
Dynamic Legged Manipulation of a Ball Through
Multi-Contact Optimization

Chenyu Yang, Bike Zhang, Jun Zeng, Ayush Agrawal and Koushil Sreenath

Abstract— The feet of robots are typically used to design
locomotion strategies, such as balancing, walking, and running.
However, they also have great potential to perform manipula-
tion tasks. In this paper, we propose a model predictive control
(MPC) framework for a quadrupedal robot to dynamically
balance on a ball and simultaneously manipulate it to follow
various trajectories such as straight lines, sinusoids, circles and
in-place turning. We numerically validate our controller on
the Mini Cheetah robot using different gaits including trotting,
bounding, and pronking on the ball.

I. INTRODUCTION

A. Motivation

Dynamic legged manipulation is an important strategy
for humans and animals to interact with environments. For
example, manipulation tasks like dribbling a ball, walking on
stilts, and playing soccer, all require dexterous legged manip-
ulation skills with dynamic interaction with the manipulated
object [9], [12], [15]. Not only does this repertoire extend
the scope of robotic manipulation, it also paves the way to
achieve agile locomotion on extremely difficult terrain [17],
for instance, walking on rolling boulders or toppling stepping
stones. Enabling legged robots to manipulate objects using
their legs shows highly dynamic motion ability and pushes
the limits of robots’ agility and dexterity.

B. Challenges

Dynamic manipulation using legs places several chal-
lenges with regards to control design: 1) The problem
involves designing feedback controllers for legged robots to
be able to interact with objects. 2) The manipulated object
is usually unactuated, which increases the degree-of-un-
deractuation of the legged robot. 3) In addition to just
interacting with the object, the robot is often required to
manipulate the object along a reference trajectory or to
a desired pose. 4) The manipulation of the object occurs
through the locomotion of the robot which is governed by
the unilateral and friction contact constraints between the
robot and the object. 5) Furthermore, the problem combines
the challenges of legged locomotion, including hybrid and
nonlinear dynamics with high degree-of-underactuation, as
well as challenges of non-prehensile manipulation.

The authors are with the Department of Mechanical Engineering,
University of California, Berkeley, California, CA 94720, USA
{yangcyself, bikezhang, zengjunsjtu, ayush.agrawal,
koushils}@berkeley.edu.

This work was partially supported through National Science Foundation
Grant CMMI-1944722.

Fig. 1: Simulation snapshot of Mini Cheetah dynamically balancing
on and manipulating a ball. The ball has a rigid surface and the
contact force between Mini Cheetah and the ball is represented by
red arrows. Simulation video is at https://youtu.be/rIVkfudC4 8.

In order to address these challenges, we choose a typical
scenario for analysis in this paper: a quadrupedal robot dy-
namically manipulating a ball to follow different trajectories
while balancing on it, shown in Fig. 1. A Mini Cheetah robot
[7] and a rigid ball are used and the interaction between them
is only through contact.

C. Related Work

There are several quadrupedal robot platforms developed
for different tasks including manipulation [5], [6], [10], [13].
These manipulation tasks are usually achieved by attaching
a manipulator on a legged robot [1], [11]. However, this
approach does not exploit the ability of legs for manipulation
tasks.

Legs of a quadrupedal robot are used for both manipu-
lation and locomotion in [14], wherein the legs statically
manipulate a box by holding it on both sides. In other
words, two legs function as two manipulators and they do not
simultaneously achieve manipulation and locomotion tasks.

A dynamic legged manipulation task has been partially
implemented in [16] for a bipedal robot balancing on and
manipulating a ball. It consists of a balance controller and
a footstep planner but only for 2D implementation. Our
proposed method aims to provide a comprehensive control
framework for 3D dynamic legged manipulation with appli-
cation to Mini Cheetah manipulating a ball.

D. Contribution

The contribution of this paper is fourfold:

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 7513

1) Dynamic legged manipulation: We formulate the
legged manipulation task of a quadrupedal robot dynamically
manipulating a ball in a systematic way by decoupling the
whole system via contacts.

2) Interaction model: We develop a simplified interaction
model between a quadrupedal robot and a ball based on the
concept of equivalent generalized mass.

3) Reaction-force-oriented MPC (R-MPC): We design
a MPC strategy by taking contact forces into account to
achieve the goal of dynamic ball manipulation along a given
trajectory.

4) Foot placement controller: We present a constrained
quadratic program-based foot placement controller which
adapts to a spherical surface.

E. Paper Structure

This paper is organized as follows. In Sec. II, we introduce
the assumptions of the ball and analyze the full dynamics
with the ball and the simplified dynamics. The proposed
control design is illustrated in Sec. III. In Sec. IV, we present
simulation results for a Mini Cheetah robot. In Sec. V, we
discuss advantages and limitations of our work, and we
summarize the paper in Sec. VI.

II. DYNAMICS

With the goal of dynamically manipulating a ball using
legs, we analyze the interaction between the robot and the
ball in this section. We first make assumptions of the ball
model, and then introduce the dynamical model of the robot
with the ball as well as the simplified model.

We consider a rigid body model of the ball with the
following assumptions:

1) The ball does not deform under the influence of external
contact forces.

2) We know the physical properties of the ball including
its radius, inertia, and friction parameters.

3) We know the ball’s states including its position and
velocity.

4) There is no slip between the ball and the foot, and the
ball and the ground.

A. Dynamics of Cheetah on Ball

We introduce the robot’s dynamical model with the con-
sideration of the interaction with the ball. Rather than solving
the dynamical equations of the ball and the robot together,
as we will see, we integrate the ball’s effect into the robot’s
model. The dynamics of the robot and the ball can be
described as follows,

Arq̈r + br + gr = τ + JT
r f , (1)

Abq̈b + bb + gb = −JT
b f , (2)

where qr ∈ R6+nj represents the pose of the floating base
and the joints of the robot, and nj is the number of joints.
qb ∈ R3 represents the pose of the ball, and Ar/b, br/b,
gr/b, Jr/b are the generalized mass matrix, Coriolis force,
gravitation force and contact Jacobian for robot or ball,
respectively. The contact force between the robot and the

ball is denoted by f , and the generalized torque of the robot
actuators is represented by τ . Here, we assume that there
is no sliding between the ball and the ground, so that we
can describe the ball’s motion through its Euler angles as
qb ∈ R3 with the ball’s x/y position derived from these
angles. Note that, with this assumption, we do not have to
consider the force between the ground and the ball, and the
gravitation term of the ball can be removed in (2).

For the interaction between the robot and the ball, we also
assume that there is no sliding, so that we have the following
constraints on the acceleration of the contact point,

J̇rq̇r + Jrq̈r = J̇bq̇b + Jbq̈b. (3)

Substituting J†bAbq̈b + J†bbb + J†bgb = −f from (2) and
J†b J̇rq̇r + J†bJrq̈r = J†b J̇bq̇b + q̈b from (3) into (1), we
have

Arq̈r + br + gr + JT
r J

T†
b

[
AbJ

†
b (Jrq̈r

+ J̇rq̇r)− J̇bq̇b + bb + gb

]
= τ ,

(4)

where the J†b is a pseudo inverse of Jb.
Ignoring the Coriolis force and gravitation terms of the

ball bb and gb, and the terms involving the derivatives of
Jacobians, we get the equivalent dynamics based on (4) as
follows,

Ãq̈r + br + gr = τ + JT
r f , (5)

where Ã represents the equivalent generalized mass as
follows.

Ã = Ar + JT
r J

T†
b AbJ

†
bJr. (6)

We use this equivalent generalized mass to describe the
dynamics and generate torques in the whole body impulse
control (WBIC) which will be introduced in Sec. III-D.

B. Simplified Model

Having presented the full dynamics model with consider-
ation of the ball, we now present a simplified model of the
robot that will be used in the reaction-force-oriented model
predictive control (R-MPC) in Sec. III-B. As introduced in
[3], we use the lumped mass model,

mp̈r =

nc∑
i=1

fi + g, (7)

d

dt
(Iωr) =

nc∑
i=1

ri × fi, (8)

where pr, ωr, and g are three dimensional vectors denoting
the robot’s position, angular velocity, and acceleration due to
gravity, all in the global frame. The mass and the moment of
inertia of the robot are denoted by m and I respectively. nc
is the number of contacts, and ri, fi are the relative position
to the center-of-mass and the contact force of the i-th foot,
respectively.

During the stance phase, as in [3], the MPC makes three
assumptions: 1) roll and pitch angles are small, 2) states are
close to the reference trajectory, 3) roll and pitch velocities
are small and off-diagonal terms of the inertia tensors are

7514

Joint	Pos.	
Joint	Vel.	
Joint	Torque		

[40 Hz] [0.5 kHz]

[1 kHz]

Joint-level	control	for	legsJoint-level	control	for	legsJoint-level	control	for	legs

Ball	Pos.
Robot	States

Ball	Reference
Trajectory

Foot	Placement	Controller

Reaction-force-oriented
Model	Predictive	Control	

(R-MPC)

Whole	Body	Impulse	Control
(WBIC)

Robot	Simulator

Joint-level	Control

Joint	Pos.
Joint	Vel.

+

PD	Control	for	Ball	Tracking

Ref.	Contact	Torque	
Ref.	Contact	Force	 	 Contact	Force	

Contact	States			
Foot	Pos.		

Contact	States							
Contact	Force	 				
Body	Pos.		 									

Robot	Kinematic/	Dynamic
Model	with	Ball	Interaction

Ref.	Vel.		

Command
State Info.

Torque

Equivalent
Generalized
Mass	+

Ref.	Vel.		

Foot	Pos.		

Fig. 2: Control framework for Mini-Cheetah manipulating a ball along a given ball trajectory. Firstly gait types, reference velocity, contact
forces and the torque to the ball could be given by user or calculated from ball’s reference trajectory. The reaction-force-oriented MPC
computes reference contact forces and foot/body position commands, and this allows us to use WBIC to compute joint torque, position,
and velocity commands, which is sent to each joint controller. The foot placement controller is added to adjust the planned foot placement,
optimizing alternatively with R-MPC. We also consider the interaction between the robot and the ball in the dynamics for WBIC.

small. From [3], the linearized discrete-time dynamics of the
system is then expressed as follows,

x(k + 1) = Akx(k) +Bkf(k) + ĝ, (9)

where x represents body configurations and velocities, f(k)
and ĝ represent the contact forces from the ball and the
robot’s gravity. These variables are given by,

x = [ΘT
r pT

r ωT
r ṗT

r]T , (10)

f = [f1 f2 ... fnc]T , (11)

ĝ = [01×3 01×3 01×3 gT]T , (12)

where Θr is the body orientation. The discrete-time dynam-
ics matrices Ak and Bk are defined as follows,

Ak =

13×3 03×3 Rz∆t 03×3
03×3 13×3 03×3 13×3∆t
03×3 03×3 13×3 03×3
03×3 03×3 03×3 13×3

 , (13)

Bk =

03×3 ... 03×3
03×3 ... 03×3

GI
−1[r1]×∆t ... GI

−1[rn]×∆t
13×3∆t/m ... 13×3∆t/m

 , (14)

where GI is the inertia matrix with respect to the global
frame, and Rz is the matrix of the body rotation around z-
axis. [x]× ∈ so(3) is defined as the skew-symmetric matrix
for cross products. This discrete-time dynamics is then used
in the R-MPC in Sec. III-B.

III. CONTROL DESIGN

Having presented the assumptions of the ball as well as
the dynamics, we now proceed to present our control design
for dynamic legged manipulation.

A. Control Framework

Our proposed control framework extends the control hier-
archy in [8] by taking two key issues of ball manipulation
into account: 1) how to model the quadruped robot balancing
on the ball and 2) how to make use of the contact force

and position to drive the ball. The first issue was addressed
in Sec. II-A, where we analyzed the interaction model and
introduced the equivalent generalized mass. For the second
issue, we propose a reaction-force-oriented MPC (R-MPC)
and a foot placement controller. The R-MPC is designed to
follow the reference state and contact force, see Sec. III-B.
The foot placement controller first plans the foot placement
according to the Raibert heuristic from [8], and then adjusts
the foot placement point to generate a reference torque to
the ball, see Sec. III-C. Lastly, the ball reference trajectory
and PD control for ball tracking, whose commands are used
for R-MPC and the foot placement controller, are described
in Sec. III-E.

Our control framework is described in Fig. 2. The ball
reference trajectory calculates reference velocity, torque and
force of the ball according to different scenarios. A PD
controller is added to alter the velocity command, which
takes the relative position and velocity of ball and robot into
account. The foot placement controller is at the same level
with reaction-force-oriented MPC, sharing the commands
and the state information. They work together to track the
commands of the reference robot state and the reference
contact torque and force to the ball. R-MPC and the foot
placement controller optimize the foot placement and the
contact force profile alternatively. The WBIC tracks the foot
position command and the contact force from R-MPC and
the foot placement controller using the interaction model.
The joint-level control executes commands from WBIC and
controls the motors.

B. Reaction-force-oriented MPC

After introducing the control framework, we next present
the reaction-force-oriented MPC (R-MPC), which plans the
contact force with the simplified dynamics from Sec. II-
B using the reference robot trajectory and the reference
contact force. The R-MPC minimizes the tracking error
and the deviation of contact forces, under the friction cone
constraints. It is a constrained quadratic programming (QP)
problem, and its formulation is described as follows,

7515

Reaction-force-oriented MPC (R-MPC):

min
x,f

m∑
k=0

||x(k + 1)− xref
r (k + 1)||Q + ||f(k)− fref (k)||R

s.t. x(k + 1) = Akx(k) +Bkf(k) + ĝ,

|fxi (k)| ≤ µfz(x) i = 1 . . . nc,

|fyi (k)| ≤ µfz(k) i = 1 . . . nc,

fzi (k) ≥ 0 i = 1 . . . nc.
(15)

Here Q and R are positive definite weight matrices. The
friction cone constraint is simplified to a four-side pyramid
constraining the x/y direction of the force of each i-th contact
fxi (k), fyi (k). The R-MPC problem optimizes robot state x
and contact force f that appears as the input to the simplified
system in (9). Different from [3], we consider the reference
contact forces regulated from the ball’s reference trajectory
in (24), as we hope to control the robot and the ball at the
same time. We compute the reference contact force through
a PD control from the ball’s reference trajectory.

The reference trajectory xref
r is similar with [3]. The ref-

erence x/y position of the robot are determined by integrating
the reference velocities ṗref

r . The reference yaw and the yaw
rate of the robot is from the commanded direction [8]. The
z position of the robot is a user defined constant. The other
states (roll, pitch, roll rate, pitch rate, and z velocity) are set
to 0.

The calculation of the reference velocities ṗref
r and the

reference contact forces fref (k) will be described in Sec. III-
E. Besides being passed to WBIC, the solution of f(k) is
then used as inputs to the foot placement controller, which
will be described next in Sec. III-C. The output of the foot
placement controller affects the relative position of planned
foot placement ri, which consequently affects the dynamics
matrix Bk in the next control iteration.

C. Foot Placement Controller

The foot placement contributes to the torque generated
on the ball, so we plan to exploit this potential advantage.
In order to find a foot placement that yields desired torque
on the ball, the foot placement should ideally be a decision
variable in the R-MPC. However, this makes the optimization
problem nonconvex, which is computationally expensive to
implement in real-time.

As a trade-off between the convexity of the optimization
problem and the achievement of the control objective, we
formulate the R-MPC and foot placement controller as two
separate optimization problems with the results of one being
used by the other. Specifically, the R-MPC is solved while
holding the foot placement as a constant. Then, the foot
placement controller is executed to generate the reference
foot placement, and the new foot placement will be used in
the R-MPC in the next control iteration.

The foot placement controller only changes the planned
foot placement of the swing foot. Once a foot is lifted off

Fig. 3: Mini-Cheetah on the ball and its zoomed view. The foot
placement controller adjusts the swing foot placement after R-MPC
by calculating a displacement δpi, so that the torque of the contact
force at the adjusted foot placement (rbi+δpi)×(−fi−δfi) meets
the commanded ball torque.

and becomes a swing foot, its placement is set according to
the Raibert heuristic from [8] that is presented as follows,

rcmd
i = pshoulder,i + psymmetry + pcentrifugal, (16)

where,

pshoulder,i = pr +Rz (ψk) li,

psymmetry =
tstance

2
ṗr + k

(
ṗr − ṗref

r

)
,

pcentrifugal =
1

2

√
h

g
ṗr × ωref

r .

(17)

In (17), li is i-th leg shoulder location with respect to the
body frame, and h is the height of the CoM. psymmetry is
called Raibert heuristic that uses foot placements to stabilize
the horizontal CoM dynamics, tstance is the stance duration of
the current gait cycle, ωref

r and ṗref
r are the reference robot

angular and linear velocities respectively.
After R-MPC plans the contact force profile, the foot

placement controller alters the foot placement using the
following optimization program,

Foot Placement Controller:

min
δp,δf

‖δτr(δp, δf)‖Qr
+
∥∥∥τ ref

b (δp, δf)− τb(δp, δf)
∥∥∥
Qb

+||δp||Rδp
+ ||δf ||Rδf

s.t. δpi × pbi = 0.
(18)

Here, Qr, Qb, Rδp, and Rδf are positive definite weight
matrices, δp, δf are concatenated vectors of the deviations of
contact positions δpi and contact forces δfi of each foot. By
ignoring the higher order terms of infinitesimal variations of
positions and forces δpi and δfi, we can express the change
of the contact torque to robot δτr, and the contact torque to
the ball τb as follows,

δτr(δp, δf) =

4∑
i=1

δpi × fi + ri × δfi, (19)

7516

τb(δp, δf) =

4∑
i=1

rbi × (−fi) + δpi × (−fi) + rbi × (−δfi).

(20)
Here, ri and rbi are the relative position from the robot CoM
to foot placement and the relative position from ball’s ground
contact point to the foot placement, respectively. pbi is the
relative position from the ball’s center to the foot contact
point. The contact force fi comes from R-MPC. We illustrate
the geometric relation in Fig. 3.

The foot placement controller is a multi-objective
quadratic program where the first term minimizes the result-
ing torque change on the robot, and the second term tracks
the reference torque to be applied on the ball. The third
and fourth terms ensure that the solution is in the proximal
neighbor of the original point. The optimization constraint
guarantees that the optimized foot placement is on the surface
of the ball. Note that δf is introduced as a slack variable and
it is not used anywhere else.

D. Whole-body Impulse Control

Following the reference from the foot placement controller
and the R-MPC, the WBIC tries to incorporate both body
posture stabilization and contact force execution with a full
dynamics model of the robot. Apart from the use of the
equivalent generalized mass Ã, we did not make any other
modification to the WBIC described in [8]. The WBIC
calculates joint level commands from the reference contact
force and body trajectory in the following steps. First, an
acceleration command q̈cmd

r of the robot’s configuration is
computed to execute a set of user-specified prioritized tasks.
Then, the following QP is solved,

min
δf ,δq

δ>f Q1δf + δ>q Q2δq

s.t. Sf (Ãq̈r + br + gr) = SfJ
>
r f (floating base dyn.)

q̈r = q̈cmd
r +

[
δq
0nj

]
(acceleration)

f = fR-MPC + δf (reaction forces)
W f ≥ 0 . (contact force constraints)

(21)
Here, δf and δq are relaxation variables for the reaction
forces and the floating base acceleration. Ã,br,gr,Jr are
defined in Sec. II-A. The Q,Sf ,W are weight matrices of
the deviation, the row selection matrix of the floating base,
and the matrix of the friction cone and the normal direction
of the contact surface. The solution δf is used to adjust
the planned contact force f to satisfy the full dynamics. At
last, the torque commands can be computed by plugging the
contact forces and the acceleration into the robot’s dynamics
and passed to the joint level controllers.

E. Ball Reference Trajectory and Tracking

The ball reference trajectory generates the velocity com-
mand of the robot as well as the reference contact force and
the reference torque to be applied on the ball. Note that the
yaw angle of the ball is not considered in the ball reference
trajectory.

(a) Proposed Controller

(b) Baseline Controller

Fig. 4: The comparison of reference speed tracking between (a)
our proposed controller and (b) the baseline controller. The blue
line represents the actual speed, which tries to catch up with an
increasing command shown as the orange line.

The reference x/y velocities of the robot, ṗref
r , are ob-

tained from the reference x/y velocities of the ball ṗref
b and

a feedback term, ṗref
PD,

ṗref
r = ṗref

b + ṗref
PD. (22)

Here, ṗref
PD is a feedback component to minimize the tracking

error between the instantaneous ball and the robot positions,

ṗref
PD = −kvp (pr − pb)− kvd ṗr. (23)

where pb and pr are the position of the ball and the robot.
ṗr is the velocity of the robot’s CoM.

We compute the reference contact force fref and the
reference torque τ ref

b through a PD control from ball’s
reference trajectory,

fref (k) = −kfpep − kfdev, (24)

τ ref
b =

 0
0
1

×(−kτp ep − kτd ev), (25)

where ep = pref
b − pb and ev = ṗref

b − ṗb represent ball’s
position and velocity error. kfp, kfd, kτp , and kτd are PD gains.

IV. RESULTS

Having introduced our control design for dynamic legged
manipulation, we next present simulation results that validate
the control strategy in this section.

A. Simulation Setup

The simulation environment is set up using the MIT
Cheetah Software1, and a compliant contact model is utilized

1https://github.com/mit-biomimetics/
Cheetah-Software

7517

(a) Proposed Controller

(b) Baseline Controller

Fig. 5: The comparison of reference ball torque command tracking
between (a) our proposed controller and (b) the baseline controller.
The blue line shows the torque that can be exerted on the ball from
the R-MPC, which is a cross product of current relative contact
position and the contact force. The orange line is the ball’s torque
command from the ball reference trajectory.

to compute interaction forces between the robot and the
ball based on Featherstone’s algorithm [4]. The friction
coefficient µ is set as 0.9. The ball’s radius is 1m. We
use the controller from [8] that is designed to walk on flat
ground as our baseline controller. Specifically, the baseline
controller uses the control framework in Fig. 2 without the
foot placement controller, with Robot Kinematic/Dynamic
Model of solely the robot, and original MPC instead of R-
MPC. Note that the PD Control for Ball Tracking module is
included and tuned separately in both our proposed controller
and the baseline controller. Also, both the proposed controller
and the baseline controller have adapted the direction of
gait to the normal direction at the contact point. The ball
is created from blender [2] with 2562 points.

B. Performance Evaluation

The speed tracking performance is shown in Fig. 4. We
set the reference velocity in ball reference trajectory to be a
step followed by a ramp, and the yaw rate to be zero. Our
proposed controller can track the reference and continuously
accelerate until 0.75 m/s. The baseline controller can also
track a step input but with more tracking errors. Under mild
acceleration, the baseline controller maintains stability as
well. However, it can not get close to the 0.75m/s speed
limit, and it has a steady state error for tracking a constant
acceleration. The proposed control strategy improves the
speed tracking performance and extends the range of speed
for manipulating a ball.

Fig. 5 shows the effectiveness of our proposed control
design for reference ball torque command tracking. The robot
manipulates a ball to follow a circular trajectory in this
scenario. The orange line is the ball’s torque command from

(a) Proposed Controller

(b) Baseline Controller

Fig. 6: The comparison of the contact force tracking in y-direction
between (a) our proposed controller and (b) a baseline controller.
Curves shown in the figure are the planned contact force from R-
MPC (red), the contact force solved in WBIC (green), and the actual
contact force in simulation (blue)

the ball reference trajectory, as shown in (25). The blue line
shows the torque that can be exerted on the ball from the
R-MPC and the foot placement controller, which is a cross
product of current relative contact position and the contact
force. While the proposed controller keeps tracking the
reference commands, the baseline controller loses tracking
and is more noisy.

Fig. 6 evaluates how MPC and WBIC track the contact
force command in the same scenario of circular trajectory
tracking. We only include data from the front left leg,
and other legs are similar. In the control hierarchy, the
contact force from WBIC should follow the command of
R-MPC (proposed controller) or MPC (baseline controller),
and by performing the torque commands from WBIC, the
real contact force in simulation is at best to be the same as
WBIC expected. The closer real contact force to the WBIC’s
command suggests a more accurate dynamic model. Using
our proposed controller with equivalent generalized mass, the
contact force in simulation follows the command of WBIC.
However, the contact forces of the baseline controller have
larger errors in both timing and scale. Using the proposed
controller, the mean squared error (MSE) between the real
contact force and the WBIC command among four legs
of the first 10 seconds is 1810.2, smaller than that of the
baseline controller as 2109.4. Note that the commands from
R-MPC/MPC are also different, as the baseline controller
can not stabilize the robot well.

C. Different Scenarios

Besides comparing the performance with the baseline con-
troller, we implement our controller for different scenarios
to further validate our control design.

7518

(a) Tracking a straight line (b) Tracking a sinusoid curve (c) Tracking for a circle (d) Yaw angle tracking

Fig. 7: The 3D tracking performance of Mini Cheetah in different scenarios: (a) tracking a straight line (b) tracking a sinusoid curve
(c) tracking a circle (d) orientation tracking. The orange lines are reference trajectories and blue lines are actual trajectories. Red dots
indicate the initial position of the robot. The orientation of the robot is shown as point on an unit sphere in (d).

1) Different Gaits: The proposed controller is tested using
different gaits. The experimental video shows that trotting,
bounding and pronking gaits all work for a Mini Cheetah
robot dynamically balancing on a ball.

2) Different Reference Trajectories: Fig. 7 shows the
performance of our proposed control design in four different
scenarios. In Fig. 7a - 7c, Mini Cheetah manipulates a 2
kg ball to follow a straight line, a sinusoid, and a circle
at velocity 0.3 m/s. Note that the reference yaw angle is
the angle of the robot, rather than the ball. The reference
position and velocity in (24) and (25) are generated from
the ball reference trajectory. For example, for the circular
trajectory tracking scenario, the ball reference trajectory is
given as,

prefbx

prefby

ṗrefbx

ṗrefby

 =

r sin(tvref/r)
−r cos(tvref/r)
vref cos(tvref/r)
vref sin(tvref/r)

 , (26)

and the robot yaw angle,

ψref
r = tvref/r, (27)

where r = 0.7 m is the radius of the circular trajectory,
vref = 0.3 m/s is the reference velocity, and t is the current
time. The reference ball velocity ṗref

b in (22) is the reference
velocity ṗrefbx/y plus a feedback tracking of reference ball
position prefbx/y . Notice that the Mini Cheetah starts with
position errors from the origin. Fig. 7d shows the orientation
of Mini Cheetah following the yaw angle command, which
is illustrated by points on a unit sphere. From these plots,
we can clearly see that Mini Cheetah tracks these predefined
trajectories well.

Fig. 8 shows the detailed tracking errors when Mini
Cheetah manipulates a ball to follow a circle: roll, pitch,
yaw angle, ẋ, ẏ, ż of Mini Cheetah. We observe that there
is a slight tracking delay on tracking yaw angle and robot
velocities. In order to make the robot move forward, we need
some pitch angle errors to provide torque on the ball and
there is a steady state tracking error around 0.2 rad on the
pitch angle.

V. DISCUSSION

Ball parameters are important factors affecting the stability
and performance of the robot on the ball. The lighter or the
smaller the ball is, the more difficult it is to balance on it.
Our controller can work with more extreme ball parameters.
Without changing the controller parameters, the minimum
ball mass and radius for stabilization are 0.5kg and 0.5m,
comparing with the 4kg and 0.8m for the baseline controller.

One of the main assumptions that we have made in our
control design and simulation is the ball’s rigidity. For a
more general case, such as stabilizing Mini Cheetah on a
deformable object, e.g., a fitness ball, we need to take the
deformation of that object into account during the dynamic
modeling and control design.

VI. CONCLUSION

In this paper, we have presented a novel control design
for dynamic legged locomotion with an application to a
quadrupedal robot manipulating a rigid ball. The control
design for ball manipulation consists of a reaction-force-
oriented model predictive controller and a foot placement
controller, applied to an interaction model and integrated
with a nominal WBIC. We numerically verified the control
strategy with a variety of scenarios. The proposed controller
allows a Mini Cheetah robot to manipulate a ball along
straight/sinusoid/circular trajectories and outperforms a base-
line controller. Experimental results are envisaged for the
future.

ACKNOWLEDGEMENT

The authors would like to thank Professor Sangbae Kim
and the MIT Biomimetic Robotics Lab for providing the
Mini Cheetah simulation software.

REFERENCES

[1] E. Ackerman, “Boston dynamics’ spotmini is all electric, agile, and
has a capable face-arm,” IEEE spectrum, 2016.

[2] B. O. Community, Blender - a 3D modelling and rendering package,
Blender Foundation, Stichting Blender Foundation, Amsterdam, 2018.
[Online]. Available: http://www.blender.org

7519

Fig. 8: The simulation results of Mini Cheetah manipulating a ball to track a circle. The orange lines are the reference commands, and the
blue lines are the actual values. The first row shows Euler angles (roll φ, pitch θ, and yaw ψ), and the second row shows robot velocities
(ẋ, ẏ, ż).

[3] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic
locomotion in the mit cheetah 3 through convex model-predictive
control,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2018, pp. 1–9.

[4] R. Featherstone and K. A. Publishers, Robot Dynamics Algorithm.
USA: Kluwer Academic Publishers, 1987.

[5] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis,
J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch, et al., “Anymal-a
highly mobile and dynamic quadrupedal robot,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2016, pp. 38–44.

[6] A. M. Johnson and D. E. Koditschek, “Legged self-manipulation,”
IEEE Access, vol. 1, pp. 310–334, 2013.

[7] B. Katz, J. Di Carlo, and S. Kim, “Mini cheetah: A platform for push-
ing the limits of dynamic quadruped control,” in IEEE International
Conference on Robotics and Automation, 2019, pp. 6295–6301.

[8] D. Kim, J. Di Carlo, B. Katz, G. Bledt, and S. Kim, “Highly dynamic
quadruped locomotion via whole-body impulse control and model
predictive control,” arXiv preprint arXiv:1909.06586, 2019.

[9] X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne, “Deeploco:
Dynamic locomotion skills using hierarchical deep reinforcement
learning,” ACM Transactions on Graphics, vol. 36, no. 4, pp. 1–13,
2017.

[10] M. Raibert, K. Blankespoor, G. Nelson, and R. Playter, “Bigdog, the
rough-terrain quadruped robot,” IFAC Proceedings Volumes, vol. 41,
no. 2, pp. 10 822–10 825, 2008.

[11] B. U. Rehman, M. Focchi, J. Lee, H. Dallali, D. G. Caldwell, and
C. Semini, “Towards a multi-legged mobile manipulator,” in IEEE
International Conference on Robotics and Automation, 2016, pp.
3618–3624.

[12] M. Riedmiller, T. Gabel, R. Hafner, and S. Lange, “Reinforcement
learning for robot soccer,” Autonomous Robots, vol. 27, no. 1, pp.
55–73, 2009.

[13] C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella,
and D. G. Caldwell, “Design of hyq–a hydraulically and electrically
actuated quadruped robot,” Proceedings of the Institution of Mechan-
ical Engineers, Part I: Journal of Systems and Control Engineering,
vol. 225, no. 6, pp. 831–849, 2011.

[14] W. Wolfslag, C. McGreavy, G. Xin, C. Tiseo, S. Vijayakumar,
and Z. Li, “Optimisation of body-ground contact for augmenting
whole-body loco-manipulation of quadruped robots,” arXiv preprint
arXiv:2002.10552, 2020.

[15] J. Z. Wu, S. S. Chiou, and C. S. Pan, “Analysis of musculoskeletal
loadings in lower limbs during stilts walking in occupational activity,”
Annals of biomedical engineering, vol. 37, no. 6, pp. 1177–1189, 2009.

[16] Y. Zheng and K. Yamane, “Ball walker: A case study of humanoid
robot locomotion in non-stationary environments,” in IEEE Interna-
tional Conference on Robotics and Automation, 2011, pp. 2021–2028.

[17] M. Zucker, J. A. Bagnell, C. G. Atkeson, and J. Kuffner, “An opti-
mization approach to rough terrain locomotion,” in IEEE International
Conference on Robotics and Automation, 2010, pp. 3589–3595.

7520

