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Abstract— Planners using accurate models can be effective
for accomplishing manipulation tasks in the real world, but are
typically highly specialized and require significant fine-tuning
to be reliable. Meanwhile, learning is useful for adaptation,
but can require a substantial amount of data collection. In
this paper, we propose a method that improves the efficiency
of sub-optimal planners with approximate but simple and fast
models by switching to a model-free policy when unexpected
transitions are observed. Unlike previous work, our method
specifically addresses when the planner fails due to transition
model error by patching with a local policy only where needed.
First, we use a sub-optimal model-based planner to perform a
task until model failure is detected. Next, we learn a local model-
free policy from expert demonstrations to complete the task in
regions where the model failed. To show the efficacy of our
method, we perform experiments with a shape insertion puzzle
and compare our results to both pure planning and imitation
learning approaches. We then apply our method to a door
opening task. Our experiments demonstrate that our patch-
enhanced planner performs more reliably than pure planning
and with lower overall sample complexity than pure imitation
learning.

I. INTRODUCTION

The ability for robots to adapt to changing needs and

conditions in human environments is necessary for expanding

their utility into new application domains. A robot can be

pre-programmed with general models and reasoning capa-

bilities before deployment, but some amount of adaptation

is necessary to capture the wide range of conditions a robot

may encounter.

Motion planners with accurate models are often used to

accomplish tasks, but are often highly specialized and require

significant fine-tuning to be reliable [1], [2]. Inaccuracies

or deviations in a system’s model can increase the com-

plexity of the controller, and the potential for failed task

executions. Contact-rich manipulation tasks are difficult to

model because of the intricacies of changing contact modes

[3]. Nonetheless, planners are still useful when the robot

maintains contact, as modeling some phenomena, such as

friction on a sliding surface, can be sufficiently accurate

to provide the planner with useful information [4], [5].

However, more complex interactions may lead to the model,

and hence the planner, failing at execution time.

Learning-based approaches allow robots to adjust ex-

ecutions through experience, whether through supervised

demonstrations or reinforcement learning. However, the

amount of data required to acquire learned skills that gener-

alize can be both large and often non-trivial to collect [6],

[7], [8].
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Fig. 1. Our method follows a trajectory to a precondition and then executes
a learned skill to complete the shape insertion task in the region where the
system model fails. A plastic gray box obstructs the path to the goal. An
overhead (not shown in image) and angled camera are aimed at the center
of the board.

In this work, we propose a framework that facilitates

motion planning with sub-optimal planners, limited training

data, and inaccurate system models. Our method combines

model-based planning with model-free learning by first iden-

tifying states where the transition model provides a poor

estimate and then learning a local policy, e.g., a skill, to

patch the task execution. The robot can then reliably perform

the task by predicting if the original plan will lead to model

failure, then adapt the plan and patch it with a learned skill if

needed. Learning skills that only need to generalize across a

small part of the state space can require fewer samples than

a more general learned skill would need.

Integrating planning and learning in this manner enables

the robot to acquire new skills only when needed. The new

skill is data-efficient to learn as it only generalizes across

the relatively narrow range of conditions where the model

fails. This hybrid approach maintains the benefit from the

broad generalization afforded by the model-based planning

in regions where the model is accurate.

We evaluate our method on a shape insertion task and a

door opening task, comparing our results to the performance

of pure planning and imitation learning approaches.

II. RELATED WORK

Combining Model-Free & Model-Based Approaches:

The most closely related work in combining model-based

planning with model-free learning to ours is Lee et al.’s

Guided Uncertainty-Aware Policy Optimization [9]. Lee et
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al. use model-based planning to reach an uncertain region,

which is defined by uncertainty in the observation model,

and then switch to a model-free policy for a real-robot peg

insertion task. Lee’s work focuses on perception uncertainty,

while our work directly addresses planning failure due to

transition model errors. Other approaches use model-based

planning as an exploration policy to more efficiently collect

meaningful data samples that can be used for learning a

model-free policy [10], [8], [11]. Adaptive Online Planning

also combines model-based planning with model-free learn-

ing for a highly accurate, but computationally expensive,

planner that can obtain trajectories [12]. In contrast, our

approach is intended for planners that have have approximate

models but are relatively inexpensive to query. Hoppe et al.

use active learning as part of the trajectory optimization so

the planner can select more informative samples for model-

free policies [13].

Policy Composition: Combining and chaining policies

is commonly formalized using the options framework [14].

Each option has an associated policy, precondition, and set

of termination conditions. Konidaris et al. chain policies

to form more complex behaviours and examine option dis-

covery [15]. Option discovery is a problem where multiple

options are learned and added to a system where needed.

Most importantly, options can be combined hierarchically to

execute complex behaviors [16].

Anomaly Detection: Our method uses anomaly detection

to determine when a model deviation has occurred during

execution. Multimodal monitoring has been shown to be

more reliable than single mode monitoring of unexpected

observations [17]. Park et al. use this concept as a flag to

terminate executions after an anomaly has been detected [18].

Vemula et al. use a history of where the model has failed to

avoid those states while planning [19]. In contrast to previous

works, our approach uses anomaly detection with a model-

based planning method to determine which states require a

local policy using model-free learning.

Exploiting Contacts for Manipulation Tasks: Guan et el.

leverage contacts to reduce the number of states considered

during planning to scale with state complexity. Guan et al.

also model the problem as a composite MDP (Markov Deci-

sion Process) in SE(2) with added domain-specific structures

to enable a solution using dynamic programming [20]. Many

approaches use contact modes as a variable during optimiza-

tion for complex contact-rich locomotion and manipulation

tasks [21], [22], [23]. However, the resulting trajectories can

be difficult to execute reliably in the presence of modeling

errors. Páll et al. use the Contingent, Contact-Exploiting

RRT (ConCERRT) framework to find a path that accounts

for uncertainty in the transition model, attempting to find a

contingency plan for every possible belief state [24].

Model-Free Skill Learning: Contact rich manipulation

has also seen advances through the use of model-free rein-

forcement learning [8], [25], [7]. However, deep reinforce-

ment learning often requires large amounts of training data.

Imposing structure on problems can help improve sample

efficiency when performing model-free optimization. Con-
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Fig. 2. System block diagram. We use the training phase to collect data
and fit models for use in the testing phase. The planner gives a sequence
of expected states and actions to the execution module, which checks for
anomalous state observations and requests expert demonstrations after such
observations occur. We refer to an unexpected state at time t as s̃t in this
diagram for clarity.

straint Optimization and Reinforcement Learning (CORL)

employs a user-specified low-dimensional projection that

provides structure to make reinforcement learning more

efficient [26]. Englert et al. later use CORL to train a cabinet

opening skill from a single demonstration [27]. Additionally,

sample efficiency may be improved through defining the

policy using fewer parameters [28]. Our method describes

how these advances in model-free learning can be integrated

into systems that plan using models.

III. PROBLEM STATEMENT

We formulate the problem as a planning problem with a

state space S , an action space A, and a starting state s0 ∈ S .

The robot must compute a finite list of actions [a0, a1, . . . an]
executed in states [s0, s1, . . . sn], such that the final state,

sn+1, is in a goal set, Sg ⊆ S . πPLAN maps a state, st,
deterministically to the next action, at, according to the plan.

We have access to an approximate transition model, but not

the underlying dynamics. The transition model we use is

T̂ : S ×A → S , which is an estimate of P (st+1|st, at) and

is not expected to exactly follow the real world distribution.

Using T̂ and s0, the planner conducts a search to a set of goal

states, S∗g . S∗g is an intermediate goal. If the planner is being

used to solve the planning problem without the model-free

policy, then S∗g = Sg .

The planner can generate a suitable plan if the transition

model is sufficiently accurate. If the model fails during the

execution then the robot should stop following the plan and

use a different strategy. Therefore, our approach determines

for which S̃ ⊆ S the agent should stop following πPLAN and

instead learn (during training) or execute (during testing) the

model-free policy, πSKILL. πSKILL is learned from a series

of expert actions, [ât, ât+1, . . . , âm], [ŝt, ŝt+1, . . . , ŝm+1]. In
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Algorithm 1 Training procedure

Ds ← {}
D̃s ← {}
S∗g ← Sg
precompute πPLAN(S∗g )
for t = 0 to N do

st+1 ← EXECUTE(at)
if P (st+1 | st, at) > p then

Ds ← Ds ∪ {st}
else

D̃s ← D̃s ∪ {st}
DI ← DI ∪ (ŝt, ât) from expert demonstration

break

end if

end for

πSKILL ← TRAIN(DI)

this work, we sometimes refer to these policies as a skill,

but symbolically represent them as πSKILL to indicate that

the skill is a learned policy.

IV. TECHNICAL APPROACH

A. Overall Approach

Our method is designed to reliably complete a robotic

manipulation task using sub-optimal models and limited

real-world robot data. A model-based planner is used until

model failure is detected and then a policy is learned from

demonstrations to reach the goal. At test time, the robot

executes the learned skill in the regions where the model

has failed. Thus, much of the task is initially completed

using the model-based planner to increase generalization and

decrease data needs. If no model failure occurs, then no skill

is learned. However, if the robot encounters or predicts model

failure, a skill is learned to patch the plan and complete the

task.

At training time, state regions are gathered where the

transition model T̂ holds, Ds, and does not hold, D̃s. While

training, we use πPLAN to obtain samples of (st+1, st, at).
These samples are labeled according to a confidence inter-

val, P (st+1 | st, at) > p, where p is set to 0.98 for our

experiments. Our transition model for action at from st over

st+1 is modeled as N (st+1, k0|st+1 − st|). This allows the

acceptable error to grow proportionally with the distance of

the movement, where k0 is a proportionality constant that can

be determined experimentally by fitting expected deviation

from the target st for different state transitions. We show

pseudocode for training our method in Algorithm 1.

The action and state spaces for anomaly detection are high-

level; anomaly detection is executed only after the joint tra-

jectory controller has terminated. We use a joint impedance

controller so if the controller deviates from the expected

path between t and t+ 1, but corrects itself before the next

anomaly detection step, then st+1 is not in S̃ . If a sample is

within the confidence interval, then the corresponding state is

added to Ds. Otherwise, the sample is added to D̃s. D̃s and

Ds are then used to estimate S̃ using a Gaussian Process [29].

Algorithm 2 Testing procedure

S∗g ← Sg
precompute πPLAN(S∗g )
for t = 0 to N do

if st ∈ S̃ then

S∗g ← ISKILL

break

end if

end for

t← 0
while st /∈ S∗g and st ∈ S̃ or st ∈ ISKILL do

st+1 ← EXECUTE(at)
t← t+ 1

end while

while st /∈ S∗g do

a′t ∼ πSKILL(st)
st+1 ← EXECUTE(a′t)
t← t+ 1

end while

When a state is added to D̃s, the model has failed,

and the human operator is asked to provide a training

demonstration for completing the task from this state. The

skill demonstration is added to the imitation learning dataset,

DI . This dataset is used to estimate the skill πSKILL and

its corresponding initiation set, ISKILL, a distribution over

starting states which the learned skill is likely to achieve

the goal from. We further elaborate on the skill learning in

Section IV-D.

At test time, πPLAN outputs a series of states. If any states

are estimated to be in S̃ then πPLAN instead computes a

path to S∗
g , which is now ISKILL. In our experiments, the

expert demonstrations for shape insertion produced better

results when the shape was reset to a position outside of

the hole. The shape was then inserted into the hole using a

sliding motion, as shown in Fig. 6. This insight motivated

our decision to have the agent change S̃∗g to the initiation set.

Our test algorithm is shown in Algorithm 2. In the following

sections, we describe each step in more technical detail.

Fig. 3. The real world environment (left) and the corresponding Bullet3D
environment for planning and collision detection (right).
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Fig. 4. Dataflow and architecture for model free policy.

B. Model-based Planner

The purpose of the model-based planner is to quickly find

a sequence of waypoints, s0, s1, . . . , sn+1 and corresponding

n actions to get from each st to st+1 such that sn+1 ∈ S∗g
according to T̂ .

Planning is done using a PyBullet simulation [30] to

detect collisions and predict transitions, as shown in Fig. 3.

The planner has access to approximate CAD models of the

objects and their poses. We also assume that objects do not

deform during planning.

The high level planner samples grasps and inverse kine-

matics solutions, and then chooses the grasp that minimizes

|q0 − qn+1|, the distance between start and end joint con-

figurations, conditioned on a collision-free plan existing for

the task. This high level sampling is important during highly

constrained placement scenarios, such as the one shown in

Fig. 1, as not all grasps will have a final feasible plan.

This long-horizon reasoning facilitates generalization across

different situations even in constrained domains.

The motion planner used to achieve goal states is a bi-

directional RRT (Rapidly Exploring Random Trees) [31] in

order to return a collision-free solution quickly and with

high probability. We apply smoothing and restarts to improve

the quality of the trajectories: 5 restarts, 100 smoothing

iterations, and 200 search iterations for motion planning.

We built our planning stack using library tools provided by

Garrett [32].

For the door handle turning tasks, we specify that the

trajectory is an interpolation in SE(3) between the start

handle pose and the end handle pose once grasped. If the

initial configuration or end configuration is in collision,

our planner returns {}. Additionally, if st+1 is expected

to penetrate an object in simulation, then contact is also

predicted. End configurations can be sampled if there is at

least one goal state, i.e. |Sg| > 1.

C. Model failure detection during execution

At the beginning of the plan execution, we initialize

two datasets for classification: one dataset with expected

st+1 given (st, at) ∼ πPLAN (DS ) and one dataset with

unexpected st+1 based on the transition model used by the

planner, (DS ).

We measure state using our multimodal perception system,

which uses vision, joint state estimation, and contact forces.

Coordinating across multiple modes addresses partial ob-

servability within individual sensor modalities. For instance,

precisely measuring the 6 DOF pose of the manipulator is

difficult when the robot is grasping it, but binary contact

detection and estimation of the robot’s end-effector pose

is trivial. Thus, we use both deviation of the end-effector

in Cartesian space and binary contact sensing for anomaly

detection. We describe our perception system in detail in

Section V-A.

At test time, if the agent predicts that ∃s ∈ [s0, s1, . . . , sn]
such that s ∈ S̃ , then the planner replans to the skill’s

initiation set ISKILL and then samples actions from the skill

policy πSKILL until the task is complete.

We use Gaussian Process (GP) regression on a decision

rule, g(st), to predict whether st ∈ S̃ using a GP, f . The

inputs x are rows of [st]. The labels, denoted as y, are

our decision rule, g(st) where g(st) = 1 if st ∈ D̃S

and 0 otherwise. The kernel is a 5/2 Matérn kernel, a

special case for which computation is very efficient. The

kernel function is shown in Eq. 1 where d is the distance

between x and x′, such as |x − x′| [29]. We optimize θ,

the hyperparameters of the kernel, which include σ and ρ
for each dimension, using Large-scale Bound-constrained

Optimization (L-BFGS-B) [33]. Equation 2 describes the

likelihood to be maximized.

K(d) = σ2

(
1 +

√
5d

ρ
+

5d2

3p2

)
exp

(
−
√
5d

ρ

)
(1)

log p(y|θ,x) = −N log 2π

2
− log det(K + σ2

nI)

2
−yTK−1y

2
(2)

The threshold for g(x) to indicate model failure is an

application-specific hyperparameter, 0 ≤ τ ≤ 1. We chose

τ = 0.75 to be conservative, because model failure in the

shape insertion domain can lead to movement of the shape

in the robot’s gripper, making it less likely that πSKILL will

succeed.

D. Model-free Skill Learning

Once the robot encounters a model failure during training,

it notifies a human operator to help finish the task and

collects samples of (ŝt, ât), which are added to DI . The

human gives the robot keyboard teleoperated actions to go to

a skill starting location and then complete the task. Uniform

random noise between [−β,+β] was added to each action

executed. β needs to be high enough to make the skill

reliable, but not so high that the human cannot complete

the task. We found that the policy produced from this

demonstration data alone, without the noise, had a limited

distribution of visited states, leading to poor generalization in

unfamiliar states. This noise injected demonstration approach

was inspired from DART (Disturbances for Augmenting

Robot Trajectories) [34], which showed that noise injection

lead to a more robust policy.

For state representation, we use a variational autoencoder,

which learns an embedding that can be used to reconstruct an
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Fig. 5. Camera images corresponding to states where the transition model
failed. These are used as inputs to the autoencoder mentioned in Section IV-
D. Not all variations of model failure are depicted.

image [35]. The inputs to the autoencoder are camera images

of the scene taken as the demonstrations are being performed.

Examples of these images are shown in Fig. 5. The em-

beddings produced, along with the end-effector positions,

are then used as inputs to πSKILL. We show the data flow

in Fig. 4. The autoencoder loss is the mean-squared error

between the original image and the reconstructed image. The

architecture is a convolutional layer with 32 5× 5 filters, 16

3×3 filters, and a Gaussian noise layer with σ = 0.001. The

output is flattened, and then passed through two more fully

connected layers, µz and σz . We use the re-parameterization

trick from [35] to sample from a unit Gaussian, ǫ ∼ N (0, I)
and then sample a latent vector z as µz + ǫ

√
σz . We chose

z to be 5-dimensional. The z was reconstructed to the

original image size using fully connected layers. We based

our architecture on [36]. Because our dataset is small, we also

perform data augmentation from [37] to reduce overfitting,

including rotation, shear transforms, color, and random noise

to increase our dataset size by a factor of 50.

After the data is collected, we use DI to fit a function

πSKILL := S → A that maps each state to an action. πSKILL

can also be represented using other policy forms, such as

neural networks or Dynamic Movement Primitives [38]. We

chose random forest regression (RFR) for our model-free

policy due to its interpretability and data efficiency [39]. The

representational ability of RFR was sufficient for our tasks.

RFR outputs numerical values instead of class labels,

using the mean-squared generalization error. The random

forest takes in training data, X, and outputs a tree predictor,

h(x) that minimizes the mean-squared generalization er-

ror, EX,Y

[
(Y − h(X))

2
]

over all available demonstrations.

Each decision tree in the random forest uses a randomly

selected subset of the features. X is our dim(z)×N latent

visual features concatenated with the dim(a) × N end-

effector pose, to predict a dim(a) × N action, which is

our Y. We perform grid-search cross-validation for hyper-

parameter optimization, which include the number of trees,

maximum number of features for splitting, minimum number

of samples to be at an internal node, minimum number of

samples to be at a leaf node, and maximum tree depth. We

Fig. 6. Demonstration where the human operator moves the robot arm, via
teleoperation, to complete the shape insertion task after model failure. We
found that demonstrations worked best when the operator reset the shape to
a position outside of the hole and performed a sliding motion into the hole.

use the RFR implementation in scikit-learn [37].

We fit the initiation set to be a Gaussian distribution:

N (s0,Σs0). Initial starting states are sampled from ISKILL

when setting S∗g after model failure or expected model

failure.
V. RESULTS

In this section, we describe the experiments used to

evaluate our proposed method of combining model-based

planning and model-free skill learning. For both tasks, the

action is a 3D translation ∆x of the end-effector in the world

frame and a rotation represented using a quaternion.

A. Experimental Setup

Shape Insertion Setup: The experimental setup for the

shape insertion experiment is shown in Figure 1. We use a

children’s 8-piece knob puzzle (or board) mounted at a fixed

location. The puzzle pieces are manipulated by a 7 DoF

Franka Panda arm towards their respective goal locations.

A 7cm x 8cm x 4cm PLA obstacle is placed in a location

that obstructs any straight line paths to the goal for the

indicated trials. The obstacle is never placed directly over

the goal position. For 3D object pose estimation, we attached

AprilTags [40] to the top of the puzzle pieces, obstacles, and

at the goal locations. An overhead Microsoft Azure Kinect

sensor is used to retrieve images of the scene. A second

Azure Kinect sensor records downward angled images of the

scene as input to the autoencoder described in Section IV-

A. The Franka arm indirectly estimates end-effector forces

and torques using the joint torques. Force detected relative to

the end-effector is converted into a binary signal by setting

a force threshold that detects contact with objects, but does

not trigger during acceleration for movement in free space.

Baselines: We compare our method to two different base-

lines. The first is the planner described in Section IV-B.

For the second baseline, we learned a policy using Imita-

tion Learning (IL) in conjunction with Dynamic Movement

Primitives (DMPs) [38], [41]. For the DMP baseline, initial

grasping is performed using the planner. The transport and
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Fig. 7. Real world shape insertion results of all trials. The figure shows
the number of times an outcome occurred for each implementation when
there was no obstacle obstructing the path. Section V-B defines success.

insertion are done with DMPs. The DMP for this task was

trained by collecting a trajectory using a kinesthetic human

demonstration, while the obstacle was obstructing the path

to the goal. More specifically, the DMP was trained from

the oval starting position using the rectangle puzzle piece

as the manipuland. Each translational Cartesian dimension

was modeled as a separate DMP component. We used the

formulation shown in Eq. 3 and 4. We use the modification

mentioned in Section IV-A of [38] to include a goal state pa-

rameter that scales the DMP trajectory towards the goal state.

This formulation also allows for the use of object features

that can be used to scale the amplitude of a trajectory. This is

useful if the start and end positions are close to one another,

since the trajectory’s amplitude can become sensitive to the

goal state parameter’s scaling. We scaled the z dimension

trajectory by 0.5 to quell this issue. The DMP parameters

for execution are learned through linear ridge regression.

~y = αz

(
βzτ

−2 (y0 − y)− τ−1ẏ
)
+ τ−2

M∑

j=1

φjf (x;wj)

(3)

f (x;wj) = αzβz

(∑K

k=1
ψk(x)wjkx∑K

k=1
ψk(x)

+ wi0ψ0(x)

)
(4)

B. Experimental Results

In this section, we show how our method compares to

the baseline methods described in Section V-A on two real-

world tasks. The first task is to insert a puzzle piece into

its corresponding hole. The experiments are performed with

three shapes: a rectangle, a circle, and a square. Each shape

goes into one of 8 corresponding slots in a 4 × 2 grid,

shown in the bottom left of Figure 3. We perform 7 trials

for each shape where the starting position is one of the 8

regions, excluding the goal region. These experiments are

then repeated with an obstacle obstructing the straight line

path from start to goal. Success occurs when the shape is

completely in the hole, see the bottom right of Figure 6. A

partial success is when only part of the shape is in the hole,

Fig. 8. Real world shape insertion results of all trials with an obstacle
obstructing the path. The figure shows the number of times an outcome
occurred for each implementation. Success is defined in Section V-B.

# Expert Demos: 1 5 10 20

Success Rate: 7/21 15/21 16/21 19/21
Fig. 9. Overall success of our method on the shape insertion task depending
on the number of training samples. The first row is the number of training
samples used and the second row is the rate of success for the 21 trials.
Success and the experimental trials performed are explained in V-B.

see Figure 5. Failure indicates that either the robot hit an

obstacle during execution or the shape was not in the hole at

all. We show the performance of our method after training,

as well as the baseline performances, in Figure 7. The results

for the trials with an obstacle are shown in Figure 8.

For the 21 shape insertion trials without the obstacle, we

found that the method using the planner was only able to

completely insert the puzzle pieces once, which occurred

with the circle shape. The failure rate was 5/21 and the

partial success rate was 15/21. The DMP baseline had a

success rate of 4/21, partial success rate of 15/21, and failure

rate of 5/21. Lastly, our method had a success rate of 19/21,

partial success rate of 2/21, and failure rate of 0/21 when

trained on 20 samples.

The next set of experiments show how well each method

generalizes when an obstacle is introduced. The DMP

method generates trajectories that collided with the obstacle

13/21 times. Failures occur because the DMP parameters

learned do not generalize over all possible obstacle config-

urations and starting locations. It should also be noted that

the robot’s joint configuration before the DMP was executed,

i.e. the joint positions after the planner finished executing,

seemed to affect the DMP’s performance. We believe this

was due to the goal configuration approaching the robot’s

joint limits from certain starting configurations.

The method utilizing the planner hit the obstacle two

times. This occurred when the task was constrained to a small

area, causing the trajectory to go close to the obstacle and

making the 1 cm perception error become more significant.

An example of this is shown in Figure 3. Our method, which

relies on the planner for obstacle avoidance for most of the

trajectory, also hits the obstacle 2/21 trials. The remaining
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Fig. 10. Task setup for door opening. The real world environment is shown
to the left and the simulation environment is shown to the right.

trials show performance similar to the trials without an

obstacle, with a 16/21 success and 3/21 partial success rate.

We also tested what effect using more trajectory demon-

strations to train our method had on success rate. We

observed an increase in success rate of insertion when more

demonstrations were used. This is expected since the smaller

|D̃| is, the smaller the predicted region of S̃ becomes.

Furthermore, more demonstrations lead to a better quality

πSKILL. These results are shown in Figure 9 and were

performed without an obstacle.

The second task is a door opening task where the robot

does not have access to an accurate model of the door handle.

The environment we use for planning in simulation is shown

in Fig 10. Note that the handle used in the planner is a

simple rectangle, while the handle in our setup (shown in

the left of Fig 10) is more decorative and harder to grasp

with parallel jaw grippers due to the curvature.

We performed 10 trials of the task by executing actions

from πPLAN. All 10 trials led to successful opening of the

door. There were no unexpected states observed during these

trials, so |D̃S | = 0. Since the model-free method was not

necessary, our framework only used the model-based planner

and displayed the same results.

VI. DISCUSSION

Model failure for the shape insertion task typically occurs

shortly after non-sliding contact, e.g. contact with the target

hole’s border due to misalignment. Misalignment is mainly

due to inaccurate localization of the hole from perception,

which does not provide a pose of the hole that is accurate

enough for this task. Another factor that affected alignment

was the rotation that often occurred while puzzle pieces were

being handled by the robot. Any deviation from the expected

orientation can prevent the puzzle pieces from being inserted

into the hole, since it can cause unexpected contact with the

surrounding surface. We show examples of failures in Fig. 5.

Once the model fails at time t, st is then by definition in

S̃. This implies that the states around st are also likely to be

in S̃, so we add st to S̃. When we started collecting data at

st, we found that in order for the expert to insert the peg, the

shape needed to be moved out of the hole so it could be slid

back in, as shown in Fig. 6, which motivated our decision

to have the agent change the goal state of the planner S∗
g to

be the initiation set of the skill ISKILL.

We observed that nearly all states in S̃ have low z-axis

values, which corresponds to board contact or sliding. We

also found that most of these states are clustered around

the target location, which corresponds to the switch from

πPLAN to πSKILL being close to the target location. A lower

proportionality constant k0 did lead to some spurious model

failure detection. Measuring accumulated error rather than

error between st and st+1 could solve this.

Combining the planner with the learned skill allows for

more of the task to be completed using the planner, which

means a better overall system with a lower number of sam-

ples needed for training the local skill. For shape insertion,

a reasonably reliable policy can be trained using only 5 data

samples, although more samples were helpful. The trade-

off for using only one data point with no domain-specific

knowledge about symmetries is that the precondition space is

smaller. For example, if the planner cannot find a plan to the

precondition, such as if the states in ISKILL were obstructed

by obstacles, then πPLAN cannot be used to complete the

task.

The door opening experiments demonstrated how our

method can be used to identify which tasks need data to

compensate for modelling deficiencies. In some tasks, the

model is sufficient and there are no unexpected observations,

meaning we can rely on the planner to generate trajectories

and do not need expensive human demonstrations.

This work is an example of a system that combines learn-

ing and planning algorithms to collect imitation trajectories

only in the region of state space where it is necessary. We can

leverage the ability of planners to generalize in regions where

the model works and is fast enough to compute with, while

also compensating for issues in perception error, modelling

error, and search complexity.

Improving the performance of sub-optimal planners using

local learned skills has many potential directions for algo-

rithmic development using local learned skills. The primary

limitation to our approach is that there is only one local

πSKILL. A more effective use of our method would be to

learn multiple local policies or use more expressive policies

(e.g. neural networks) with larger initiation sets. Additionally,

integrating more sensory modalities, such as [7] did, would

help mitigate issues caused by inaccuracies in perception.

VII. CONCLUSION

We proposed an approach that uses a planner, with a coarse

probabilistic transition model, to find a trajectory and then

switch to a model-free policy when the robot expects or

observes model failure. During training, the robot learns a

model of states from which we should learn a skill policy

and collects expert demonstrations for the learned skill. We

show results quantifying our method’s improvement over

pure planning or imitation learning for shape insertion. We

also applied our method to a door opening task as another

example of a contact-rich manipulation task. However, it did

not need to learn a skill to complete the task. For future

work, our method can be applied to dynamic tasks where

approximate models are especially useful. Furthermore, we

can train multiple local policies for different behaviours,

select preconditions, and then choose between them through

high-level planning.
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