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Abstract— This paper discusses the application of video
motion capturing technology (VMocap) to a competitive team
sports game. The setting introduces a specific set of constraints:
large scale markerless motion capturing, big recording vol-
ume, transmitting and processing gigabytes of data, operation
without interfering with players or distracting spectators and
staff, etc... In this paper, we present how we tackled and
successfully solved all of these constraints. That enabled us
to analyze the sportsmen without any intrusions, while giving
their peak performance, hence opening a new field for Mocap
application. International volleyball game was recorded in full
length with the described system. During the course of the event,
we compressed 54TB of raw image data real-time, capturing 6
hours of high framerate video per camera, without disturbing
any of the game operations. Using the data, we were able to
reconstruct the motion, muscle activity and behavior of the
athletes present on the court.

I. INTRODUCTION
Studies on computational algorithms of complex mechan-

ical systems in robotics have lead the advances of not only
motion control of robotics systems, but also motion analysis
of human movements. Inverse kinematics and inverse dynam-
ics in robotics are now key technologies in biomechanics.
Humanoid robotics also extended scientific knowledge of
biped locomotion. The technologies of segmentation and
classification of motion data of human developed in hu-
manoid robotics find their application in data science of
human motion. Agile technology developed in robotics and
related fields such as deep neural networks, computer vi-
sion, high-speed data acquisition, network communication,
and realtime computation will find many applications to
enhance the human life and society. This paper presents the
development of a prototype of video motion capture system
that can capture the whole game of competitive team sports
matches in a large space. The system can be used for the 3D
reconstruction of athletes’ motion and its biomechanical and
behavioral analysis.

Since it became commercially available, the motion
capture technology (Mocap) found numerous applications
in industry and research. Most of applications exploit
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the capability to capture the human motion. Namely, the
technology is widely used in rehabilitation, sports sci-
ence, animation/movie/game industry, human motion anal-
ysis/recognition [1], [2], [3] and human behavior modeling
[4], [5]. Mocap is also employed in non-human related fields
where external motion tracking is required [6], [7].

The most common Mocap technologies are passive-
optical, active-optical and IMU-based motion capture. Op-
tical motion capturing systems are using multi-camera setup
and triangulation to determine the positions of markers.
Markers can be be passive (reflective) that are light up by
infrared light [8], [9], or active, usually stroboscopic LED
lights [10]. These kinds of systems usually need around 40
markers to capture a single person, thus the measurements
are bound to take place in laboratories. IMU-based Mocap
technology avoids this problem by reconstructing the human
skeleton by using measurements from IMU sensors placed
on the subjects body [11]. Hence, the recording is not
constrained to the laboratory setting but can be performed
in the everyday environment of humans. These systems
are usually less accurate and magnetometer readings can
be disturbed by ferrite objects in the environment, causing
additional inaccuracies.

Above mentioned methods need an array of devices to
be attached to the human body which cause two major
drawbacks:

1) Long set-up time caused by the need to attach the
markers to each subject in the scene. That might also
constrain the number of subjects.

2) Limiting the motion. This issue prevents mocap to be
used to analyze the motion of the top athletes when
they are producing their best performances.

To overcome this problem our research group has developed
a technology, called Video Mocap (VMocap) [12], which is
capable to reconstruct the motion from video. The method
combines well-known triangulation techniques with recent
development in the area of human pose detection [13], [14].
This technology enables us to record and reconstruct human
motion data recorded in the human’s natural setting without
any interference.

In this paper, we describe how we successfully recorded
a competitive team sports match in full and obtained data
that was later processed offline using VMocap. This setup
created several strict constraints:

1) No intervention on the subjects, so they can give their
full performance in a competitive setting.

2) No interference with supporting operations, like TV
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Fig. 1. Schematic of the camera network. Receiving side is depicted on the left, while the transmission side is on the right of the figure.

coverage, team staff, and audience.
3) Need for large recording volume, due to the large size

of the court.
4) Need for synchronized high-speed cameras with large

distances between them.
5) Required ability to store a large amount of incoming

data in real-time.
6) A stable system with the ability to run for a prolonged

duration is required.
7) Calibration procedure required for triangulation.

If any of the aforementioned requirements was not met, we
either won’t be allowed to record the data or the obtained
data would be of no value of us. Addressing these points is
a challenging task and in subsequent sections, we describe
in detail how we addressed the enumerated issues.

II. CAMERA NETWORK ARCHITECTURE

VMocap uses RGB cameras as the only sensor, thus
the performance of the camera network greatly influences
the performance of the VMocap and the quality of the
reconstructed motion. RGB cameras need to have:

1) high resolution for high reconstructed motion accuracy,
2) high framerate, especially when dealing with fast mo-

tions, for smooth reconstructed motion
3) synchronized image capture for proper triangulation.

Modern USB3.0 cameras fulfill this requirement set, are
relatively inexpensive and widely available.

The previous work with VMocap [12] was shown to be
effective for a smaller area (10m × 10m). Scaling that up
to the size of the team sports playfield poses significant
challenges:

1) RAW 2K images at 120Hz have to be transmitted to
distances up to 200m.

2) Synchronization signal has to come from a single
source and has to be transmitted over a long distance.

3) The camera may be far away from any power source.

These requirements led to a design of custom electronics,
both on transmission (camera) side and reception (operation
desk) side. The functional diagram of the implemented
camera network is shown in Fig. 1.

(a) Transmission box (b) Camera hub

Fig. 2. Custom-made electronic hardware.

A. Data transmission

Transmitting RAW 2K images at 120Hz over long dis-
tances using multiple USB repeaters isn’t a viable option. A
large number of interconnections would compromise the ro-
bustness. Using Cat6 twisted-pair cables can provide required
bandwidth, but are applicable only up to 100m [15]. For these
reasons, we opted to use USB3.0 over fiber optic extender
capable of transmitting the data up to 250m. It consists of a
transmitter on the camera side, placed inside the transmission
box (Fig. 2(a)), and USB3.0 dongle on the PC side, placed
in camera hub as shown in Fig. 2(b).

B. Camera synchronization

To synchronize the cameras, image acquisition has to
be triggered by an external signal. The 5V square signal
used for triggering is generated by a wave generator at the
operation desk. It is amplified by RS485 transceivers on
both transmission and reception side (Fig. 1). Using this
solution, the maximum distance of 1200m can be achieved
at 100KHz, which is well above system requirements at
200m with 120Hz. On the transmission side, the output
channel of RS485 transceiver is connected to the camera
via synchronizing cable.

C. Power distribution

On the camera side, USB3.0 to fiber optic transmis-
sion box requires at least 12V for operation. Also, RS485
transceivers require 5V. Hence, the power at 18V is generated
by a DC power supply at the operation desk and distributed
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to cameras. Higher voltage was used to compensate for the
voltage drop caused by long distribution lines. To obtain a
stable power of 5V, a DC/DC converter was used on the
camera side.

D. Implementation details

The camera hub was implemented to be able to connect 12
cameras, although in the experiments only 10 cameras were
used. Instead of using 3 different cables (fiber optic for data,
copper wires for RS485 and power) a single Copper/Fiber
Hybrid Cable with two optical and 5 copper lines was used.
That made system much cleaner and easier to setup. One
spare copper line was used for common ground. Longest
cables used were 150m long, and the voltage drop was
around 3V. All camera side electronics was packed into a
compact, self-sufficient transmission box shown in Fig. 2(a).
The box includes a power switch, hybrid and synchronizing
cable jack, single USB3.0 port, and a cooling fan. That box
provided all the necessary ports and connections for the
proper functioning of a single RBG camera with USB3.0
interface. When all 10 cameras were connected and running
the system consumed around 130W.

III. COMPUTER ARCHITECTURE

To be able to acquire, process and save image data
computer architecture has to be considered carefully. State
of the art CPU AMD Ryzen Threadripper 2990WX with
32 cores, coupled with 128GB DDR4 RAM, ROG Zenith
Extreme Alpha chipset and Windows 10 64-bit operating
system were chosen.

The cameras are capturing RAW images at resolution
1920×1200 at 120Hz. Hence, each camera requires that
276MBps of raw data has to be received. Although USB3.0
specification states that the nominal signaling data rate of the
physical layer is 625MBps, because of transmission overhead
single USB controller can’t receive data from two cameras
at 120Hz. For the PC to accommodate four cameras, two
StarTech PEXUSB314AV PCIe USB3.1 extension cards with
two USB3.1 controllers each are added.

To accommodate the persistent storage for the high data
throughput during a full match, the computers were equipped
with four Intel SSD 660P 1.0TB M2 hard drives. The drives
were further organized into a RAID0 array to boost the
writing performance from 1.6GBps to 5.5GBps for sequential
single thread and from 75MBps to 150MBps for random
access single thread writing.

A. Data compression

Each incoming RAW image was 2.3MB, and saving them
directly wasn’t practical for recording long sports match
because it required 16.5GB per camera per minute, thus
some type of data compression had to be used. Sizes of
images compressed to lossless PNG or lossy JPG format
were around 2MB or 0.5MB respectively, which wasn’t
sufficient compression rate. Hence, the incoming images had
to be compressed as a video, which created another set of
constraints.

Because of the long recording duration, to avoid buffer
overflow, each frame has to be compressed within the sam-
pling period. To parallelize the process, thereby utilizing the
high number of CPU cores, recording was split into 15sec
video segments. This way multiple video segments can be
compressed in parallel.

FFmpeg [16] was used to compress images to MPEG4
video at the bitrate of 65740Kbps (8217.5KBps), thus achiev-
ing a compression ratio of approximately 34:1. When a
single camera is connected, the acquisition buffer stabilizes
at around 1800 RAW images while creating two videos in
parallel. In the case when all four cameras are connected,
acquisition buffer stabilizes at 3400 RAW images per camera,
while four videos in parallel per camera are created.

With the given setup, the hardware exceeded the required
32.8MBps writing speed, while CPU utilization was at
around 60%. The acquisition system was able stably to run
for more than an hour, without skipping a single frame from
any camera.

IV. INTEGRATED CAMERA CALIBRATION

We make camera calibration for the whole game by
integrating (a) intrinsic camera parameters, (b) measurements
of feature points by surveying instruments and (c) bundle
adjustments using markers. Four intrinsic parameters and
five distortion parameters of each camera are obtained by
OpenCV using a checkerboard after fixing its focal length.
The process of calibration of extrinsic parameters, such as
the position and orientation of each camera in the arena
coordinates, is described in this section.

The relationship between the 3D positions in the arena
space and the 2D position in the camera images is repre-
sented by

iY iS = iA iBX (1)

where X = (x1 ...xn), xj = (xj yj zj 1)
T is the j-th point

in the arena space. iY =
(
iy1 ...

iyn

)
, iyj =

(
iuj

ivj 1
)T

is the 2D image position in camera i of the j-th point in
the arena space. iS = diag

{
is1, · · · ,i sn

}
and isj is given

by isj = (0 0 1) iA iBxj . The two matrices of iA and iB
are as follows:

iA =

 ifx 0 icx
0 ify

icy
0 0 1

 , iB =
(
iR it

)
(2)

where iA is the intrinsic parameters of camera i such as the
focal lengths and the optical center in the image plane, iR
and it are the extrinsic parameters such as the orientation
and position of camera i. Note that the lens distortion is
also compensated using the intrinsic parameters, which is not
explicitly shown in the above equation. iA and the distortion
parameters are determined for each camera. The rest is to
identify the extrinsic parameters, namely iB.

Since the focus is fixed at a few tens of meters, it is ideal to
use a large checkerboard, but not practical. One may suggest
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Fig. 3. Total station with the frilled camera

Fig. 4. Bundle adjustment data acquisition: Target ball sweeping the space

bundle adjustments, where one or a few markers like on a T-
shaped wand are used. It requires to sweep almost the whole
area by the markers. The arena space is difficult to sweep
out, since the view angle of the camera that fits the width of
the arena, results in very high recording volume. This results
in limited sweep and inaccuracy of calibration.

To solve the problem we developed a method to com-
bine direct measurements and bundle adjustment. For direct
measurements, we use the total station, a geodetic surveying
equipment that combines a theodolite and a laser range
finder. We used STS-200s of Survey Techno-Science Inc.
(Fig. 3), which has the accuracy within 20 seconds in both
pan and tilt angles of the theodolite and within ±1mm at
28.8m of the laser range finder. First, it is used to measure
the 3D positions of the feature points such as the centers and
corners of the courts. Second, the position and orientation of
a camera are calculated by measuring the four corner markers
of a square plate (40cm×40cm) that is fixed to the camera
at a set position with the optical axis perpendicular to the
plate (Frilled camera, see 3.)

The extrinsic parameters are obtained by the following
steps:
Step 1. Compute the position and orientation of the cameras
from the measurements of the four corners of the plate.
Step 2. Set the 3D positions of the feature points as Xf ∈
R4×nf (See Fig. 5). Set the unknown 3D positions of the
target ball (Fig. 4) for the bundle adjustment as Xb ∈ R4×nb .
Solve the intrinsic parameters, the extrinsic parameters and
the unknown 3D positions of the target ball simultaneously
by minimizing the following equation, where the initial

Fig. 5. Sketch of the court with all the feature points

values and the upper and lower bounds of the intrinsic and
extrinsic parameters are set using the results of intrinsic
parameter calibration and Step 1.

min
iA, iB,Xb

{ kf
nf

∑
i

‖ iYf
iSf − iA iBXf‖2

+
kb
nb

∑
i

‖ iYb
iSb − iA iBXb‖2} (3)

where the Frobenius norm is used, kf ≥ 0, and kb ≥ 0. We
use a nonlinear optimization solver “lsqnonlin” with trust-
region reflective method of MATLAB Optimization Toolbox
for minimization. Note that the computation is longer when
kb 6= 0 since the second term involves a lot more variables
to solve. One can first compute a solution by setting kb = 0
and then search for another by setting kb > 0.

V. EXPERIMENT

The recording took place during the international friendly
volleyball game between women’s national teams of Japan
and Chinese Taipei. Two games were scheduled during two
consecutive days. The event took place at Fukaya Big Turtle
arena on August 10 and 11, 2019. The event had a large
number of spectators and was covered live by a TV station.

A. Arena setup

For the recording, ten Basler acA1920-155uc cameras
with USB3.0 interface were used. The cameras had to cover
of 18m×9m playing area with an additional 3m free zone
around it, to a height of 3m. Four cameras were placed court-
side on the first level (cameras no. 5,6,9 and 10), two cameras
are placed in spectators stands on the second floor (cameras
7 and 8) and four cameras on 3rd-floor galley (cameras 1,2,3
and 4) were recording the full court. The furthest distance
between two cameras (cameras 1 and 6) was around 60
meters. Cameras close to the playfield were equipped with
wide-angle 8mm lenses (cameras 5 to 10), while cameras
1-4 were equipped with 21mm lenses.

Operations desk was on the court level behind the service
lines. It consisted of four PCs connected to camera hub.
Operation desk was in control of data recording software,
camera trigger generator and system monitoring. The cam-
eras were connected to the operation desks by 50m (cameras
3, 5, 9 and 10), 100m (cameras 4, 7 and 8) and 150m
(cameras 1, 2 and 6) Copper/Fibre hybrid cables. The sketch
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Fig. 6. Images from all 10 cameras. Row 1 contains images from cameras 1 to 5, row 2 contains images from cameras 6 to 10

Fig. 7. Arena: Positions and FOVs of cameras and cable lines

of the arena with camera positions, operations desk and
camera lines is shown in Fig. 7.

Avoiding camera movement was of paramount importance,
so where it was available the cameras were clamped to the
handrail. Courtside cameras were fixed on tripods. On the
game day, each camera had to be guarded by a single person,
ensuring that spectators don’t move any camera by accident.

B. Recorded data

During the two-day event, not only the games were
recorded. The teams training sessions and pre-game warm-
up was recorded as well. The duration of recorded videos is
summarized in table I. It can be seen that across two days,
we have successfully recorded almost 6 hours of video at
120Hz totaling at 1.6TB of compressed video for all ten
cameras. That amount of compressed data came as a result
of processing 54TB of RAW image data.

Images obtained from all ten cameras at the same moment
can be seen in Fig. 6. The big crowd and non-laboratory
setting of the experiment can be noticed straight away. The
cameras are primarily focused on the playing field. The
experiment doesn’t disturb any aspect of the game and the
athletes were recorded while giving their best performances.

C. Reconstucted data

Using VMocap technology in conjunction with calibration
data, the trajectories of the player’s body-parts in the 3D
space were reconstructed from recorded videos [12]. The

TABLE I
RECORDING DURATION AND DATA SIZE PER CAMERA

Day One Day Two
Training session I 97min -
Training session II 56min -
Warm up session 18.5min 26min

Set 1 22.5min 21min
Set 2 24min 21min
Set 3 29min 27.5min

Total min 247min 95.5min
Total GB 112 GB 47 GB

reconstructed trajectories was then used for two different
purposes:

1) Single player spike analysis: In this case the focus was
on bio-mechanical analysis of player’s motion. Starting from
the reconstructed motion of body parts, the skeleton model of
a single player was reconstructed and muscle tensions were
calculated [2], [19]. The musculosketetal model is generic
and may have small errors due to individuality. The inertial
parameters of each link were estimated from a statistical
database and scaled uniformly to the weight and height of
the athlete. The estimated muscle tensions are calculated so
they reproduce recorded motion. The reconstructed muscu-
loskeletal model was shown in Fig. 8

Fig. 8. Reconstructed muscle activation during spiking
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(a) bump (b) set (c) spike

Fig. 9. Examples of extracted behaviors.

2) Behavioral analysis of the team: This time the fo-
cus was on study of players behavior and understanding
of player’s interaction. Hence, the whole team had to be
reconstructed. For purpose of understanding motion only the
skeletal model was sufficient [20]. Examples of extracted
behaviors are shown in Fig. 9. The interaction of the players
was investigated by correlating the time series of extracted
behaviors.

The biomechanical and behavioral analyses of recon-
structed motion are out of scope of this paper.

VI. CONCLUSION

In this paper, we have described how we have approached
and successfully solved the problem of capturing the motion
for long periods using only RGB cameras with high framer-
ate. To do so we had to:

1) Solve the problem of synchronized long-distance high-
bandwidth data transmissions by designing custom
electronics and using USB3.0 to Fibre Optic extender.

2) Select appropriate computer architecture and write
appropriate software capable of processing and storing
incoming high-bandwidth image data.

3) Devise and employ calibration procedures that can be
used to calculate camera positions with high accuracy.
For that purpose, we have used geodetic surveying
tools to measure initial camera poses. Those poses are
later refined using bundle adjustment.

4) We used the developed system for video motion captur-
ing of the international friendly match of the women’s
volleyball between the national teams of Japan and
Chinese Taipei. The total RAW data of 54TB was pro-
vided from the ten cameras at 120FPS and compressed
in real time and stored as 1.6TB video data.

5) Using previously developed VMocap technology, the
full-body motion and/or muscle activations was re-
constructed. The method is applicable to both single
or multiperson reconstruction that can be used as a
starting point for behavioral or biomechanical research.

ACKNOWLEDGMENT

We would like to thank the Japan Volleyball Association
for providing us an opportunity to capture the data at the

international friendly match of the senor women’s national
team of Japan. The capturing at the match would not be
possible without the participation as capturing crew of Yan
Huang, Taiki Ishigaki, Takahiro Nakanishi, Yuichi Sakemi,
Akihiro Sakurai, Yoshihisa Shibata, Ko Yamamoto, Ryo
Yanase, and Tianwei Zhang.

REFERENCES

[1] K. Yamane. Estimation of physically and physiologically valid so-
matosensory information. Proceedings of IEEE International Confer-
ence on Robotics and Automation, Barcelona, Spain, April 2005.

[2] A. Murai, K. Kurosaki, K. Yamane, and Y. Nakamura.
Musculoskeletal-see-through mirror: Computational modeling
and algorithm for whole-body muscle activity visualization in real
time. Progress in Biophysics and Molecular Biology, 103(2):310317,
2010. Special Issue on Biomechanical Modelling of Soft Tissue
Motion.

[3] W. Takano and Y. Nakamura. Synthesis of whole body motion with
pose-constraints from stochastic model. IEEE International Conference
on Robotics and Automation pages 18711876,2014
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