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Abstract— In this work, we focus on developing algorithms to
maintain and enhance the connectivity of a multi-robot system
with minimal disruption to the primary tasks that the robots are
performing. Such algorithms are useful for collaborating robots
to be resilient to reduction in connectivity of the communication
graph of the robot team when robots can arrive or leave.
These algorithms are also useful in a supervisory control setting
when an operator wants to enhance the connectivity of the
robot team. In contrast to many existing works that can only
maintain the current connectivity of the multi-robot graph,
we propose a generalized connectivity control framework that
allows for reconfiguration of the multi-robot system to provably
satisfy any connectivity demand, while minimally disrupting
the execution of their original tasks. In particular, we propose
a novel k−Connected Minimum Resilient Graph (k-CMRG)
algorithm to compute an optimal k−connectivity graph that
minimally constrains the robots’ original task-related motion,
and employ the Finite-Time Convergence Control Barrier Func-
tion (FCBF) to enforce the pairwise robot motion constraints
defined by the edges of the graph. The original controllers
are minimally modified to drive the robots and form the k-
CMRG. We demonstrate the effectiveness of our approach via
simulations in the presence of multiple tasks and robot failures.

I. INTRODUCTION

Multi-robot systems are widely studied for their capa-
bility of accomplishing complex tasks through cooperative
behaviors, e.g. environmental sampling [1], area coverage
[2], search and rescue [3]. In many large-scale multi-robot
applications, the robotic team executes simultaneously multi-
ple behaviors or sequences of behaviors [4]–[6] with various
task-prescribed controllers in real time to increase efficiency
in parallel tasks. The success of inter-robot coordination
often requires continuous connectivity between robots [7]–
[11]. Due to limited communication range of the robots,
connectivity is maintained by constraining the inter-robot
distance during their task execution, so that the robots stay
connected as one component to enable local information
sharing and interaction. Moreover, given the growing scale
of the multi-robot team, the increasing number of expected
robot failures necessitates the recent research on robust
connectivity maintenance [12]–[15], e.g. maintaining an ini-
tially connected k−node connectivity graph [15], so that
the failure of less than k robots will not disconnect the
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multi-robot network, or developing heuristic-based secondary
connectivity controller [13], [14] to increase the vulnerable
neighbors’ node degrees to improve the network robustness.

New challenges arise for multi-robot applications with
parallel tasks [5] in adversarial scenarios. For example, the
execution of multiple and potentially conflicting tasks si-
multaneously could easily cause multi-robot network discon-
nection. In this case, the connectivity maintenance behavior
could dominate over the original robot controllers and largely
impacts the original task execution. On the other hand, in
the presence of continuous robot failures due to adversarial
situations, the network robustness will keep decreasing and
could eventually lead to network disconnection. Thus, it
demands a resilient connectivity controller that respects the
original multi-robot task-related controllers with guaranteed
fault-tolerant and resilient connectivity maintenance, so that
the robotic team could always maintain, recover, and increase
the network connectivity in presence of continuous robot
removals while progressing over their original tasks. This
is particularly challenging for most existing work since (a)
the resilience and robustness of the multi-robot network
leads to increasing complexity over conventional connectiv-
ity control methods [8], [9], [16], [17] due to the possible
discontinuity from dynamic topology changes as pointed
out in [18], (b) conventional connectivity metrics such as
algebraic connectivity is not suitable to explicitly model
the network robustness as found by [13], [14], (c) there is
often no optimality guarantee over the imposed connectivity
constraints for original robot tasks [4], [19], [20] nor the
perturbation from the connectivity controller to the robot
original controllers [13], [14], [21], and (d) the network
robustness is maintained in absence of robot failures [13],
[15] and hence could be vulnerable to increasing number of
robot failures over time.

Motivated by the challenges, in this paper we aim to
develop provably optimal algorithms for minimally disrup-
tive and resilient connectivity maintenance for a team of
connected robots. We assume the robots have been provided
with their original task-related controllers and seek to revise
their controllers as necessary to achieve the desired resilient
network connectivity and avoid collisions between robots
and with obstacles. In particular, we propose a minimally
disruptive resilient connectivity maintenance framework that,
by inputting any desired value k of graph connectivity, the
framework will first compute the provably optimal k−node
connected minimum resilient graph (k-CMRG) whose edges
invoke min-size pairwise connectivity constraints least vio-
lated by the robot original controllers. With the rendered
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(a) Initial 1-connected (k=1) graph (b) Improved 2-connected (k=2)
graph with red existing connectivity
edges to preserve and one augmented
edge (red dash edge) to form

(c) Robots perform their original task
while ensuring the existing red edges
stay connected and the augmented
edge(s) are formed (i.e. robots 3 and
10 get closer)

Fig. 1: Simple example of resilient connectivity maintenance problem, where 10 robots are executing their original behaviors while preserving and forming
the red connectivity edges defined by k-CMRG to achieve the desired connectivity (e.g. k=2 here). Connectivity edges (gray dash line) exist when two
robots are within the limited communication range. Red solid edges are selected from existing gray connectivity edges and augmented with the selected
red dash edge from non-exist connectivity edges to compose a k-CMRG with desired graph connectivity.

optimal pairwise connectivity constraints, we employ the
Finite-time Convergence Barrier Function (FCBF) from [4]
to map the invoked pairwise spatial connectivity constraints
to those over the robot original controllers, and minimally
modify those controllers in the context of quadratic pro-
gramming to respect the original tasks. Note that in [4]
the connectivity controllers are optimized with predefined
connectivity constraints by the user and does not consider
resilience, while here we are optimizing both the resilient
connectivity constraints to activate as well as the revision
to the original controller. Also in contrast of our previous
work [15] that requires the robots are k−node connected as
initial condition, here we relax that assumption and allow the
robots to achieve arbitrary required resilience connectivity
over time, e.g. the robot team reconfigures to build new con-
nections between robots and achieve higher connectivity to
recover the decreased connectivity due to the loss of robots,
or to increase connectivity and thus improve robustness.

Our paper presents the following contributions: (1) a gen-
eralized resilient connectivity maintenance framework that
jointly optimizes both the topological resilient connectivity
graph and the constrained robot motions to minimally disrupt
the original robot tasks, (2) a novel k−CMRG method to
compute the optimal weighted k−node connected resilient
graph for arbitrary initially connected multi-robot graph,
imposing least connectivity constraints to the robots, (3)
theoretical analysis and proof of the optimality of our k-
CMRG with guaranteed, user-specified network resilient
connectivity in presence of continuous robot failures.

II. PROBLEM FORMULATION

Consider a robotic team S consisting of n mobile robots
in a planar space, with the position and single integrator
dynamics of each robot i ∈ {1, . . . , n} denoted by xi ∈ R2

and ẋi = ui ∈ R2 respectively. Each robot can connect
and communicate directly with other robots within its spatial
proximity. The communication graph of the robotic team is
defined as G = (V, E) where each node v ∈ V represents
a robot. If the spatial distance between robot vi ∈ V and
robot vj ∈ V is less or equal to the communication radius

Rc ∈ R (i.e. ‖xi − xj‖ ≤ Rc), then we assume the two
can communicate and edge (vi, vj) ∈ E is undirected (i.e.
(vi, vj) ∈ E ⇔ (vj , vi) ∈ E).

We assume the robotic team has been tasked with m
simultaneous behaviors, partitioning the set of robots into m
sub-groups. To simplify our discussion, we assume the sub-
group partitions and behavior controllers are given or already
derived from other multi-robot task allocation algorithms,
namely, each robot i has been assigned to a sub-group
with some behavior-prescribed controller ui = ûi. We
also assume the current communication/connectivity graph
G for the robots is connected as one component. Here the
multi-robot network resilience is quantified by the network
connectivity defined as follows [22].

Definition 1. (k-node connected graph) A connected graph
G = (V, E) is said to be k-node connected (or k-connected)
if it has more than k nodes and remains connected whenever
fewer than k nodes are removed.

The objective of our paper is, given any user defined
desired connectivity k ∈ R+, how to develop control laws
for the robots to achieve and maintain it over time, even
if the current connectivity graph is not k−node connected.
This differentiates our work from most of the connectivity
maintenance literature [4], [5], [8], [15], [19], [20] and
thus provides greater freedom to enable flexible resilient
connectivity maintenance. In the rest of the paper, we
will use k−connectivity to represent k−node connectivity.
Then we would like to enforce such constraint as robots
execute their behavior-prescribed controllers, so that the
resulting time-varying connectivity graph G becomes and
stays k−connected at all time. It is straightforward that
n ≥ k + 1 should be followed in order for the problem to
be solvable [23], [24]. In presence of the above connectivity
constraints as well as the physical constraints of the robots
such as inter-robot collision avoidance and velocity limits,
each robot i may have to modify their primary task-related
controller ûi to accommodate the constraints. To that end,
the objective is to 1) invoke active constraints to follow
(particularly the connectivity constraints imposed between
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pair-wise robots), such that the modification to the primary
controller is minimum for the robotic team, and 2) compute
the modified controllers for robots task execution. In the
remainder of this section, we will discuss the formulation
of the mentioned constraints in the form of Control Barrier
Function (CBF) [19], [25], [26] and Finite-Time Conver-
gence Control Barrier Function (FCBF) [4] on the controllers
followed by the optimization problem formulation.

A. Safety Constraints using Safety Barrier Certificates

During movements of multi-robot systems, the robots
should avoid collisions with each other to remain safe.
Consider the joint robot states x = {x1, . . . , xn} ∈ R2n

and define the minimum safe distance as Rs for any pair-
wise inter-robot collision avoidance constraint. We have the
following condition defining the safe set of x.

hsi,j(x) = ‖xi − xj‖2 −R2
s , ∀i > j

Hsi,j = {x ∈ R2n : hsi,j(x) ≥ 0}
(1)

The set of Hsi,j indicates the safety set from which robot
i and j will never collide. For the entire robotic team, the
safety set can be composed as follows.

Hs =
⋂

{vi,vj∈V:i>j}
Hsi,j (2)

[27] proposed the safety barrier certificates Bs(x) using
control barrier functions (CBF) [25] that map the constrained
safety set (2) of x to the admissible joint control space
u ∈ R2n. The result is summarized as follows.

Bs(x) = {u ∈ R2n : ḣsi,j(x) + γhsi,j(x) ≥ 0, ∀i > j} (3)

where γ is a user-defined parameter to confine the available
sets. It is proven in [27] that the forward invariance of
the safety set Hs is ensured as long as the joint control
input u stays in set Bs(x). In other words, the robots will
always stay safe if they are initially inter-robot collision free
and the control input lies in the set Bs(x). Note that at
any time point t with known current robot states x(t), the
constrained control space in (3) corresponds to a class of
linear constraints over pair-wise control inputs ui and uj for
∀i > j. Note that static obstacles may also be modelled in
the same manner if treated as robots with zero velocity.

B. Connectivity Constraints using Finite-Time Control Bar-
rier Function

Similar to safety barrier certificates for collision avoid-
ance, pairwise connectivity constraints can also be mapped
to the admissible set for control input in the same manner
[19]. However, the forward invariance from CBF requires
the system already in the desired set, e.g. robots are initially
collision free and so to stay safe. To enforce connectivity
constraints used to form new edges, [4] proposed the Finite-
Time Convergence Control Barrier Functions (FCBF) that
could drive the robots from outside to the admissible set
and stay inside the desired states. This has been applied to
form and then preserve new connectivity edges predefined by
the tasks [4]. Here we briefly introduce the mapping from a

particular pairwise connectivity constraint to the admissible
set for controllers using FCBF.

To enforce a connectivity constraint between pair-wise
robots i and j to limit the inter-robot distance not larger than
communication range Rc, we have the following condition.

hci,j(x) = R2
c − ‖xi − xj‖

2

Hci,j = {x ∈ R2n : hci,j(x) ≥ 0}
(4)

The set of Hci,j indicates the feasible set on x from which
robot i and j will never lose connectivity. Then for any con-
nectivity graph Gc = (V, Ec) to enforce, the corresponding
constrained set can be composed as follows.

Hc(Gc) =
⋂

{vi,vj∈V:(vi,vj)∈Ec}
Hci,j (5)

The connectivity barrier certificates are hence defined as
follows using FCBF [4] that indicates another class of
linear constraints over pair-wise control inputs ui and uj
for (vi, vj) ∈ Ec at any time point t.

Bc(x,Gc) = {u ∈ R2n :ḣci,j(x) + γ · sign(hci,j(x)) · |hci,j(x)|ρ ≥ 0,

∀(vi, vj) ∈ Ec}
(6)

where ρ ∈ [0, 1) determines how fast the system is driven
towards the set of Hci,j . It has been proved in [4] that for
any initial condition x0, any controller subject to (6) will
drive the system to the set Hc in a finite time bounded
by T =

|hci,j(x)|
1−ρ

γ(1−ρ) . This property ensures that for any
pairwise connectivity constraint that is not currently satisfied,
we can allocate a time period larger than T for the constraint
to render the new connectivity edges. Note that the FCBF
takes as inputs a given graph Gc which is predefined in [4].
We will use this sub-routine to enforce the construction of
desired k−CMRG in our resilient connectivity maintenance
framework in the following.

C. Objective Function

Consider that a task-related primary behavior control
input ûi ∈ R2 has been computed for each robot i be-
fore considering the mentioned constraints. The objective
is to minimally modify the primary controllers subject to
connectivity and safety constraints. Different from other
optimization-based framework with CBF [19] or FCBF [4]
with predefined connectivity constraints, here we extend to
the resilient connectivity maintenance framework, where the
robots are optimizing both the k−connectivity constraints
to enforce and the controllers to revise. With the defined
forms of constraints in (3) and (6), we formally define the
minimally disruptive resilient k−connectivity maintenance
problem with any given k ≤ n − 1 at each time point t
as follows.

u∗ = arg min
Gc,u

n∑
i=1

‖ui − ûi‖2 (7)

s.t. Gc = (V, Ec) is k−connected (8)

u ∈ Bs(x)
⋂
Bc(x,Gc), ‖ui‖ ≤ αi,∀i = 1, . . . , n

(9)
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The above Quadratic Programming (QP) optimization prob-
lem is to find the optimal active k−connectivity graph Gc to
enhance and the revised control inputs u∗ ∈ R2n bounded by
maximum velocity αi for each robot, so that k−connectivity,
safety and velocity constraints described in (8) and (9) are
always guaranteed while ensuring minimally disruption to
the primary controller as shown in (7). While the robust con-
nectivity maintenance problem [15] has similar formulation,
it requires Gc ⊆ G and hence can only preserve the current
connectivity and the subgraph from the existing graph.
Here we relax this assumption and allow for connectivity
enhancement with any desired connectivity k by forming new
connectivity edges if necessary. This makes [15] a special
case in our formulation when the current connectivity of G
is already larger than desired connectivity k and there is no
need to form new edges to increase connectivity. Note that as
information regarding the primary task is not required other
than ûi, the objective of the original controller may not be
guaranteed in form of (7) especially when it conflicts with
connectivity or safety constraints, e.g. dispersing robots to
different goal locations where robots get disconnected due
to limited communication range. In this case, the objective
of (7) first ensures constraints are satisfied at all time and
then minimizes the deviation from original controller, e.g.
dispersing robots towards assigned goal locations as much
as possible while keeping them safe and k-connected.

The optimization problem in (7) can be decoupled into
two dependent sub-problems: 1) compute provably optimal
k−CMRG graph Gc∗ = G∗k that invokes least violated
connectivity constraints over multi-robot behaviors, and then
2) solve the optimization problem (7) with the obtained
optimal graph G∗k . In this way, it enables the robot team
to form connectivity enhancement provably satisfying any
demanded connectivity k while minimizing the disruption to
their original tasks.

III. MAINTAINING MINIMALLY DISRUPTIVE RESILIENT
k−CONNECTIVITY

A. Min-Size k−Node Connected Spanning Subgraph
(k−NCSS)

We consider the first sub-problem of computing optimal
k−CMRG Gc∗ = G∗k(V, E∗k ) in (7) that introduces minimum
k−connectivity constraints for any given connectivity de-
mand k. Recall that each edge (vi, vj) ∈ Ec in a candidate
graph Gc enforces one pair-wise linear constraint over pri-
mary control inputs ûi and ûj for robot i and j, as shown in
(4). Thus it is straightforward that the optimal graph Gc∗
should have a minimum number of edges that satisfy k-
connectivity.

Denote the connectivity of a graph by κ(·). Let us first
consider the special case when κ(G) ≥ k, and then the
k−CMRG boils down to finding a min-size k−Node Con-
nected Spanning Subgraph (k−NCSS) with Gc∗ ⊆ G. This
has been known as NP-hard for even k = 2 [24]. From
graph theory, there exists a heuristic algorithmic framework,
k−Node Connected Spanning Subgraph (k−NCSS) [23],

[24] that finds the approximate min-size k-connected sub-
graph with uniform edge cost. Briefly, given an undirected
connected graph G(V, E) and k where k ≤ κ(G), the min-
size k−connected spanning subgraph G∗k can be found by
the following summarized algorithm.

Algorithm 1 Minimum-size k−node connected spanning
subgraph (k−NCSS)
Input: G(V, E), k
Output: G∗k
1: find a min-size k − 1 edge cover M ← arg min{|M | :

degM (v) ≥ k − 1, ∀v ∈ V,M ⊆ E}
2: find an inclusionwise minimal edge set F ⊆ E \M such that

(V,M ∪ F ) is k−connected
3: return G∗k ← (V,M ∪ F )

With the Algorithm 1, we have the following Lemma re-
garding its known approximation of the derived k−connected
spanning subgraph G∗k .

Lemma 2. ([23], [24]) Let G(V, E) be a graph of node
connectivity ≥ k. Then the Algorithm 1 finds a k−node
connected spanning subgraph (V,M ∪ F ) such that |M ∪
F | ≤ (1 + 1

k )|Eopt|, where |Eopt| denotes the cardinality of
the optimal solution.

Hence Algorithm 1 provides a bounded solution to find a
k−NCSS G∗k ⊆ G with minimum number of edges that could
be used to define active pairwise k−connectivity constraints
when κ(G) ≥ k. However, such solution could not handle the
situation when κ(G) ≤ k and it is more desirable to consider
each edge differently due to their impact over the robots
original controllers. For example, candidate connectivity
constraint whose two robots are getting closer due to their
original motion should be preferred, since maintaining such
constraint will lead to less disruption over the original robot
controllers. In the next section, we will propose a novel
k−CMRG method to construct the optimal k−connected
graph with any demanded connectivity k ≤ n− 1 and with
consideration of the original robot controllers/motions.

B. k−Connected Minimum Resilient Graph (k−CMRG)

In general cases with arbitrary demanded connectivity
k, each pairwise robots within the robotic team compose
one candidate edge for determining k−CMRG Gc∗, which
further increases the computation complexity of computing
the optimal k−CMRG. Here we propose a new heuristic to
evaluate any given candidate edge connecting pairwise robots
vi, vj ∈ V as follows.

wi,j = −ḣci,j(x, ûi, ûj)− γ · sign(hci,j(x)) · |hci,j(x)|ρ (10)

This heuristic takes inspiration from the FCBF constraint
in (6) and substitute with the original robot controllers
ûi, ûj . Note that the smaller value of wi,j indicates form-
ing/preserving the connectivity edges between vi, vj is less
likely to be violated given the robot original controller.
For example, wi,j < 0 implies the FCBF constraint for
preserving the corresponding edge is already satisfied by the
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original robot controllers without need of revision. Instead
of checking for each pairwise candidate edges between any
two robots in S, we augment the current connectivity graph
with their weight defined by (10) and render a weighted
connectivity graph Ĝ = (V, E ,W) with wi,j ∈ W . Next,
we propose the following Algorithm 2 framework of our
k−CMRG, a variant of Algorithm 1 with any connectivity
demands k. For the rest of the paper, we use k−CMRG
interchangeably to refer to the optimal k−connectivity graph
or the algorithm to compute k−CMRG.

Algorithm 2 Outline of k−connected minimum resilient
graph (k−CMRG)

Input: Ĝ′(V ′, E ′,W ′)← Ĝ(V, E ,W), k
Output: Ĝ∗k
1: Expand G′ by adding edges connecting robots with 2-hop

neighbors until min{deg(v)} ≥ k
2: find a min-size k − 1 edge cover M ′ = arg minM′⊆E′ β ·
|M ′|+ Σ(vi,vj)∈M′{wi,j}

3: find an inclusionwise minimal edge set F ′ ⊆ E ′ \M ′ such that
(V,M ′∪F ′) is k−connected, if not, expand Ĝ′ by adding edges
connecting robots with 2-hop neighbors until F stay unchanged.

4: return Ĝ∗k ← (V,M ′ ∪ F ′)

In Algorithm 2, there are several modifications compared
to Algorithm 1. In Line 1 of Algorithm 2, it directly
augmented 2-hop edges to the existing graph so that the
minimum degree deg(v) of each robot node is at least k.
The reason lies in that for a k−connected graph, each robot
has at least k edges and any one node will never be isolated
with the removal of at most k − 1 neighboring nodes.

In Line 2 of Algorithm 2, we redefine the min-size (k−1)
edge cover from Algorithm 1 to be M ′ by the following.

M ′ = arg min
M′⊆E′

β · |M ′|+ Σ(vi,vj)∈M′{wi,j} (11)

where β is a pre-defined parameter and we assume β >>
2 · Σ∀wi,j∈W′ |wi,j |, so that the selected edge cover set M ′

has minimum number of edges. And if there are multiple
solutions with same number of edges, it will break ties by
comparing the total weights and then select the one with
minimum total weights. This implies least constrained edges
to preserve with the original robot controllers. In the end (line
3), the inclusionwise minimal edge set is found by iterative
expanding graph Ĝ′ until κ(Ĝ′) ≥ k. With the new condition
above for finding (k−1) edge cover set M ′, a new weighted
k−connected minimum resilient graph (k−CMRG) can be
derived as Ĝ∗k = (V, E ′k,W ′k) with E ′k = M ′ ∪ F ′ ⊆ E ′.
In particular, we have the following Theorem on bounded
cardinality of edge set E ′k of the k−CMRG Ĝ∗k .

Theorem 3. Given weighted undirected graph Ĝ =
(V, E ,W) and the demanded augmented connectivity k. Then
the Algorithm 2 with redefined condition (11) finds the
k−CMRG Ĝ∗k = (V, E ′k,W ′k) such that |E ′k| ≤ (1 + 1

k )|E ′opt|,
where E ′opt denotes the cardinality of the optimal solution
required for such k, as in Lemma 2.

Proof: We first prove that the solution Ĝ∗k = (V,M ′ ∪
F ′) from Algorithm 2 with (11) and G∗k = (V,M ∪ F )

from original Algorithm 1 have the same number of edges,
if Algorithm 1 tasks as inputs the expanded graph G′ from
Algorithm 2 (both satisfy κ(Ĝ′) ≥ k after graph expansion).
By contradiction, we assume they have different number of
edges in M ′ and M , namely, the following two conditions
must be true at the same time.

β · |M ′|+ Σ(vi,vj)∈M ′{wi,j} < β · |M |+ Σ(vi,vj)∈M{wi,j}
|M ′| > |M |

(12)

Recall that β >> 2 · Σ∀wi,j∈W |wi,j |, hence it is straight-
forward that the two equations contradict to each other,
proving that |M ′| = |M |. Then since the computation of
the inclusionwise minimal edge set is the same in both of
the algorithms, we conclude that |E ′k| ≤ (1 + 1

k )|Eopt|.�
With the minimum number of edges and total weights

for the obtained k−CMRG, it thus invokes the least
k−connectivity constraints that are minimally violated by the
current behavior-prescribed robots controllers. The resulting
Ĝ∗k therefore specifies the optimal k−connectivity graph
Gc∗ = Ĝ∗k for the given connectivity demand k to enforce in
the optimization problem (8). For completeness, we provide
a detailed algorithm framework of our k−CMRG method
from Algorithm 2 in Algorithm 3.

Algorithm 3 k−Connected Minimum Resilient Graph
(k−CMRG)

Input: Ĝ′(V ′, E ′,W ′)← Ĝ = (V, E ,W), k
Output: Ĝ∗k

1: while min{deg(v)} < k, ∀v ∈ V do
2: Ĝ′ ←ExpandGraphOneHopNeighbor(Ĝ′)
3: for all v ∈ V do b(v)← deg(v) + 1− k
4: Get b−matching edge set: M̄ ′ ← b−Suitor(Ĝ′, b)
5: while F ′ 6= ∅ do
6: M ′ ← Ĝ′ \ M̄ ′, F ′ ← ∅, Gt ← Ĝ′
7: for all e ∈ M̄ ′ do
8: G′t ← CreateDigraph(Gt, unit capacities)
9: num disjoint path ←

max flow(G′t, esource, esink)
10: if num disjoint path> k then
11: Gt.remove(e)
12: else
13: F ′ ← F ′ ∪ e
14: Ĝ′ ←ExpandGraphOneHopNeighbor(Ĝ′)
15: return Ĝ∗k ← (V,M ′ ∪ F ′)

From Line 1-4 in Algorithm 3, the min-size (k − 1)
edge cover M ′ in (11) is obtained by first solving for its
complementary edge set M̄ ′ with the following condition.

M̄ ′ = arg max
M̄′⊆E

β · |M ′|+ Σ(vi,vj)∈M′{wi,j}

s.t. degM̄′ (v) ≤ deg(v) + 1− k ∀v ∈ V
(13)

The above problem is known as a weighted b−matching
problem [23], [24] and we implement a subroutine b−Suitor
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(a) Time Step = 1, k = 1 (b) Time Step = 51, k = 2 (c) Time Step = 101, k = 3
(d) Time Step = 127, k = 3 (Con-
verged)

Fig. 2: Simulation example of 11 robots reconfigure to achieve increasing connectivity demands. Grey dash edges are real-time connectivity edges when the
connected pairwise robots stay within the limited communication range. Red solid edges are the computed k−CMRG edges exist in the current connectivity
graph. Red dashed edges are the edges of k−CMRG to form (not belong to the current grey connectivity graph) and thus to reach the desired connectivity.

(a) Control perterbation (b) Subgraph Algebraic Connectivity

Fig. 3: Performance of resilient connectivity maintenance with k−CMRG
for Fig. 2. (a) Control perturbation computed by 1

n

∑n
i=1

∥∥u∗i − ûi∥∥2.
(b) Minimum subgraph algebraic connectivity evaluated by second smallest
eigenvalue of laplacian assuming k− 1 robots being taken out. > 0 means
graph remains connected.

[28] to solve it efficiently. When computing for the inclu-
sionwise minimal edge set F ′ in Line 5-14, we start with
empty set F ′ and initialize the current graph to be the present
connectivity graph Ĝ. Then each candidate edge e not in the
k − 1 edge cover set M ′ is checked by finding if there are
at least (k + 1)-node disjoint paths in the current graph Gt.
This is done by creating a directed graph from Gt and run a
max flow algorithm (Line 8-9) using sub-routine from [29].
If yes, then the current candidate edge e is not critical (see
[24]) and hence removed from current graph. Otherwise, the
edge is critical and shall be inserted into the set F ′ to consist
of final k−CMRG Ĝ∗k . This comes from the fact that for an
optimal k−CMRG with least number of edges, each edge is
critical and there will be no more than k + 1 disjoint paths
between the two end nodes for the edge [24]. As mentioned,
in case that κ(Ĝ′) ≤ k, we keep looping from Line 5 to Loop
14 and expanding the current graph, until no more critical
edges are found.

Thus, with the final k−CMRG Ĝ∗k obtained from our
Algorithm 3 as the optimal k−connectivity graph Gc∗ = Ĝ∗k
in (9), we can specify the safety and connectivity barrier
certificates (3) and (6) to invoke linear constraints and
efficiently solve the original quadratic programming (QP)
problem in (7). The resultant controllers satisfy safety and
k−connectivity constraints and minimally disrupted from the
original controllers.

IV. RESULTS

To evaluate our proposed k−CMRG and the resilient
connectivity maintenance framework, we designed three sets
of experiments in simulation: i) n = 11 robots driven by
uniform original task controller ûi = 0 and to keep re-
configuring for achieving the increased connectivity demands
over time, ii) n = 20 robots driven by the same task
controller ûi = 0 with desired connectivity maintenance
in presence of continuous loss of robots, and iii) n = 20
robots tasked to perform rendezvous and dynamic circling
formation around three predefined task areas, while achiev-
ing dynamic connectivity demands and staying resilient in
presence of removal of robots due to failures. In all of the
experiments, we are assuming limited sensing for collision
avoidance, limited communication range, and bounded ve-
locity for the robots. We apply the resilient optimization-
based controller in (7) with single-integrator dynamics to the
unicycle mobile robots using kinematics mapping in [27].

A. Reconfiguration of static robot team with increasing con-
nectivity demands

Fig. 2 shows the simulation example of 11 robots with
zero task-related control inputs and our k−CMRG method
for connectivity enhancement. At initial configuration Fig.
2a, the robots are tasked to maintain 1−connectivity and the
k−CMRG returns the minimum spanning tree invoking the
least number of connectivity constraints with the smallest
weights, reflecting the minimum efforts required to maintain
the connectivity. At time step t = 50 in Fig. 2b, the connec-
tivity demand increases to k = 2 that is higher than the cur-
rent graph connectivity. In this case, our k−CMRG returns
a 2−connectivity graph with one new edge between robot
2 and 11 and with such specified constraint, our resilient
connectivity control framework employs FCBF to drive the
robots to form the connectivity edge as shown in Fig. 2c
at t = 101. Likewise, the new demand of 3−connectivity
invokes two more edges to form, which enforces the robots to
reconfigure and quickly converge to the states with satisfying
connectivity (Fig. 2d). The performance of the maintained
connectivity is plotted in Fig. 3, showing the convergence of
the robots after reconfiguration. In absence of actual robot
removal, Fig. 3b demonstrates the algebraic connectivity of
the subgraph of current connectivity graph if randomly taking
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(a) Time Step = 1 with k−CMRG (b) Time Step = 312 with k−CMRG (c) Time Step = 102 with k−CMCS (d) Algebraic Connectivity

Fig. 4: Simulation example of 20 initially static robots in presence of continuous robot failures. Red edges from (a)-(b) are defined by computed k−CMRG
and robots with cyan index indicates the faulty robots that are no longer involved in the connectivity graph. Red edges in (c) shows the failure cases of
robust connectivity maintenance method [15] due to the lack of resilience consideration. (d) plots the actual algebraic connectivity λ2 of the real-time
connectivity graph from k−CMRG and k−CMCS [15]. Connectivity preserves if λ2 > 0. It shows k−CMRG (red curve) is able to keep the graph
connected and recover the connectivity in presence of loss of robots).

(a) Time Step=1 with k = 4 (b) Time Step=254 with k = 5 (c) Time Step=346 with k = 5 (d) Time Step=1200 with k = 1
Fig. 5: Simulation example of 20 robots executing multiple behaviors with changing connectivity demands and robot failures: green robots 1, 6, 7, 8, 10,
12, 13, 14, 17, 18, 20 and magenta robots 2, 3, 4, 15, 19 are tasked to circle around task 2 and task 3 area respectively. Red robot 5, 9, 11 are tasked to
rendezvous towards task 1 area. Grey dash edges are real-time connectivity edges. Red solid edges are the computed k−CMRG edges exist in the current
connectivity graph. Red dashed edges are the edges of k−CMRG to be formed by the robots for increased connectivity.

(a) Control perturbation (b) Algebraic connectivity

Fig. 6: Performance of k−CMRG from simulation example in Fig. 5.
Control perturbation quickly converges to zero due to minimally disruptive
connectivity maintenance from k−CMRG and network connectivity is
always satisfied and recovered despite robot failures.

out k − 1 robots. As seen from the figure for t = 50 − 60,
multi-robot network will get disconnected if removing one
robot from the currently 1-connected graph. After achieving
the connectivity k = 2 at t = 60, the resilience of the
network is improved and hence robust to the removal of the
robots. Note that the robots remain collision-free due to the
employed safety barrier certificates in (3).

B. Connectivity Enhancement in presence of continuous loss
of robots

One of the advantage of the proposed k−CMRG is to
enable increased connectivity over time for resilient robot
team under faulty situation, as shown in Fig. 4. In this
experiment, 2 randomly selected robots will stop connecting
other robots every 50 time steps starting from t = 50 (Fig.
4d). The robots are tasked to maintain k = 3 connectivity in

presence of robot losses. With the proposed k−CMRG, the
connectivity of multi-robot network is preserved and actively
recovered even if robots keep failing with a total of 8 failing
robots (Fig. 4b). In comparison, we implemented the robust
connectivity approach [15] that seeks to preserve the robust
connectivity of the current graph. As shown in Fig. 4c and
Fig. 4d, although the robotic team could stay connected with
the removal of a few robots, the robot team is not able to
recover the decreased connectivity over time and hence gets
disconnected eventually.

C. Reconfiguration of moving robot team with obstacles,
robot failures, and changing connectivity demands

In this task, 20 robots have been divided into 3 sub-
groups and each performing an individual behavior with
the k−CMRG in presence of 2 static obstacles and robot
failures. The connectivity demands are randomly chosen to
be k = 4 for t = 0 − 250, k = 5 for t = 250 − 500 and
k = 1 for 500 − 1200. Robot 6, 10 and 13 are removed
at t = 250 in Fig. 5b to simulate faulty situation. As
shown in Fig. 5d, the goal for magenta robots and green
robots are to circle around assigned task area 3 and 2
respectively, while red robots are to rendezvous to red task
1 area. Without connectivity maintenance, the robot team
could get disconnected easily. Robots start from Fig. 5a to
reconfigure and achieve the higher demand of connectivity
k = 4 while executing their original behaviors (the control
error reduced to almost zero quick after t = 0 as shown
in Fig. 6a). At t = 250, the connectivity demand further
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increases to k = 5 and three robots are lost, resulting in
largely reduced network connectivity as observed in Fig. 6b.
The k−CMRG is able to quickly reconfigure the robots to
reach the desired connectivity as shown in Fig. 5c, where
all k− CMRG edges are established as solid red edges.
Meanwhile, the original behaviors of the robots are preserved
as the control perturbation to the original controller reduced
to almost zero soon after t = 400. And with the decreased
connectivity demand to k = 1 after t = 500, the robots are
able to stay as close to their tasks while ensuring the required
connectivity in Fig. 5d, demonstrating the flexibility of our
resilient connectivity maintenance method with k−CMRG.

V. CONCLUSION

In this paper, we propose resilient connectivity mainte-
nance algorithms to ensure minimally disruptive connectivity
enhancement for multiple robots during the execution of
their primary tasks. In particular, we propose a k−Connected
Minimum Resilient Graph (k−CMRG) to allow for recon-
figuration of the multi-robot system to provably achieve
any connectivity demand, while ensuring the robot original
behaviors are minimally modified in the context of quadratic
programming with the control barrier fucntions (CBF) and
Finite-Time Convergence Control Barrier Functions (FCBF).
Such algorithms improves the resilience of connectivity
reduction for open robot team with continuous robots arrival
and removal. Several simulation examples are demonstrated
to validate our algorithm in various challenging scenarios.
Future work includes the decentralization of the resilient
connectivity controller and the real-world implementation in
uncertain environments. We will also extend our approach
by considering more complicated communication models.
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