sk. The operator ok has
its own task τk to complete. Each task is given to the operator
at arbitrary times. The task τk comprises goal location gk,
deadline tk, and reward rk. The operator can gain the reward
rk only if the robot successfully completes the task (e.g., its
robot reaches the goal gk within the deadline tk).

In our problem setting, each operator is self-interested;
that is, it has its own mission objective and utility function
that are not shared with others. Each operator attempts to
maximize its task utility by completing its tasks. To do so,

the operator should plan and assign a path to its robot from
the robot’s location sk to the task goal gk.

The entire shared space is divided into discrete spatiotem-
poral volumes with a two-dimensional space in addition
to the time dimension. Subsequently, the set of discretized
volumes is then encoded to a graph G(V ), where a vertex
v ∈V represents a location at a specific time.

We consider discrete time steps t ∈ T , and denote vt
k as

a vertex robot rk has occupied at time step t. At each time
step, each robot rk can either move from its current vertex vt

k
to its adjacent vertex vt+1

k using the edge between (vt
k,v

t+1
k )

or wait at the same vertex vt
k (i.e., vt

k = vt+1
k ). A path for

the robot rk is a sequence of vertices that the robot occupies
at each time step, as denoted by Pk = (v0

k ,v
1
k , · · · ,vT

k ). No
paths Pk of the robot rk should be in conflict with any other
paths Pk′ of the robot rk′ . Here, a path conflict can be either
a vertex conflict (i.e., vt

k = vt
k′ ) or edge conflict (i.e., (vt

k =

vt+1
k′ )∧ (vt+1

k = vt
k′)). In addition, a path cannot go through

prohibited vertices (obstacles or no-go zones).

A. Reservation-based conflict avoidance

Conflicts between any two paths are avoided using a
reservation-based resource allocation. We assume an area
manager manages the entire shared space. The area manager
has a reservation table that records the status of all vertices as
either “free,” “reserved,” or “prohibited.” Prohibited vertices
denote locations that cannot be utilized by any operators
either temporarily or perpetually. Reserved vertices are those
already reserved and assigned to operators. Free vertices are
volumes that are neither prohibited nor reserved and can be
used by any operator. The reservation table tracks the status
of every vertex in the graph G.

Each operator must submit a request for registering the
paths for its mission. In this study, reservations are made
based on a simple FCFS mechanism. The earliest valid path
submitted is approved, and the corresponding vertices are
reserved. Any other paths submitted after that are rejected if
they conflict with the already reserved path. This corresponds
to a decentralized version of the Cooperative A* algorithm
[9]. Although only FCFS is considered in this study, note
that the reservation mechanism is not limited to this; other
possible mechanisms include auction-based space allocation
[4], [5] and priority-based sequential planning [13]. The main
idea of the negotiation approach proposed in this study can
be applied to scenarios with other such mechanisms.

B. Path negotiation

We further assume that a negotiation mechanism is pro-
vided to all operators to enhance the flexibility and efficiency
of the shared-space utilization. With negotiations, opera-
tors request or provide already reserved vertices. Within a
negotiation, an operator sends a negotiation message y to
another operator. The negotiation message contains requested
vertices, providable vertices, the amount of payment, and
the response. Requested vertices are those the message
sender requests to the receiver. Providable vertices are, by
contrast, those the sender has reserved and can provide to
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the receiver. Payment is the fee the sender can provide to
the receiver for the requested vertices. The payment can be
either positive, negative, or zero; a positive payment implies
the sender pays a certain amount to the receiver, and a
negative value indicates the opposite situation. This payment
is introduced into the negotiation mechanism to induce an
incentive for the requested operator to provide its reserved
vertices. Otherwise, the provider might have no reason to
concede such vertices if it has a self-interest and if no rule
is imposed to foster a coordination.

During each negotiation step, a message receiver either
accepts, conditionally accepts, or rejects the negotiation
depending on the issue and its own mission. The receiver
may reject or cancel the negotiation if some of its tasks be-
come unattainable when the operator provides the requested
vertices. In a conditional acceptance option, the receiver can
set the requested and available vertices, and/or payment. The
receiver creates a new response message and sends it to the
other operator.

A negotiation continues until either a mutual agreement is
made, one of the operators rejects or cancels the negotiation,
or some predefined maximum negotiation count and/or time
is reached. In the case of a mutual agreement, each operator
involved in the negotiation submits the negotiation result to
the area manager along with new paths the operator wants to
reserve. The area manager then checks the consistency of the
messages and confirms whether none of the newly submitted
paths conflict with reserved paths. If inconsistency or conflict
does not exist, then the area manager updates the reservation
table to reflect the negotiation result.

Fig. 2 shows an example of the path negotiations. In this
study, we consider simple bilateral negotiations, and an agent
does not negotiate with more than one other agent to acquire
a single path. That is, a path generated for a negotiation can
conflict with only one agent’s already reserved path. How-
ever, the agent can negotiate with multiple agents in parallel
for different paths and decide which negotiation to apply to
make a final agreement after processing all of these multiple
negotiations. More complicated negotiation protocols may be
adopted, such as multilateral and/or multiparty negotiations
or sequential negotiations where a negotiated path collides
with multiple agents’ paths, or chained negotiations where a
requested agent negotiates with a third agent for determining
the deal with the first requesting agent. However, these
complicated cases are out of the scope of the present study.

As another assumption, only one fixed path can be ne-
gotiated during a negotiation with each operator, and the
amount of payment for that path is the only issue of the
negotiation; that is, agents cannot change their requested
paths during a negotiation with another agent. In a more
strategic negotiation, a re-planning and updating of the
negotiated path according to the previous response may also
be possible. In this case, the negotiation will handle the pair
(path and payment), but this is not considered herein.

(a) Example problem

(b) Single negotiation (c) Parallel negotiations

Fig. 2. Example path negotiations. (a) Agent A plans a path from its start
sA to the task goal gA. The optimal path without negotiation PA,org avoids
conflicts with the already reserved paths of agents B and C. The paths PA,1
and PA,2 are shorter, but they conflict with the paths of B and C, respectively.
(b) Agent A can negotiate for a single path with another agent or (c) with
multiple agents for different paths in parallel.

C. Planning problem for robot operator

In the above setting, the problem for a robot operator is to
plan a path for completing each task such that the operator
maximizes its own task utility under the constraints of the
available vertices and the task deadline. If the operator can
find no such path for completing the task, then the operator
may need to enter negotiations with another agent or execute
the task without success or reward.

IV. ALGORITHMS

In this section, we propose a task-oriented metric to eval-
uate a negotiation, along with a set of planning algorithms
for a path negotiation for self-interested robot operators to
maximize their task utility.

A. Negotiation utilities

During a negotiation, an operator should evaluate the
deal based on a specific metric allowing the operator to
make the most of the negotiation or avoid a disbenefit.
Here let us assume that the negotiation is regarding a set
of vertices Vnego. The requesting (buying) and requested
(selling) operators evaluate how much value or utility Vnego
has for them.

A straight forward way to do so is based on how much path
length is reducible when the buying agent obtains Vnego, or
how much extra path cost is required when the selling agent
provides Vnego, as described in some previous studies. This
conventional path-oriented utility metric can be expressed as

unego,path(Vnego) = c(P∗org)− c(P∗new)− p(Vnego), (1)

where c(P) denotes the cost of the path P used in the
operation. In addition, P∗new and P∗org are the optimal paths
with and without negotiation. For a buyer P∗new and P∗org
are the optimal paths that are generated with and without
Vnego, respectively. For a seller they are the optimal paths
without and with using Vnego, respectively. p(Vnego) denotes
the payment for Vnego, and is normalized such that a unit
payment becomes equivalent to the unit cost.
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As described earlier the above path-oriented metric is not
always adequate for maximizing a task profit. This study
proposes the following task-oriented negotiation utility to
evaluate a negotiation at a task level:

unego,task(Vnego) = utask(x∗new)−utask(x∗org)− p(Vnego), (2)

where utask(x) denotes the utility function of the operation
plan x. x∗new and x∗org are the optimal task plans with and
without the negotiation, respectively. Again for a buyer, x∗new
is the task plan that uses Vnego and x∗org is the plan that does
not use Vnego. For a seller they are the opposite.

Each operator requests or responds to a negotiation such
that the negotiation utility satisfies the following condition:

unego > ε, (3)

where ε denotes an operator-dependent threshold. Typically,
ε is set to zero; thus, the operator can obtain some profit or at
least not lose its utility through negotiations. The negotiation
payment p(Vnego) is determined in such a way that Eq. (3)
is met.

The task utility and cost functions utask(x) and c(P) can
be of any arbitrary form, and each operator can have its own
function. For the problem described in Section III, we use
the following task utility funcition for completing a task:

utask(x) = r(x)− c(P). (4)

The reward r(x) becomes rmax if x can complete the task by
the deadline; otherwise, zero. We used the duration of the
path P as the path cost c(P), although the cost function is
not limited to this duration.

B. Planning and negotiation algorithm

An overview of a planning algorithm for the k-th operator
ok is shown in Algorithm 1. The operator first searches the
optimal, conflict-free path Porg using only the free vertices
(lines 1 and 2). The operator then plans negotiations with
other operators to acquire a better solution. For each of the
other operators, ok′ , ok initially plans the optimal path Pnew
assuming that it can use the vertices reserved by ok′ (lines
5 and 6). The operator then evaluates the newly planned
path (line 8). If the path for negotiation is beneficial, then ok
initiates a negotiation with ok′ under a zero payment (lines 9
and 10). Here, ok can request only the conflicting vertices, but
doing so may cause other conflicts with the alternative path
of ok′ . Therefore, ok should request the entire path or a set of
vertices that sufficiently cover the path within the negotiation
planning horizon. If the negotiation response from ok′ is
either “Agree” or “Deny,” then ok ends the negotiation with
ok′ (lines 11–14). If not, ok evaluates the utility of the
negotiation unego,k′ and determines the payment for the next
negotiation iteration (lines 15 and 16). Here, ok repeats this
procedure until the iteration reaches the maximum number.
Once the negotiations with all other operators are finished,
ok selects the best among them and sends a final agreement
to the best negotiation partner obest . In addition, ok sends out
cancellations of the negotiations to the other operators (lines
19–24).

Algorithm 1 Bilateral negotiation for operator ok

1: Vuse←Vf ree
2: Porg← PlanPath(Robot,Task,Vuse)
3: obest ← NULL; umax← ε;
4: for Each ok′ ∈O\ok do
5: Vuse←Vf ree∪V k′

reserved
6: Pnew← PlanPath(Robot,Task,Vuse)
7: i← 0; payment ← 0;
8: while i < Maximum iteration count and

NegotiationUtility(Porg,Pnew, payment) > ε do
9: yk′

k ← SetNegotiationMessage(ok′ ,Pnew,payment)
10: SendNegotiationRequest(ok′ ,yk′

k )
11: yk

k′ ← onReceivedNegotiationResponse(ok′ )
12: if yk

k′ .response = Agreement or Denial then
13: break
14: end if
15: unego,k′← NegotiationUtility(Porg,Pnew,yk

k′ .payment)
16: payment ← SetPayment(unego,k′ )
17: i← i+1
18: end while
19: if unego,k′ > umax then
20: obest ← ok′ ; umax← unego,k′ ; ybest ← yk′

k ;
21: end if
22: end for
23: SendNegotiationAgreement(obest ,ybest )
24: SendNegotiationCancellation(O\ok,obest )

Algorithm 2 Responding to a negotiation request

1: Vuse←Vf ree∪V k′
reserved \V k

requested
2: Pnew← PlanPath(Robot,Task,Vuse)
3: if Pnew = /0 then
4: yk

k′ ← SetNegotiationMessage(Denial)
5: else
6: unego,k← NegotiationUtility(Porg,Pnew,yk′

k .payment)
7: payment ← SetPayment(unego,k)
8: yk

k′ ← SetNegotiationMessage(ok,Pnew, payment)
9: end if

10: SendNegotiationResponse(ok,yk
k′ )

Algorithm 2 describes the algorithm used by the operator
ok′ for not taking a loss during the negotiation with the
requester ok. Here, ok′ first generates an alternative path
Pnew that avoids conflicts with the vertices requested by ok
(lines 1 and 2). If no collision-free path that can complete
its task is found, ok′ sends a denial to the negotiation (lines
4 and 5). Otherwise, ok′ evaluates the new path Pnew, sets
the payment for a request, and a responds to the negotiation
with a conditional (lines 6–8).

The function PlanPath(Robot,Task,Vuse) in Algorithms 1
and 2 searches for the optimal conflict-free path from the
robot’s current location to the task goal using the vertices
Vuse. In this study, we used the spatiotemporal A* algorithm
to generate collision-free paths for a robot. As mentioned
previously, when searching for the best path without a

11590



negotiation, only the free vertices are set as available and
reserved and prohibited vertices are treated as spatiotemporal
obstacles. This guarantees that the solution will not collide
with the plans of the other robots . During a negotiation, the
path planner plans a new optimal path that uses additional
vertices reserved by a negotiation partner ok′ . If the negotia-
tion partner requests any vertices in the deal, then the planner
excludes those requested vertices in the path re-planning.

The functions NegotiationUtility() and SetPayment() de-
cide the negotiation policy, and different operators can have
different policies. NegotiationUtility() calculates the utility of
the negotiation based on either Eqs. (2) or (1). The payment
amount and/or negotiation response are determined based on
the negotiation utility such that condition Eq. (3) will be met.
Examples of how to determine the payment are described in
the next evaluation section.

V. EVALUATION

To evaluate the proposed negotiation utility metric and
planning algorithm, a set of numerical simulations were con-
ducted. In addition, real-world experiments were performed
with physical mobile robots.

A. Numerical simulations

Sets of simulation studies were conducted under various
conditions to evaluate the effectiveness of the proposed
algorithms.

In all simulation sets, the proposed algorithms and simula-
tion modules are implemented in Python. For the negotiation
protocol, NegMAS (Negotiation Multiagent Systems) [21]
was integrated into the simulator. NegMAS implements var-
ious types of negotiation protocols. During this simulation,
the stacked alternating offers protocol [22] was utilized to
simulate bilateral negotiations between two agents. During
the negotiation, both the requesting operators (buyers) and
requested operators (sellers) use linear functions in SetPay-
ment() to determine the payment at each negotiation iteration,
i.e., buyers increase, and sellers decrease, the amount of
payment by ∆p at each iteration.

1) Simulation 1–varied agent and map sizes: During the
first simulation set, the proposed algorithm was evaluated
under various numbers of agents and map sizes. The agent
size was varied from 20 to 100, and the map size was set to
5 x 5, 10 x 10, or 20 x 20 grids for each agent condition.
During this simulation, 4-connected, no-obstacle maps were
used. The simulation with each condition was run 20 times
with randomly selected agent starting locations, task goal
locations, and task deadlines, with and without a negotiation.
The deadline for each task was specifically determined by
adding a random integer of 0–10 to the shortest time required
for the agent when moving from its start position to the
goal. The negotiation utility of each agent was set to the
proposed task-oriented function, as shown in Eq. (2). We
then compared the results based on the following criteria:
task success rate, task utility, path cost, negotiation rate,
agreement rate, and run time. The task success rate represents
the ratio of the number of agents that can complete the

task by the deadline to the total number of agents. The
negotiation rate represents how many negotiations occurred
in a single run. The negotiation rate was normalized based
on the total number of agents. The agreement rate represents
the total number of agreements made divided by the total
number of negotiations. The reward for every task was set
to 100. During the simulations, we set each vehicle as a
point-type agent; that is, it can move in any connected
directions without changing its orientation. In addition, we
assumed that each vehicle appears on the map only during
the approved path duration. Each vehicle enters into the map
at the path start time and disappears when it reaches its task
goal. This corresponds somewhat to a UAV scenario in which
the managed shared space is a certain height of airspace and
UAVs only appear in the airspace after taking off and before
landing.

We also tested our algorithm on a larger map with ob-
stacles. For this purpose, one of the pathfinding benchmark
maps [23], “den009d” shown on the left of Fig. 4 was used.
The map has a grid size of 50 x 34 and a narrow corridor
around its bottom center, which can induce congestion. In
this case, we simulated a ground transport vehicle scenario in
which, unlike the above UAV scenario, each vehicle remains
on the map from the start to the end of the simulation.

Both simulations were run on a machine with a 3.6-GHz
Intel Core i7-7700 processor with 8 GB of RAM.

Fig. 3 shows the results of the first set of simulations.
Several evaluation metrics were plotted against the varying
number of agents for each map size. Note that the mean of
the 20 trials is depicted on each plot. When comparing the
task success rate and task utility on the 5 x 5 and 10 x 10
maps, planning with negotiations achieved a better result than
that without negotiations, as shown in Figs. 3 (a) and (b). The
success rate and utility improved by introducing negotiations.
However, no significant difference can be observed in the
mean path cost, as indicated in Fig. 3 (c). This occurs as
a result of the increase and reduction in the path length,
by which the negotiations cancel each other out because the
same linear path cost function was utilized for all agents.

On the 20 x 20 map, no difference in the task success
rate, task utility, or path cost between planning with or
without negotiations can be seen. This is because the map is
sufficiently large for the agents to reach their goals without
taking long detours to avoid others. This can also be observed
in Fig. 3 (d) where the negotiation rate decreases when the
map size increases.

When comparing the results with regard to the agent size,
the success rate and utility decrease with an increase in the
number of agents even when negotiations are introduced.
This can be attributed to a decrease in the agreement rate, as
shown in Fig. 3 (e), for the 5 x 5 and 10 x 10 maps. Note
that the number of agreements itself increases along with the
increase in the agent size.

Finally, the runtime of the planning for all agents is shown
in Fig. 3 (f). The runtime increases in a polynomial fashion
with an increase in the agent size. This is because the k-
th agent computes possible negotiation requests to k-1 prior
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Fig. 3. Results of simulation set 1 with varied agent and map sizes.
Evaluation metrics were plotted against the agent size.
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Fig. 4. Simulation results on the benchmark map. (Left) the den009d
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numbers of agents.

agents, so the computational complexity is proportional to
K2 for the total of K agents.

Fig. 4 shows the result on the benchmark map. Here,
only the task success rate is shown because the trends of
all evaluation metrics are basically same as those in Fig. 3.
As shown in Fig. 4, the task success rate can be improved
using the proposed negotiation algorithm when compared to
the cases without a negotiation, even with larger obstacle
maps and under a ground vehicle scenario.

2) Simulation 2–task-oriented vs path-oriented negotia-
tion: In this simulation set, we compared the proposed task-
oriented negotiation with conventional path-oriented negotia-
tion. We set the negotiation utility function of the requesting
(buyer) and requested (seller) agents to either the task-
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Fig. 5. Results of simulation set 2. The chart shows the task success rate for
different combinations of negotiation utility for the buyer and seller agents.
“TP”, for example, represents buyers using the task-oriented negotiation
utility function and sellers using the path-based function to evaluate a deal.

oriented (Eq.2) or path-oriented (Eq. 1) functions. We also
varied the task deadline to 0, 3, 5, 10, and infinity. Deadline
= 0 indicates that the deadline of all tasks equals the shortest
path duration. Deadline = 3, 5, or 10 indicates that each task
deadline is randomly set to the shortest path duration added
by a random integer from zero to that number. Deadline =
infinity indicates that no deadline is set for any of the tasks,
and each task is treated as successfully completed whenever
the vehicle reaches the task goal. We set the number of
agents to 40 and the size of the map to 10 x 10. The
simulations were run 20 times under each condition with
randomly selected start and goal locations.

The task success rate with different combinations of nego-
tiation utility are plotted in Fig. 5. In the legend, “T” and “P”
represent the task-oriented and path-oriented negotiations,
respectively, for buyers and sellers. For example, “TP” rep-
resents buyers using the task-oriented criterion to evaluate a
negotiation deal, while sellers use the path-oriented criterion.
The results without a negotiation are also plotted as a
baseline.

The task success rate decreases when the task deadline
becomes shorter for all cases. When comparing the different
combinations of the negotiation utility functions, the success
rate is the highest with the “TT’ combination; that is, both
buyers and sellers evaluate the deal based on the task-
oriented utility function. Negotiation with the “PP” com-
bination is the worst among the four, although it can still
obtain better results than that without a negotiation. We can
also notice that the “PT” setting is better than the “TP”
setting. This is because, when a selling agent uses a path-
based evaluation, it only considers the increase in the path
length and does not regard the task deadline. This method for
evaluating a deal can result in selling the reserved vertices
for the successful completion of its task even though the
alternative path does not lead the agent to the goal by
the deadline. However, when a buyer uses the path-based
evaluation metric, the agent can also possibly lose its chance
to obtain a path for the task completion by underestimating
the value of such a path, but it may still be able to obtain
such a path by negotiating with multiple agents. When the
deadline time is infinite, the differences in the task success
rate are insignificant for all cases.
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Fig. 6. Results of simulation set 3. In the test setting (5 x 5 map), the task
success rates with a negotiation achieved values extremely close to those of
the optimal CBS solutions.

The above results indicate the effectiveness of the pro-
posed task-oriented negotiation approach over the path-based
evaluation, especially when a task has a deadline. In the rest
of the simulations and physical experiments, we used the
proposed task-oriented negotiation approach for both buying
and selling agents.

3) Simulation 3–comparison with centralized optimal
solver: During the last simulation set, we compared our
proposed algorithm with conflict-based search (CBS) [10],
which is an optimal, centralized path assignment algorithm.
We assumed that CBS was run by the central area manager
and that the area manager knows all operator task utility
functions for the optimization. The original CBS was de-
signed to achieve an allocation such that the sum of all
agent path costs is minimized. In this study, we modified
the object function such that CBS maximizes the sum of
all agent task utilities. Although CBS can find an optimal
solution in a relatively efficient manner, finding such a
solution is fundamentally NP-hard, and the problem becomes
intractable when the number of agents increases. Therefore,
in this simulation set, we tested using a smaller number of
operators, 5, 10, and 15 and applied a map of 5 x 5 grids.
The simulations were run on a machine with a 3.19-GHz
Intel Core i7-8700 processor with 32 GB of RAM.

Fig. 6 shows the task success rate with a negotiation, along
with the rates using a CBS and without a negotiation for the
varied agent sizes. Note that, with 15 agents, CBS cannot
find a solution within 30 min of computations in 2 out of
the 10 trials. The plot shows the average values of the eight
successful trials. Both with and without negotiations, the
planning of all operators finished within less than 1 s. As
shown in Fig. 6, CBS achieved the best task success rate
among the three cases with a mean value of nearly 1. CBS
allows multilateral negotiations for addressing all conflicts,
whereas our algorithm only enables negotiations over those
paths that have a single conflict. However, CBS requires the
central area manager to know the task utility function of
the operator to obtain the solution. Our algorithm does not
require each operator to disclose its utility function, but still
results in a task success rate extremely close to that of the
optimal solution. Although the sizes of the agent and map
are limited in this simulation set, the results indicate the
possibility of the proposed negotiation algorithm generating
a near optimal solution.

Fig. 7. Physical experiment setup with three mobile robots in 9 m x 6 m
environment. Top: Map used during experiments. Bottom: Test environment.

B. Physical experiments

Physical experiments were conducted to evaluate the pro-
posed approach using real robotic vehicles. During these
experiments, we simulated multiple transport vehicles work-
ing in a shared workspace. Fig. 7 shows the experimental
setup. During the experiments, three robot operators were
introduced, with each operator owning one robotic vehicle.
As a test map, a grid map of 9 m x 6 m with a 1 m x 1 m
grid was used. The start location of each vehicle was fixed
to one of the red areas (denoted as the delivery locations)
depicted at the top of Fig. 7. The vehicle was assigned a set
of tasks to pick up an item from the pick-up area (depicted
in blue) and deliver it to the specified delivery location. Each
pick-up or delivery task has its own reward and deadline.

Each task was given to one of the robot operators at
different times. Therefore, planning and negotiation were
conducted in an online approach, rather than in a one-
shot manner as in the simulations described in the previous
subsection. A newly task-provided operator planned a path
and initiated a negotiation with the operator with the best
possible negotiation utility. In this initial test campaign,
the negotiation target operator temporarily stopped its robot
motion, if it had already started executing its plan, to simplify
the implementation. When the requested operator planned
an alternative path to de-conflict the requested path of the
requesting operator, it planned the path from the current robot
location to the task goal. Owing to this online scenario, the
negotiation policy was set such that each negotiation finished
immediately. An operator initiated a negotiation with another
operator if the negotiation could improve its task utility
(unego,task > 0). When a negotiation was requested, the selling
operator either denied the request if the best alternative path
could not meet the task deadline, or conditionally agreed with
the request along with the requested payment corresponding
to the reduced task utility (equivalently increased path cost).
The buying operator made an agreement if the requested
payment still met unego,task > 0, or otherwise canceled the
negotiation. This resulted in each negotiation ending within
one round.

All of the experiment systems, including the planning
and evaluation algorithms, were implemented in C++ and
are based on the Robot Operation System (ROS) [24].
Each operator and the area manager systems were run on
separate machines. For the test vehicles, Freight mobile
robots developed by Fetch Robotics, Inc. [25], were used.
The robots have a nonholonomic constraint; the robots can
only move forward or backward and turn in place and are
unable to freely move in their lateral directions without
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Fig. 8. Results of the experiments. The task success rate improved by
introducing the proposed negotiation algorithm.

turning. Therefore, this constraint was incorporated during
the path planning. The travel and rotation speeds of all
vehicles were set to 0.2 m/s and 0.157 rad/s, respectively.
These speeds correspond to the vehicles moving between two
successive vertices and rotating π/4 radians, both within 5
s. The reservation duration of each path was conservatively
set to 30 s for considering the uncertainties in the motion
delays and localization errors of the physical robots.

The experiment was performed three times using the above
settings. The task goals and deadlines were modified during
each trial. The mean task success rate, task utility, and path
cost over the three trials were computed for the case with
and without negotiations.

In the experiments, 1.33 negotiations occurred during each
task on average, and 33% of those negotiations reached an
agreement. Fig. 8 shows the mean task success rate over all
experiments. A task was treated as successfully completed
when the assigned vehicle actually reached the goal by the
deadline rather than the planned path did so . Using the pro-
posed negotiation algorithm, operators could improve their
success rate by approximately 20.5% on average. This result
demonstrates the effectiveness of the proposed approach in
a real environment and in online planning.

The systems mostly worked without any significant prob-
lems. Occasionally, however, the local planner was unable to
generate a feasible path to the next waypoint when the robot
detected other robots and treated them as obstacles in the
cost map even after the actual robots moved away. When
this occurred, it took a certain time to clear the cost map
and find a feasible path, resulting in the robot being behind
schedule. In addition, in the current implementation, each
robot stopped its motion when a negotiation was requested.
Although one negotiation finished in less than 1 s, it delayed
the robot’s planned path execution . Hence, we will update
the system such that operators can plan and negotiate with
each other without interrupting the robots’ execution motion.

VI. CONCLUSIONS

In this paper, we addressed the path planning problem
where multirobots with their own objectives are working in
a shared space. We proposed a path negotiation algorithm
to maximize an operator’s task utility for such scenarios.
The numerical simulations and physical experiments demon-
strated the effectiveness of the proposed algorithm.

The proposed task-oriented utility function is quite general
and can be applicable to purposes other than path negotiation
addressed in this paper. The utility function can be, for

instance, used in a path auction to evaluate bids from a task
plan perspective.
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