2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

October 25-29, 2020, Las Vegas, NV, USA (Virtual)

Adaptive Dynamic Window Approach for Local Navigation

Matej Dobrevski® and Danijel Skocaj’

Abstract— Local navigation is an essential ability of any
mobile robot working in a real-world environment. One of
the most commonly used methods for local navigation is the
Dynamic Window Approach (DWA), which heavily depends on
the settings of the parameters in its cost function. Since the
optimal choice of the parameters depends on the environment
that may significantly vary and change at any time, the param-
eters should be chosen dynamically in a data-driven way. To
cope with this problem, we propose a novel deep convolutional
neural network, which dynamically predicts these parameters
considering the sensor readings. The network is trained using
a state-of-the art reinforcement learning algorithm. In this
way, we combine the power of data-driven learning and the
dynamic model of the robot, enabling adaptation to the current
environment as well as guaranteeing collision-free movement
and smooth trajectories of the mobile robot. The experimental
results show that the proposed method outperforms the DWA
method as well as its recent extension.

I. INTRODUCTION

The ability to navigate unstructured environments is a
crucial capability for mobile robots operating in the real
world. Applications like service and inspection robots, de-
livery drones, unmanned surface vehicles, search and rescue
robots and many more, are all limited by the capabilities of
the navigation software in use. Rightfully, robot navigation
has been an extensively researched topic [1].

The usual approach for designing navigation systems is to
split the problem into global navigation and local navigation.
Global navigation, or commonly path-planning [2], supposes
that a map of the environment is available and produces a
plan for reaching the goal position, while taking in consid-
eration the geometric properties of the robot. Unfortunately,
if the environment is not strictly managed, the map used for
navigation quickly becomes outdated. Potentially adding the
difficulty of moving obstacles, a need for local navigation
quickly arises. Local navigation, in contrast to global navi-
gation does not rely on a map of the environment, but only on
the immediate sensor readings of the robot. It alleviates the
problems of unforeseen changes in the map by considering
the dynamic properties of the robot and making short-term
decisions on avoiding obstacles while following the global
plan as close as possible.

Fueled by the availability of computing power, data, and
new techniques for their training, deep neural-networks have
shown impressive results on a number of domains in the last
decade. Consequently, many approaches that use a neural-
network to navigate a robot have appeared [3], [4], [5], [6],
mostly using reinforcement learning (RL) algorithms to train

1Visual Cognitive Systems Laboratory, Faculty of Computer and Infor-

mation Science, University of Ljubljana, Ve¢na pot 113, Ljubljana, Slovenia
matej.dobrevski@fri.uni-1j.si

978-1-7281-6211-9/20/$31.00 ©2020 IEEE

:

v A
[observation] [new parameters]
v . A

bt

7 X

1,. S
o

/

°
o
B
=
o
™

Fig. 1. On the left: some canonical navigation scenarios in which DWA
can have problems. Parameters that are optimal for one situation can lead
to a local minimum or a longer path in another situation. On the right:
our proposal, to adapt the parameters at each step based on a pre-trained
network.

the network. However, in this navigation paradigm it is not
easy to make targeted improvements to the robot behaviour.
Additionally, they need mechanisms for ensuring collision
free navigation. These shortcomings can be overcome by
considering classical navigation approaches that specifically
address these issues.

One of the most commonly used classical methods for
local-navigation today is the DWA [7]. In their extensive
experiments for indoor navigation, Willow-Garage decided
to include DWA as the local navigation method [8] and this
is the default local navigation method used in the navigation
stack in ROS [9]. DWA generates control velocities to
achieve a goal position by using the dynamic model of the
robot to optimize the distance to obstacles, its velocity, and
the heading towards the goal. The reasons for its continued
usage are numerous: it generates smooth trajectories, the
trade-of between precision and computational power can be
controlled via the sampling, it works in velocity space so
there is no need for an additional controller, and it guarantees
collision free trajectories. As such, it has been extended to
numerous applications such as global navigation [10] and
navigation in presence of known moving obstacles [11].

On the other hand, as pointed out in the original paper [7]
and other research [12], the performance of DWA depends
on the weights we choose for the obstacle clearance, speed
and heading in the cost function. As illustrated in Figure 1
it is dependent on these weights whether a robot will pass
through a narrow gap, whether it will circumvent a given

6930

obstacle or come completely to a stop. Additionally, there is
no general rule for setting these weights, but researchers and
practitioners set them through trial-and-error.

This problem has been addressed in [13], [14] and [15]. In
[13] and [14] the authors propose a fuzzy system for adapting
these weights. However the rules for adapting these weights
are still set manually, and only 8 configurations of obstacles
are considered. In [15] the authors propose the usage of an
Artificial Neuro Fuzzy Inference System (ANFIS) to learn
to adapt these weights from experience. However, they do
not consider the configuration of obstacles in the learning
system.

In this work we present a new method for local naviga-
tion, which combines the adaptability of learned methods
while guaranteeing collision free trajectories and generating
smooth trajectories. Our method is based on the DWA, but
the cost function that DWA optimizes is changed at each
step by a deep neural network. We train the neural network
in a reinforcement learning setting with the usage of the
state of the art Proximal Policy Optimization (PPO) [16]
method. Our method takes as an observation a laser-scan
of the environment and the position of the next goal and
output the new weights for the cost function. We evaluate our
method extensively on the Gibson dataset [17] consisting of
3D scans of real indoor spaces and show that we outperform
both DWA and its recent extension [15].

The paper is organised as follows. In the following section
we first present the related work. This is followed by the
presentation of the proposed method Adaptive Dynamic
Window Approach (ADWA). Evaluation of the proposed
method and comparison to related work is presented in
Sec. IV. The paper closes with the concluding remarks in
Sec. V.

II. RELATED WORK

Local navigation, or navigation based on the robot sensor
readings, has been studied since the development of the
first mobile robots. From these various approaches the most
used ones have been methods operating in velocity space,
as they consider the kinematic and dynamic constraints of
the robot, and in contrast to geometrical approaches, can be
easily translated to motor commands. Velocity space methods
include several curvature based methods [18], [19], [7], [20],
from which the most popular has been the DWA, and is
included as the default local navigation method in ROS.

The DWA addresses the problem of navigation by search-
ing in the collision free part of the reachable velocity space,
for speeds which maximize a weighted cost function in order
to maximize the clearance from obstacles, heading towards
the goal, and movement speed of the robot. Brock and
Khatib [10] expanded the algorithm so that it is applicable
to global navigation scenarios. Their approach requires a
costly calculation of a global navigation function, and is
not suitable for scenarios where the environment is expected
to change. Ogren et al. [21] inspired by the work done by
Rimon and Koditschek [22] developed a version of DWA
that is provably convergent by viewing the method as Model

Predictive Control. Recently, Missura and Bannewitz [11]
presented a variant of DWA which also addresses navigation
scenarios with moving obstacles, which are modeled as
moving polygons.

To address the problem of needing different weights for
different scenarios Hong et al. [13] proposed the usage of
a fuzzy system to adapt the weights of the algorithm based
on the distribution of obstacles around the robot. However,
the obstacle distribution is one of eight types, and the fuzzy
rules are set by hand. Betofio et al. [15] expand this idea
and introduce an ANFIS for predicting the weights, and
introduce optimization of the cost function for two steps
ahead. In the inputs to their neuro-fuzzy predictor they only
consider the mean of the obstacle distances, the heading
and the current speed, and not the detailed distribution of
obstacles. In contrast to these approaches we consider the
distribution of obstacles in 128 measurement points around
the robot and we use a deep convolutional network to predict
the optimal parameters for the cost function. Additionally,
our network is trained on experience using the state-of-the
art PPO method [16].

In the last few years numerous approaches that use a
neural network to model the complete navigation policy
have appeared [3], [4], [5], [6], [23], using reinforcement
learning to train the network. Xie et al. [3] have developed a
monocular image obstacle avoidance method based on the
dueling and double-Q mechanisms. This method however
does not navigate to a goal location. Zhu et al. [4] developed
a method for navigating to a target given as an image in
a previously known environment. Leiva et al. [24] learn
a collision avoidance policy which as input combines the
data from the RGB, depth image and lasers on the robot.
Lei at al. [23] train a navigation policy for the Turtlebot
using a Deep RL algorithm. One downside of purely us-
ing a neural network is that targeted improvements in the
navigation behavior are impossible. Other downsides are the
lack of guarantees for collision free trajectories, and the
generated smoothness of the robot movement. In our work
we combine the strength of both, learning based and classical
approaches, and offer improvement over classical approaches
while also guaranteeing collision free navigation and smooth
trajectories.

Our method is based on deep reinforcement learning.
Since the incredible results achieved by Mnih et al. [25] and
their Deep Q-Networks (DQN) there has been a resurgence
of research in reinforcement learning, such as methods that
improve the DQN like Dueling DQN [26] and Double
DQN [27]. Techniques for improving convergence by break-
ing the correlation between successive samples, like Expe-
rience Replay [28] and Prioritized Experience Replay [29]
have also been used. Another direction has been research
into methods applied to continuous outputs like Deep De-
terministic Policy Gradients [30] and other methods directly
optimizing the policy like Trust Region Policy Optimization
(TRPO) [31] which addresses some of the problems with
the stability in reinforcement learning methods, by making
sure that the policy does not change drastically between

6931

successive updates. It does this by limiting the Kullback-
Leibler divergence between updates, with the size of the
updates to the network parameters. PPO [16] is a kind of
successor method to TRPO, however the costly Killback-
Leibler divergence calculation has been replaced with a
much computationally simple limitation on the maximal
permitted gradient update. We use PPO because of its elegant
and efficient implementation and demonstrated convergence
properties.

III. ADAPTIVE DWA

A. DWA method

In the DWA we assume that the control intervals are
sufficiently small so that in each control interval [t;, ;1]
we can assume the velocity of the robot is constant. In our
experiments this interval is At; = ¢;41 — t; = 0.2s. If we
assume a synchro-drive robot and if the translational velocity
of the robot in the [t;,¢;11] interval is u;, its rotational
velocity is w; and its orientation at time ¢; is 6(¢;), then
we can derive that during the given interval the robot will
be moving along a circular arc with a center in:

(— Zsind(t:), -cosf(t)) (1)

Wi Wi

and a radius of r = Z— assuming w; # 0 [7]. If w; = 0
then the robot will be moving along a straight line in the
direction 0(t;). Knowing this, at each control interval the
two-dimensional search space (v,w) for the command is
reduced to the intersection of the admissible velocities and
the dynamic window. Admissible velocities are all velocities
that will not cause a collision, in other words, velocities that,
if applied, the robot will be able to stop before reaching
an obstacle on the current curvature, given its deceleration
limitations. The dynamic window are all velocities that can
be reached within the next control cycle, given the limited
acceleration of the robot.

According to the DWA from this search space we choose
the velocities that maximize the function:

G(v,w) = o(a-heading(v,w)+ - dist(v,w)+v-vel(v,w))

2
where heading(-) is the angle between the forward direction
of the robot and the goal, a measure of how much we are
moving towards the goal; dist(-) is a measure of clearance,
or the distance to the closest obstacle on the curvature;
vel(-) is simply the translatonal velocity of the robot, so
as to maximize its speed; o(-) is a smoothing operator that
normalizes heading(v,w), dist(v,w) and vel(v,w) to the
range [0,1]. The behaviour of the robot will change with
different values of «, 5 and ~. Our experiments showing
this dependence can be seen in the next section. The optimal
setting of these weights depends on the configuration of
obstacles around the robot, and in this work we design a
neural network that does exactly that.

B. Deep reinforcement learning approach

We model the problem of setting these weights as a
Markov Decision Process (MDP) and solve it in a reinforce-
ment learning setting. The state at time ¢ is defined as a
vector s; = [l1, 2, ..., li2s, 04, dg, Vr,w,| where [; to l12g are
laser range readings around the robot, measuring distance
[0, 4]m in £120° about the forward direction of the robot; 0,
is the angle to the goal; dj, is the distance to the goal; v, is the
translational speed of the robot, and w; is the rotational speed
of the robot. After each observation of the state, the robot
produces an action a; = [Aa, ASB, Av]. During the training
we consider the discount factor to be Ygiscount = 0.99. The
reward function R(s;) does not contain any intermediate
rewards and is defined as:

100 ,dgy < 0.3m
—30 ,robot stuck 3)

0 , otherwise

R:

The transition function of the MDP is implicitly defined by
the dynamics of the robot and the environment in which it
is learning.

The laser-scan data in the physical world is highly cor-
related. The network should learn to extract from this low-
level data information like locations of sharp edges, small ob-
stacles, and traversable areas, and combine this information
with the movement parameters of the robot and the location
towards it is headed and these ideas are reflected in the design
of the network.

As input, the network takes a 128 laser-range measure-
ments in £120° around the robot, passes this information
through four 1D convolutional layers and concatenates it with
the relative distance and orientation to the goal, as well as
the current translational and rotational velocity of the robot,
as shown in Figure 2. The combined vector is processed
by four more fully connected layers, before the output layer.
The outputs of the network have the tanh activation function
so they are normalized in the range [—1,1]. The laser-scan,
as well as the four additional parameters to the network,
are normalized before they are fed in the network. In PPO,
during training we use an additional network for estimating
the value of the states, which is in turn used for calculating
the advantage function. As is usual, the value estimation
network which is used for calculating the advantage function
during learning, shares the same structure but has a single
output with a linear activation function.

The network produces Acq, AS and A~y as outputs
which are scaled to the ranges [—0.5,0.5], [—0.3,0.3] and
[—0.3, 0.3] respectively, then summed with the default values
of « =0.8, § =0.1 and v = 0.1, and the underlying DWA
operates with these adapted parameters.

C. Training

The network is trained in simulation in a reinforcement
learning setting using an artificially constructed obstacle
course depicted in Figure 3. The obstacle course is signif-
icantly different to most maps of real world environments

6932

128 + 4 neurons 1d conv. fully conn.
filters: 32 ReLU layer layer

— kernel: 3 kernel: 3 N
stride: 2 stride: 1
L act:ReLU act: ReLU 128 128 U
L (B — p) neurons neurons
- | (ReLU ReLU

- 64 64
neurons neurons
ReLU ReLU

i e

filters: 32

128 range scans

— filters: 32
kernel: 3
filters: 32

kernel: 5
stride: 2
act: ReLU

stride: 1
act: ReLU

heading
distance
trans. vel.
rot. vel.

Fig. 2. The neural network transforms the range-scan of the robot through
four convolutional layers. The output from the last convolutional layer is
fed into a fully connected layer, after which it is concatenated with the
information about the goal and the velocity of the robot. This complete
information is then fed through four fully connected layers, before finally
outputting the new parameters.

Y= %) ¥V > AN <« =N N
. P \ 4« N g 4)V 4
\= ay s VN Y ey .
Q- 7 80 4P 9T T SN VW < g
 *a] Ny N (e, - v
r - Qe N Y e [) NN e D
P~ 1\ Yy » We ¢ \ " g4 2/ W
» » a p Vv " " < a \ 7
A 4 » € p 7 “ 6o /4 A2 .

Fig. 3. The polygon used for training the network is a 20m by 40m hall
filled with randomly generated convex obstacles.

(some of which are shown in Figure 4). We created this
obstacle space entirely of randomly generated obstacles in
order to prevent over-fitting of the trained network to existing
features of certain environments, and force it to learn the
underlying physics of the problem. Randomization during
training has been found to be an effective technique for
alleviating issues with over-fitting in reinforcement learning
problems [32], [33], [34].

The simulation is implemented in ROS, with nodes sim-
ulating the robot and range-scanner. For our robot, the
Turtlebot, we performed parameter identification and adapted
the transition functions for the translational and rotational
velocities in the simulator, to match them as close as possible
to the real robot.

Each episode of interaction begins by randomly initial-
izing the starting and target location of the robot within a
predefined distance § = 4m. In each control cycle (5Hz2)
the neural network outputs Aa,Af and A~ values which
are added to the default values suggested by the authors of
the original DWA. The system then navigates the robot to
the target location until an episode is terminated, which can

happen if: the robot reaches the target location (distance to
the goal d; < 0.3m), the robot exceeds 300 control cycles,
or the robot gets stuck in a minimum from which it can not
get out (has not moved for 20 control cycles).

These experiences are gathered into a buffer and when
the buffer reaches 5000 steps an update to the policy is
performed according to the PPO rules. This represents one
epoch of training. We train the policy for 600 epochs, or a
total of 3M steps. The training lasts for a couple of hours,
when the simulation is using 4 cores of the Intel 17-6700 CPU
and the policy is trained on a Nvidia GTX 1070 GPU. The
trained network is then directly applied to the new domain,
without any further training.

IV. EVALUATION
A. Experimental setup

Evaluating the effects of a local navigation on a real-
istic navigation scenario requires some consideration. For
example, the ROS implementation of DWA! contains several
techniques on top of the bare-bones algorithm for signifi-
cantly improving its performance: the local goal is updated
at each control-cycle; additional cost is added for adhering
to the detailed path of the global planner; a flag for limiting
oscillatory behaviour; additional scoring point away from
the center of the robot; recovery behaviours etc. To produce
comparable results, we do not implement these additional
techniques, but use the method as it was originally presented
and is implemented in previous research [7], [15], [11].

To isolate the effects of the local-planner on the success
of navigation we thus simplify the interaction between the
local and the global planner as much as possible. The global
planner is run only to create navigation scenarios and does
not interact with the evaluated navigation methods in any
other way. This also results in some goals being placed
in places where pure local-navigation can not reach the
goal effectively. In production, a navigation system would
include a more complex interaction between the global and
the local planner, such as taking care where the targets for
the local planner were placed given the velocity, position and
orientation of the robot, would include recovery behaviours
and other interactions. However, in this evaluation we focus
only on the local planer, since the improvement in the
performance of this component naturally translates in the
improvement of the overall performance as well.

For evaluation we used a subset of the Gibson dataset [17],
which contains 3D data of scanned indoor spaces, to gen-
erate realistic 2D floor-plans (six of which are depicted in
Figure 4) of indoor office and home environments?. If the
space contained multiple floors we generated a separate 2D
map for each floor. In each map we randomly sampled 10
starting and goal locations, while taking care that there is at
least one obstacle between the start and the goal. In this way
we generated a total of 170 non-trivial navigation episodes.

"https://github.com/ros-planning/navigation/tree/
melodic-devel/dwa_local_planner
2http://www.vicos.si/Downloads/IN2D

6933

Fig. 4. Visualizations of 6 of the total 17 environments used for
evaluation of the navigation methods. The environments are real floor plans
of 3D scanned indoor spaces and contain realistic configurations of various
obstacles. One randomly chosen navigation episode is visualized for each
environment. These maps were loaded in ROS and a simulation of the
Turtlebot robot was navigated on each map.

The Thetax [35] global planner was executed on each
pair of starting and goal location for every map and gen-
erated the shortest trajectories. On this trajectory we chose
intermediate goals for navigation such that consecutive goals
are 1m apart (Euclidean distance), except the final goal
which is within (0, 1]m away from the previous goal. The
robot was initialized in the starting location and navigated
to each intermediate goal until it reached the final goal,
after which an episode was ruled successful. If it failed to
reach an intermediate goal the complete episode was ruled
unsuccessful. Each goal was considered reached when the
center of the robot was within 0.3m of its location.

B. Sensitivity of DWA

TABLE I
THE BEST PARAMETERS FOR DWA

« B ¥ # completed ep. | # reached goals
0.8 | 0.1 | 0.1 66 511
1.0 | 0.1 | 03 60 488
1.0 | 0.1 | 05 52 403
1.0 | 0.1 | 0.1 50 435
0.8] 0.5] 0.1 50 392

To examine the sensitivity of DWA to the weights in the
cost function we performed a grid search of the «, 5 and ~y
weights, evaluating the performance of the algorithm with the
different weights on the complete dataset for each generated
combination. The five best results achieved in this search are
shown in Table I. From the results we can confirm that the
DWA is sensitive to the weights in the cost function. More
precisely, the results show that in order to get acceptable
behaviours « should be about 4 — 10 times larger than /3

TABLE I
EVALUATION OF APPROACHES ON THE GIBSON DATASET, SEQUENTIAL
NAVIGATION

method # completed ep. | # reached goals
Best DWA[7] 66 511
ANFIS DWA[15] 39 337
Ours 89 624

Fig. 5. In the navigation episode in A all three methods reach the goal.
In B the ANFIS DWA method is stuck near a sharp corner, while in C the
DWA gets stuck in front of a protruding obstacle (a wall).

and v. In the instances where this was not the case, the
algorithm failed almost completely. These results show that
the performance clearly depends on these parameters.

C. Experimental results

Using the same obstacle course as depicted in Figure 3,
we generated 10000 episodes of experience and trained
an ANFIS controller for DWA as specified in [15]. This
navigation method was then run on the same navigation
episodes as the DWA. As can be seen in Table II, it did
not manage to outperform DWA with a good combination of
parameters. We evaluated our trained network on the same
pre-generated episodes.

The results of all three methods are presented in Table II.
As can be seen, our approach can navigate about 35% more
episodes than the vanilla DWA with the best combination of
parameters that we managed to find. The ANFIS method
on the other hand scored worse than the DWA with the
best parameters, completing about 40% less episodes. A
visualization of the generated trajectories on three navigation
episodes is shown in Figure 5.

We also note that for all navigation approaches most
episodes contain an intermediate goal which the approaches
did not manage to reach. Upon closer inspection we noticed

6934

|

] DWA

DWA per stage
=1 ANFIS DWA
1 ADWA

1

Cantwell 4
Denmark +
Eastville 4
Edgemere
Elmira
Eudora
Greigsville
Mosquito

Pablo
Ribera
Sands1 4
Sands2
Sciotol
scioto2 +
Sisters1 4
Sisters2
Stormville 4

Fig. 6. Completely finished episodes for each environment in the dataset.

that these are mostly situations where the next goal is both
around a corner and close to an obstacle (wall).

We examined the results per different environments in the
dataset, the results of which are presented in Figure 6. Our
method outperforms the DWA approach even if we compare
our method to the best performing parameters tuned for each
environment separately, which confirms our hypothesis that
we are able to effectively predict suitable parameters for the
cost-function on the basis of the distribution of obstacles
around the robot.

To examine the behaviour of the navigation methods
on longer navigation tasks, we generated new navigation
episodes. In this test, each episode contains a starting location
and just a single goal such that the distance between the
start and the goal is between 0 and 4 meters. The start and
goal locations are sampled containing at least one obstacle
in between, so that there are no trivial navigation tasks. We
generated 100 tasks per environment or 1700 in total. On
this dataset we evaluated the best DWA, ANFIS DWA and
our method. The results are presented in Table III.

TABLE III
EVALUATION OF APPROACHES ON THE GIBSON DATASET, SINGLE
DISTANT GOAL.

method # completed ep.
Best DWA[7] 294
ANFIS DWA[15] 340
Ours 520

From the presented results we can see that the performance
of DWA approach drops as the distance of the goal location is
increased, being able to complete only 17% of the tasks. On
these longer navigation tasks the ANFIS DWA outperforms
the vanilla DWA, finishing about 16% more navigation tasks.
Our method outperforms both methods again, reaching about
76% more episodes than DWA. The experiments also show
that our method needs about 3.3% additional computation
time compared to the vanilla DWA.

V. CONCLUSIONS

The main contribution of this paper is the proposed new
local navigation method which uses the dynamic model of
the robot and a deep neural network to reach a given goal.
In this way we combine the power of data-driven learning,
while also guaranteeing collision free movement and smooth
trajectories.

Our method is based on the established DWA algorithm,
and addresses the sensitivity of performance to the setting
of the weights in the cost function. We do this by designing
a deep convolutional neural network which predicts this
parameters on the basis of the sensor readings of the robot,
and we train this network using the state-of-the art PPO
reinforcement learning algorithm. The network is trained in
a reinforcement learning setting in order to optimize the long
term goal of reaching the target location. Our usage of the
DWA as the backbone, guarantees that the generated robot
trajectories are smooth and collision free.

We also create a benchmark dataset, generated from the 3D
scanned Gibson dataset, on which we evaluate our navigation
method versus the vanilla DWA and previous work on adapt-
ing these parameters. Furthermore, by evaluating against
the best setting of parameters for each environment in the
dataset, we conclusively show that our method outperforms
simple adaptations of the cost function parameters.

Continuing this work, we will address the problems of
DWA that current approach did not manage to solve, namely
the problems of navigating around corners to goals that are
close to the wall. The solution of this problem will enable
our algorithm to be used in longer horizon navigation tasks,
making it applicable to a lot of navigation scenarios without
the usage of a global planner.

ACKNOWLEDGEMENTS

This work was in part supported by the ARRS research
project DIVID (J2-9433) and research programme Computer
vision (P2-0214).

6935

[1]

[2]

[3]

[5]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

J.-A. Meyer and D. Filliat, “Map-based navigation in mobile
robots:: Ii. a review of map-learning and path-planning strategies,”
Cognitive Systems Research, vol. 4, no. 4, pp. 283 — 317, 2003.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S$138904170300007X

A. S. H. H. V. Injarapu and S. K. Gawre, “A survey of autonomous
mobile robot path planning approaches,” in 2017 International Con-
ference on Recent Innovations in Signal processing and Embedded
Systems (RISE), Oct 2017, pp. 624-628.

L. Xie, S. Wang, A. Markham, and N. Trigoni, “Towards monocular
vision based obstacle avoidance through deep reinforcement learning,”
in RSS 2017 workshop on New Frontiers for Deep Learning in
Robotics, 2017.

Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven visual navigation in indoor scenes using
deep reinforcement learning,” in 2017 IEEE International Conference
on Robotics and Automation (ICRA), May 2017, pp. 3357-3364.

P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard,
A. Banino, M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu,
D. Kumaran, and R. Hadsell, “Learning to navigate in complex
environments,” CoRR, vol. abs/1611.03673, 2016. [Online]. Available:
http://arxiv.org/abs/1611.03673

H. L. Chiang, A. Faust, M. Fiser, and A. Francis, “Learning navigation
behaviors end-to-end with autorl,” IEEE Robotics and Automation
Letters, vol. 4, no. 2, pp. 2007-2014, April 2019.

D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach
to collision avoidance,” IEEE Robotics Automation Magazine, vol. 4,
no. 1, pp. 23-33, March 1997.

E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige,
“The office marathon: Robust navigation in an indoor office envi-
ronment,” in 2010 IEEE International Conference on Robotics and
Automation, May 2010, pp. 300-307.

Stanford Artificial Intelligence Laboratory et al., “Robotic operating
system.” [Online]. Available: https://www.ros.org

O. Brock and O. Khatib, “High-speed navigation using the global
dynamic window approach,” in Proceedings 1999 IEEE International
Conference on Robotics and Automation (Cat. No.99CH36288C),
vol. 1, May 1999, pp. 341-346 vol.1.

M. Missura and M. Bennewitz, “Predictive collision avoidance for
the dynamic window approach,” in 2019 International Conference on
Robotics and Automation (ICRA), May 2019, pp. 8620-8626.

A. Maroti, D. Szaloki, D. Kiss, and G. Tevesz, “Investigation of
dynamic window based navigation algorithms on a real robot,” in 2013
IEEE 11th International Symposium on Applied Machine Intelligence
and Informatics (SAMI), Jan 2013, pp. 95-100.

Z. Hong, S. Chun-Long, Z. Zi-Jun, A. Wei, Z. De-Qiang, and W. Jing-
Jing, “A modified dynamic window approach to obstacle avoidance
combined with fuzzy logic,” in 2015 14th International Symposium
on Distributed Computing and Applications for Business Engineering
and Science (DCABES), Aug 2015, pp. 523-526.

O. A. Abubakr, M. A. K. Jaradat, and M. A. Hafez, “A reduced
cascaded fuzzy logic controller for dynamic window weights optimiza-
tion,” in 2018 11th International Symposium on Mechatronics and its
Applications (ISMA), March 2018, pp. 1-4.

D. Teso-Fz-Betono, E. Zulueta, U. Fernandez-Gamiz, A. Saenz-
Aguirre, and R. Martinez, “Predictive dynamic window approach
development with artificial neural fuzzy inference improvement,”

Electronics, vol. 8, no. 9, 2019. [Online]. Available: https:
/Iwww.mdpi.com/2079-9292/8/9/935
J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and

O. Klimov, “Proximal policy optimization algorithms,” ArXiv,
vol. abs/1707.06347, 2017.

F. Xia, A. R. Zamir, Z.-Y. He, A. Sax, J. Malik, and S. Savarese,
“Gibson env: real-world perception for embodied agents,” in Computer
Vision and Pattern Recognition (CVPR), 2018 IEEE Conference on.
IEEE, 2018.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

6936

R. Simmons, “The curvature-velocity method for local obstacle avoid-
ance,” in In Proc. of the IEEE International Conference on Robotics
and Automation, 1996, pp. 3375-3382.

Nak Yong Ko and R. G. Simmons, “The lane-curvature method for lo-
cal obstacle avoidance,” in Proceedings. 1998 IEEE/RSJ International
Conference on Intelligent Robots and Systems. Innovations in Theory,
Practice and Applications (Cat. No.98CH36190), vol. 3, Oct 1998,
pp. 1615-1621 vol 3.

B. P. Gerkey and K. Konolige, “Planning and control in unstructured
terrain,” in In Workshop on Path Planning on Costmaps, Proceedings
of the IEEE International Conference on Robotics and Automation
(ICRA, 2008.

P. Ogren and N. E. Leonard, “A convergent dynamic window approach
to obstacle avoidance,” IEEE Transactions on Robotics, vol. 21, no. 2,
pp. 188-195, April 2005.

E. Rimon and D. E. Koditschek, “Exact robot navigation using
artificial potential functions,” IEEE Transactions on Robotics and
Automation, vol. 8, no. 5, pp. 501-518, Oct 1992.

L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement
learning: Continuous control of mobile robots for mapless navigation,”
CoRR, vol. abs/1703.00420, 2017. [Online]. Available: http://arxiv.
org/abs/1703.00420

F. Leiva, K. Lobos-Tsunekawa, and J. Ruiz-del Solar, “Collision avoid-
ance for indoor service robots through multimodal deep reinforcement
learning,” in RoboCup 2019: Robot World Cup XXIII, S. Chalup,
T. Niemueller, J. Suthakorn, and M.-A. Williams, Eds. Cham:
Springer International Publishing, 2019, pp. 140-153.

V. Mnih, K. Kavukcuoglu, D. Silver, A. a. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis,
“Human-level control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529-533, 2015. [Online]. Available:
http://dx.doi.org/10.1038/nature 14236

Z. Wang, T. Schaul, M. Hessel, H. V. Hasselt, M. Lanctot, N. D.
Freitas, and G. Deepmind, “Dueling Network Architectures for Deep
Reinforcement Learning,” Journal of Machine Learning Research,
vol. 48, no. 9, 2016.

H. van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement
Learning with Double Q-learning,” AAAI Publications, Thirtieth
AAAI Conference on Artificial Intelligence, 2016. [Online]. Available:
http://arxiv.org/abs/1509.06461.pdf

L. ji Lin, “Self-improving reactive agents based on reinforcement
learning, planning and teaching,” in Machine Learning, 1992, pp. 293—
321.

T. Schaul, J. Quan, I. Antonoglou, D. Silver, and G. Deepmind,
“Prioritized experience replay,” International Conference on Learning
Representations, 2016.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” 2015.

J. Schulman, S. Levine, M. Jordan, and P. Abbeel, “Trust Region
Policy Optimization,” Icml-2015, p. 16, 2015. [Online]. Available:
http://arxiv.org/abs/1502.0547

OpenAl, “Learning dexterous in-hand manipulation,” CoRR, vol.
abs/1808.00177, 2018. [Online]. Available: http://arxiv.org/abs/1808.
00177

J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), Sep. 2017, pp. 23-30.
F. Sadeghi and S. Levine, “(CAD)?RL: Real Single-Image Flight
without a Single Real Image,” arXiv:1611.04201, 2016. [Online].
Available: http://arxiv.org/abs/1611.04201

K. Daniel, A. Nash, S. Koenig, and A. Felner, “Theta*: Any-
angle path planning on grids,” Journal of Artificial Intelligence
Research, vol. 39, p. 533-579, Oct 2010. [Online]. Available:
http://dx.doi.org/10.1613/jair.2994

