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Abstract— This paper presents a method to validate localiza-
tion safety for a preplanned trajectory in a given environment.
Localization safety is defined as integrity risk and quantified as
the probability of an undetected localization failure. Integrity
risk differs from previously used metrics in robotics in that it
accounts for unmodeled faults and evaluates safety under the
worst possible combination of faults. The methodology can be
applied prior to mission execution and thus can be employed
to evaluate the safety of potential trajectories. The work has
been formulated for localization via smoothing, which differs
from previously reported integrity monitoring methods that rely
on Kalman filtering. Simulation and experimental results are
analyzed to show that localization safety is effectively quantified.

I. INTRODUCTION

In recent years, advances in autonomous navigation tech-
nologies have been developed at an accelerated pace, to the
point where the first self-driving taxi was launched in Ari-
zona in December 2018 [1]. These fast-paced developments
in critical applications such as autonomous vehicles (AV)
have brought the attention of regulators that are trying to
create a regulatory framework to enable further AV testing
in public roads [2], [3]. However, no clear and definite safety
standard exists for AVs at the moment. Most efforts focus
on adapting current safety standards such as ISO26260 and
ARP4754, where the AV system is divided into interdepen-
dent subsystems that are separately certified in order to prove
an overall level of safety [4], [5]. This paper deals with the
safety of one of those subsystems, the localization module.

Localization is paramount in autonomous navigation since
failures may have catastrophic consequences, e.g. a lateral
localization error on the order of decimeters could mislead
the controls subsystem into driving into an adjacent lane.
Most robotics publications evaluate localization performance
as a measure of the estimate variance, which is understood as
not being sufficient when unmodeled faults occur. Faults are
rarely occurring events not modeled by the usual Gaussian
noise assumption. Examples include incorrect associations,
misleading measurements due to moving objects, and previ-
ously unmapped static objects mistaken by parts of the map.

This paper utilizes a more suitable safety metric: the local-
ization integrity risk. Integrity is a quantifiable performance
metric used to set certifiable requirements on individual sys-
tem components to achieve and prove a level of safety for the
overall system [6]. More precisely, localization integrity risk
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is the probability that a robot’s pose estimation lies outside
pre-defined acceptable limits and no alarm is triggered. For
decades, integrity risk has been the primary safety metric on
open-sky GNSS-based aviation applications, and recent work
has aimed at bringing similar techniques to terrestrial robots
[7], [8], [9]. In this work, we propose a methodology that,
given a map and system specifications, validates localization
safety for a predefined trajectory prior to execution.

A. Related Work

Numerous publications have focused on improving local-
ization and mapping performance over the last decade [10],
[11], [12]. However, relatively few deal with localization
safety. Of those that do, most focus on the experimental
evaluation of different fault detector mechanisms [13], [14].
There is also some other work in robust filtering techniques,
such as the H∞ filter [15], which reduces the maximum
localization error at the expense of nominal performance,
and work in reducing the risk of collisions [16].

Integrity monitoring differs from other approaches in that
it upper bounds the risk of undetected failures while using
an optimal filter. [17] presented the first integrity monitoring
methodology for GNSS-based applications that uses chi-
squared tests for fault detection; since then, integrity mon-
itoring has experienced great improvements in performance
and efficiency [18], [19].

Recent work by the authors has focused on transitioning
integrity monitoring methods from open-sky applications
to the more challenging case of terrestrial robots, where
GNSS must be combined with other sensors to provide
the necessary sub-meter accuracy. [20] presents a sequential
method to monitor integrity in Kalman Filter (KF)-based
localization, but it is not suitable for AV applications where
landmarks come in and out of sight. An efficient method to
monitor integrity using a KF without the previous limitations
is presented in [21], and a more complex KF-based approach
that uses a preceding time window for integrity monitoring
in [22]. Additionally, the risk of faults in the data association
process is upper bounded in [8], the benefits of incorporating
an IMU for data associations is analyzed in [23], and the
use of an integrity risk metric in a model predictive control
framework to generate safe trajectory in [24].

This work differs from previous integrity monitoring
methods in two ways. First, the approach is intended for
localization via smoothing, which offers better accuracy than
filtering and, thanks to relatively recent methods that exploit
the sparseness of the problem such as [10], [11], can be
solved very efficiently. This differs from previous work by
the authors that focus on Kalman Filter-based localization.
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Second, the method can be applied off-line, i.e. before the
mission is carried out, which may be helpful to quantify the
localization safety of a given trajectory.

B. Overview

The remainder of the paper begins with a brief review
of fixed-lag smoothing for localization within a map of
landmarks in Section II. Unlike most robotics publications,
we explicitly indicate that measurements may be affected
by faults and present the relation between those and the
estimate error. Similarly, the residuals’ norm is employed
as the fault detector, which is also expressed as a function
of the measurements’ faults.

Section III presents the main steps for offline integrity
monitoring. Integrity risk is upper bounded for a predefined
trajectory estimated from the predictive mission model. Es-
timate error and detector distributions are determined for the
hypothesized fault modes, which indicate which measure-
ments are faulted. Integrity risk is computed under the worst-
case fault assumption, the fault that maximizes integrity risk,
corresponding to each fault mode.

The methodology is implemented in Section IV. Simula-
tions show that the methodology computes a conservative
upper bound on the actual integrity risk and experimental
results show its applicability to real-world situations. Finally,
Section V presents conclusions and future work.

II. FIXED-LAG SMOOTHING

This section presents the basic elements of fixed-lag
smoothing localization. First, we state the general optimiza-
tion problem, which is recursively solved to obtain the pose
estimate. Then, different possible measurement models are
unified into a generalized model that allows us to leverage
prior work in integrity monitoring. Last, we define the
estimate error and fault detector, exposing their connection
with the faults.

A. Problem Statement

Fixed-lag smoothing estimates M+1 states by minimizing
the weighted squared norm of the measurements residuals:

x∗ = argmin
x

nz

∑
i
‖zi−hi (x)‖2

Vi
(1)

where ‖a‖2
A = aT A−1a and the robot states are stacked in

the state vector, x =
[
xT

k-M . . . xT
k-1 xT

k

]T , such that xk is
state at the current time. Each of the nz measurements during
the time window, zi, is a vector of dimension ni that can be
expressed as nonlinear function of the states corrupted by
noise and possibly a fault:

zi = hi (x)+vi + fi where vi ∼ N(0,Vi) (2)

is white Gaussian noise with covariance Vi and hi(·) is a
known measurement model function. In addition to the usual
Gaussian noise, measurements can be corrupted by rarely
occurring faults not modeled by the Gaussian assumption.
The possibility of faults is represented by the fault vector fi,
which is only nonzero for the faulted measurements.

Next, different types of measurements are rewritten to fit
the general measurement model in (2).

B. Measurements Models

Measurements are usually categorized as either absolute
or relative. Absolute measurements provide an update on
the robot pose with respect to an external framework, while
relative measurements estimate the motion between two
consecutive poses. Both of these measurements are expressed
to fit the format specified in (2), as follows.

1) Absolute measurements, such as GNSS or landmark
detections within a map usually follow (2). For example,
in landmark-based navigation, hi(·) relates the position of
landmarks with robot states, zi contains the detected land-
mark measurements, and fi is nonzero whenever a landmark
is incorrectly detected or associated. Examples of landmark
measurement faults include moving landmarks and data
association faults. A special case of absolute measurement
is the prior measurement, x∗k-M, which contains the state
estimate at the last epoch in the time window:

x∗k-M︸︷︷︸
zi

= xk-M︸︷︷︸
hi(x)

+δδδ k-M︸︷︷︸
vi

+ fk-M︸︷︷︸
fi

where δδδ k-M ∼ N
(
0,ΛΛΛ−1

k-M

)
(3)

and ΛΛΛk-M is the information matrix corresponding to the
prior state. Note that some localization methods do not make
use of the prior as its impact may be small when using
lengthy time windows. Nevertheless, this measurement will
be included in the remainder of the paper for completeness.

2) Relative measurements, u, such as the ones provided
by wheel encoders or IMUs are naturally expressed as:

xk+1 = g(xk,uk)+wk + fu where wk ∼ N(0,Wk) (4)

and g(·, ·) is a known function. Reorganizing (4), we obtain a
format equivalent to (2) in which the measurement is always
the null vector:

0︸︷︷︸
zi

= g(xk,uk)−xk+1︸ ︷︷ ︸
hi(x)

+ wk︸︷︷︸
vi

+ fu︸︷︷︸
fi

(5)

An alternative model can be obtained considering zi = u, but
that usually results in a more complex hi(x).

Finally, stacking all measurements together in vector z
of dimension n = ∑

nz
i=1 ni, we obtain the batch measurement

model for the time window as:

z = h(x)+v+ f where V∼ N(0,V) (6)

Note that the elements of f are only nonzero when the
corresponding measurements are faulted, i.e. when fi 6= 0.

C. Estimate

The optimization problem in (1) can be rewritten using
the batch notation in (6) as:

x∗ = argmin
x
‖z−h(x)‖2

V (7)
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Pre-multiplying by V−1/2 to whiten the measurements and
linearizing the measurement function around the best esti-
mate, x∗, yields:

∆∆∆
∗ = argmin

∆∆∆

‖A∆∆∆−b‖2 (8)

where the new Jacobian and residual are respectively:

A = V−1/2 ∂h(x)
∂x

∣∣∣∣
x∗

and b = V−1/2 (z−h(x∗))

(9)
Many publications, such as [10] and [11], explore efficient

methods to solve (7). These solvers take advantage of A’s
sparse structure to efficiently solve a factorized version of the
normal equations obtained from (8). Since this methodology
is applied off-line, we are not concerned with the specific
method used to solve the normal equations; it suffices to
know that the path deviation is:

∆∆∆
∗ =ΛΛΛ

−1AT b (10)

where ∆∆∆∗ = x− x∗ and ΛΛΛ = AT A is the information matrix
and the state estimate is updated as x∗ := x∗ +∆∆∆∗. Once
convergence is reached, the estimate error is defined as the
difference between the true and estimated poses as:

εεε = x∗−x =ΛΛΛ
−1AT V−1/2 (v+ f) (11)

Note that εεε is a function of the measurement error, which
includes both Gaussian noise and faults.

D. Fault Detector

As a sanity check, a chi-squared test on the norm of the
residuals is commonly used, such that an alarm is triggered
when the residuals’ norm—which is the fault detector—
surpasses a threshold defined to limit the occurrences of false
alarms, i.e. when q > T . The fault detector is defined as:

q = ‖b‖2 = ‖v+ f‖2
V (12)

which is again a function of Gaussian noise and faults.
This section has presented the basic elements of fix-lag

smoothing applied to localization applications. The next sec-
tion defines Hazardous Misleading Information and presents
a method to monitor integrity.

III. INTEGRITY MONITORING

This work quantifies localization safety for a given trajec-
tory prior to execution, which requires a predictive model
that includes the environment map, waypoints defining the
robot’s trajectory, and the system model, which can be
based on previously known sensor models and manufacturer
specifications. Then, we compute an upper bound on the
localization integrity risk, which is defined as the probability
of Hazardous Misleading Information (HMI).

HMI occurs when the error in a state—or linear combina-
tion of states—of interest (e.g. lateral error in AV applica-
tions) is greater than a pre-defined alert limit (ε > l), and at
the same time, the fault detector does not trigger and alarm
(q < T ). This is the especially dangerous situation in which
the robot suffers a localization failure, but does not realize

Fig. 1. Difference between the predefined, estimated, and actual trajecto-
ries. The error between the estimated and actual trajectories is εεε , which is
the difference between the computed, ∆∆∆∗, and the actual, ∆∆∆, deviations from
the predefined trajectory.

it and therefore does not initiate some emergency action.
The probability of HMI, or integrity risk, is calculated under
different fault modes, i.e. under the assumption that different
measurements during the time window are faulted. Then,
given a set of nh fault modes, the integrity risk is:

P
(

ε > l ∩ q < T︸ ︷︷ ︸
HMI

)
=

nh

∑
h=1

P(HMI | h)P(h) (13)

where the error in the state of interest, ε = tTεεε , is extracted
from the full estimate error using vector t, l is a pre-
defined alert limit, and h indexes a fault mode, which may
contain multiple faulted measurements. Determination of a
mutually exclusive, jointly exhaustive set of fault modes and
their corresponding probabilities, P(h), is included in [18].
Direct computation of (13) is unfeasible. Fortunately, we can
leverage classical GNSS-based integrity monitoring methods
to compute an upper bound on the HMI probability and thus,
guarantee localization safety.

Integrity monitoring is carried out in a three steps process
that involves determining a predefined trajectory, computing
the estimate error and fault detector distribution parameters,
and calculating the HMI probability under the worst possible
combination of faults.

A. Predefined Trajectory
To establish a plausible trajectory through the waypoints,

the state evolution model in (4) is coupled with a control
algorithm to generate a set of poses. Fig. 1 shows example
predefined, estimated, and actual (unknown) trajectories.
Since a better reference trajectory prior to the mission does
not exist, we assume that deviations are calculated from the
predefined trajectory. Thus, the results will only be valid if
the predefined and actual trajectories are close with respect
to system nonlinearities; otherwise, linearization errors might
invalidate the results.

The next section determines the statistical distributions of
the estimate error and fault detector for each state in the
predefined trajectory.

B. Estimate Error & Fault Detector Distributions
The statistical distribution of ε and q are necessary to

upper bound (13). [25] proved that the random parts of the
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estimate error and fault detector for least squares estimators
are independent. Thus, the summation terms in (13) become:

P(HMI | h) = P(ε > l | h)P(q < T | h) (14)

where the estimate error and the fault detector are normally
and chi-squared distributed, respectively, as [25]:

ε ∼ N
(
ΛΛΛ
−1AT f̆, ΛΛΛ

−1)
q∼ χ

2
n−m,λ where λ = f̆T (I−AΛΛΛ

−1AT ) f̆
(15)

Here, f̆ = V−1/2f is the whitening fault and χ2
n−m,λ denotes a

non-central chi-squared distribution with n−m degrees of
freedom and non-centrality parameter λ , where m is the
dimension of the state vector. The detection threshold is
usually set to limit the frequency of false alarms, which occur
when the the detector triggers the alarm under nominal (i.e.
fault-free) operation. Thus, limiting the probability of false
alarms to IFA, the threshold is set to: T = X−2

n−m [1− IFA].
The only unknown in (15) is the fault vector that originates

an estimate bias and the non-centrality of the detector. The
next section uses (15) to evaluate (14) under the worst
possible scenario.

C. Probability of HMI under Worst-case Fault

Faults are rarely occurring events that are not captured
by the Gaussian noise assumption. Moreover, these are low
frequency incidents that do not follow any clear pattern,
which makes them difficult to model statistically. Here, faults
are modeled as unknown deterministic quantities; therefore,
integrity monitoring can be seen as an optimization problem
of finding the worst-case fault that maximizes the HMI
probability under each fault mode.

Integrity risk is evaluated under the worst-case fault for
each fault mode, h, where each fault mode hypothesizes a
different set of faulted measurements. Previous work de-
rives methods to efficiently find such worst-case fault and
determine the integrity risk [25]. First, the worst-case fault
direction is analytically calculated as:

f̆ direction
h = ET

h
[
Eh
(
I−A ΛΛΛ

−1AT )ET
h
]−1 EhA ΛΛΛ

−1t (16)

where Eh is composed of ones and zeros such that only the
faulted components of f—or equivalently f̆—are extracted.
Then, using the fault direction in (16) to calculate the
statistical distributions in (15), the integrity risk for each fault
mode, P(HMI | h), is obtained by maximizing (14) over the
fault magnitude. Finally, every fault mode is weighted by its
probability of occurrence and added in (13) to compute an
upper bound on the integrity risk.

This section presented a methodology to quantify local-
ization integrity for a given mission. In order to validate
localization safety, the computed integrity risk is compared
against an integrity requirement, such that only those areas
with high enough integrity are validated.

TABLE I
SIMULATION PARAMETERS

Sensor range 25 m σlidar 0.2 m
Time step 0.1 s σvelocity 1 ms−1

Velocity 25 kmh−1 σsteering angle 2◦

Fault probability 10−3 σgyro 2 ◦ s−1

Alert limit 0.5 m IREQ 10−5

Fig. 2. Predefined trajectory and two randomly generated maps for
two different landmark densities (0.001 landmarks/m2 above and 0.005
landmarks/m2 below). Note that the predefined trajectory remains the same.

IV. RESULTS

This section implements the proposed method to monitor
integrity and validate localization safety. Simulations show
that the integrity risk properly upper bounds the probability
of HMI, and experimental results demonstrate the applica-
bility of this method to a real system.

A. Simulation Results

The simulation depicts a robot traversing fixed waypoints
in a 2D plane. Fig. 2 shows the predefined trajectory as a
result of applying a simple steering angle controller to a
constant-velocity bicycle model. The predefined trajectory,
along with the specifications in Table I, remains constant
for all simulations. However, the number and location of
landmarks are modified such that ten landmark maps are
randomly generated for each density ranging from 0.001 to
0.005 landmarks per square meter, exemplified in Fig. 2.

The relative measurements are the robot’s linear and
angular velocities as well as its steering angle. Absolute
measurements are provided by range and bearing sensors.
Relative measurements are assumed fault free, while ab-
solute measurements have a fault probability of 10−3. To
maintain reasonable computational requirements, the time
window length is continuously resized to preserve at least ten
landmark detections. Extra epochs are removed from the time
window. This technique maintains a more stable integrity risk
than a fixed time window in number of epochs.

The results of the trajectory validation method for a lateral
error of 0.5 m are given in Table II as localization availability,
the percentage of the trajectory where the computed integrity
risk is lower than the integrity requirement, IREQ. Availability
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TABLE II
AVAILABILITY

Landmark Density ρ [m−2]
map # 0.001 0.002 0.003 0.004 0.005

1 32 78 91 100 97
2 63 83 97 100 97
3 59 77 98 90 92
4 53 73 97 98 96
5 68 89 97 99 100
6 30 82 93 97 99
7 80 92 92 90 100
8 55 89 88 97 100
9 58 78 96 99 95

10 49 84 95 100 100

average 55 83 94 97 98

Availability is the percentage of time P(HMI) is lower than the integrity
requirement, IREQ, for different landmark density maps. Ten maps are

randomly generated for each density.

increases as landmark density increases, sometimes reaching
complete availability for maps with higher densities. In those
100% availability cases, localization safety is verified (for
an integrity requirement of IREQ), which means that a robot
following such trajectory will only encounter HMI situations
with a probability lower than IREQ.

To validate the method, the actual mission is simulated
30 times for each generated map. In these simulations, all
measurements are corrupted by Gaussian noise; however,
only absolute measurements are corrupted by faults, which
are randomly generated from a uniform distribution. Note
that integrity risk is not monitored during these runs because
only the fault detector and detector threshold are computed
during the actual mission. Results show that HMI only occurs
for landmark densities lower than 0.002 in regions where
localization safety could not be guaranteed by the offline
integrity monitoring method.

As an example, Fig. 3(top) shows the integrity risk for
the predefined trajectory, while the middle and lower figures
show the lateral error and detector for one of the missions
shown in Fig. 2(top). The integrity risk is calculated only
once, prior to the mission, and it applies to all subsequent
mission executions as long as the mission model remains
the same. However, Fig. 3(middle and bottom) are calculated
for each mission execution. In this case, there are two HMI
events shown in yellow bands—recall that HMI occurs when
the lateral error surpasses the predefined alert limit and the
fault detector stays below its threshold—that occur when the
localization safety could not be guaranteed by the proposed
method, i.e. when P(HMI) > IREQ. Specifically, these HMI
events occur when the computed upper bound on the integrity
risk reaches one, which means that no safety bound can be
guaranteed at those times.

Note that there are four measurement faults during this
mission execution. The first three, occurring between 19 and
25 s, correspond to areas where safety is guaranteed and are
detected as q > T at those times. The forth fault occurs at
time 30 s when the HMI probability is 2× 10−4. At this
time, there is not enough measurement redundancy and the

Fig. 3. Upper figure: upper bound on the integrity risk computed before
the mission execution; the mission is depicted on the upper part of Fig. 2.
Middle figure: predefined alert limit and absolute value of the lateral error
for the example mission execution. Lower figure: fault detector and detector
threshold for the example mission execution. Note that the detector is
dimensionless.

Fig. 4. Testing environment with test setup in the upper left. Both poles
and tree trunks are used as landmarks for localization. The test equipment
consists of two Velodyne VLP-16 lidars, Novatel SPAN/CPT DGPS, and a
STIM-300 tactical-grade IMU attached to a roof-rack of a vehicle.

fault is not detected; this fault is not damaging enough to
immediately generate a localization failure, but it results in
an estimate bias that, due to the lack of subsequent fault-free
measurements, is propagated until HMI occurs.

In summary, simulation results demonstrate that integrity
risk can reliably validate a mission’s localization safety. The
next section presents experimental results of applying this
same methodology to a real system.

B. Experimental Results

In this section, we apply the integrity risk prediction
methodology to validate safety using real-world data from an
automobile on a college campus. The environment and the
vehicle’s sensors are shown in Fig. 4. Relative measurements
are provided by a STIM-300 tactical grade Inertial Mea-
surement Unit (IMU) at 125Hz. Light poles and tree trunk
landmarks are extracted from two synchronized Velodyne
VLP-16 lidar point clouds at 10Hz. Range and bearing
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Fig. 5. Predefined trajectory and landmark map for the experiment. In red,
the regions where localization safety cannot be guaranteed when defining
an alert limit of 0.5m (above) and 1m (below).

estimates, together with differential GPS updates at 1Hz from
a Novatal SPAN/CPT, compromise absolute measurements.

Fig. 5 shows the landmark map and estimated trajectory
obtained via SLAM. In this experiment, the state vector
contains 15 states: six for the 3D pose (position and ori-
entation), three for the linear velocity, and six for the IMU
biases (accelerometers and gyros). For integrity monitoring,
we assume that only absolute measurements can be faulted
and that both GPS and LiDAR measurements have a failure
probability of 10−3. The monitored state of interest is the
lateral error—which is critical in AV applications—and the
alert limit is set to 0.5 m. For better performance, the length
of the time window is set at each epoch to maintain at least
thirty absolute measurements.

The availability is measured for IREQ = 10−7, the same
used by the FAA to prevent extremely remote hazardous
events. Fig. 5 shows the trajectory regions where a lateral
error of 0.5 m (top) and 1 m (bottom) cannot be guaranteed.
Except for the problematic region around (-40,0), the trajec-
tory is validated for a 1 m alert limit, which yields an overall
availability of 98%. This contrasts with the 84% availability
corresponding to the 0.5 m alert limit where multiple regions
along the trajectory fail to present enough redundancy to
guarantee safety against possible faults. The low integrity
regions around (-40,0) is due to the lack of detectable
landmarks, which makes localization rely heavily on GPS.
In the absence of other redundant absolute measurements, a
GPS fault can result in large errors, and thus, not even the
1 m alert limit can be guaranteed.

V. CONCLUSIONS AND FUTURE WORK

This paper presents the first method to evaluate integrity
risk localization safety for a pre-defined trajectory prior to
executing the trajectory. The method also is formulated for
localization via smoothing, which offers advantages over
previous Kalman filter-based techniques.

The method has two main drawbacks: 1) the predefined
trajectory must be close to the actual trajectory to avoid
linearization errors, and 2) misdetection of landmarks due to

occlusions during the mission might result in a worse than
predicted localization performance and thus, the integrity
bound might be invalidated. The former has not presented
any complications in the experimental case and can be
addressed by further validating similar trajectories to the
original one. The latter can be the subject of future work
where the misdetection probability is accounted for in the
integrity risk calculation.
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