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Abstract— The challenges of developing low-cost, large-scale
multi-robot navigation systems include noisy measurements, a
large number of robots, and computing efficiency for collision
avoidance. This paper presents a distributed motion planning
framework for a large number of robots to navigate with robust
collision avoidance using low-cost range only measurements.
The novelty of this work is threefold. (1) Developing a dis-
tributed collision-free navigation system for a large-scale robot
group in which each robot performs motion planning based
on the noisy range measurements of neighboring robots; (2)
Developing a set of algorithms for each robot to accurately es-
timate the relative positions and orientations based on the range
measurements and relative velocities; (3) Developing a velocity
obstacle (VO) based motion planning algorithm for each robot
which can take into account of the estimation uncertainties in
relative positions and orientations. The proposed approach is
tested with various numbers of differential-driven robots in the
Gazebo simulator and real-world experiments. Both simulation
and experiment results validate the superior performance of the
proposed approach compared to other state-of-art technologies.

I. INTRODUCTION

Multi-robot systems have drawn increasing attention be-
cause of their advantages in performing complex tasks
compared to the single robot, such as surveillance, rescue,
formation, and exploration [1]. During group navigation in a
2D environment, each robot’s capacity to avoid other robots
is highly required, especially for large-scale multi-robot sys-
tems. These approaches usually consist of three components:
(1) measurement collection, (2) pose estimation, and (3)
motion planning.

Despite many efforts in developing collision avoidance
schemes for the robot group navigation, three significant
challenges need to be addressed:
1) Low latency distributed computing framework. Com-

pared to the centralized navigation system, the distributed
framework is advantageous in its robustness against local
failures and scalability in the group size. However, a
successful distributed framework requires low latency in
information collection and local processing, i.e., low mea-
surement data throughput and computational complexity.
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Fig. 1. An illustration of distributed multi-robot collision avoidance with
range measurements only.

2) High-accuracy estimation of relative positions and
orientations. The information on relative poses among
robots is the precondition of all collision avoidance
approaches. How to estimate the relative poses between
robots with high accuracy from low data-throughout
measurements is still an open question.

3) Robust collision avoidance with uncertainties in pose
estimation. The uncertainties in relative pose estimation
increase the risk of robot collision. It is vital to develop
a robust collision avoidance scheme.

Various approaches have been developed to solve these
challenges such as reinforcement learning (RL) based ap-
proaches [2]–[7], velocity obstacle (VO) based approaches
[8]–[11] and energy-optimal based approaches [12], [13].
Compared with RL and energy-optimal based approaches,
VO based methods have lower computational complexities
and are convenient for real-time implementation. Most cen-
tralized approaches assume that all the robots have a global
coordinate system, or each robot has the perfect sensing
capability of acquiring the accurate pose information on
others [14], [15], an extra tracking system is often required
in the real world experiments [16]–[18], incurring high
computational costs and limits upon applications in outdoor
environments. For distributed approaches, each robot needs
to estimate its own pose first using on-board sensors; then,
the estimated poses are shared through inter-robot communi-
cations [19]–[21]. Usually, expensive high-resolution sensors
are unsuitable for applications of large-scale robot groups.
Outdoor applications of those sensors highly sensitive to the
changing environmental conditions are also limited.

In this paper, a distributed multi-robot collision avoidance
approach is proposed with range-only measurements using
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TABLE I
A COMPARISON OF THE PROPOSED APPROACH AND STATE-OF-THE-ART APPROACHES TO COLLISION FREE NAVIGATION.

Approach Architecture
training

stage
Information

exchange
Computational

complexity
sensoring
modality Position requirement Advantages Disadvantages

VO based
approaches

ORCA [14] distributed no no low tracking system perfect position collision-free motion guarantee need global posion of all robots

CALU [19] distributed no
position and

velocity moderate LIDAR
estimated position

using AMCL
performing ORCA on the real robot

with estimated position
only consider the uncertainty in

the state estimation process

PRVO [22] distributed no
position and

velocity moderate tracking system
estimated position with
Gaussian distribution

modeling the uncertainties in
state estimation and local motion

less robust against the uncertainty
in state estimation

RL based
approaches

SLCAP [7] decentralized required
motion planning

policy high laser perfect position
can tackle large robot system

and dynamic environment
do not suit for

featureless environments

GA3C-CADRL [6] decentralized required no high LIDAR position with uncertainty
can tackle obstacles with

varying number and velocity high cost measurement

Our approach – distributed no velocity low UWB
estimated position using

dead reckoning

low cost, more robust against
uncertainty in position , suit for

all environments

in need of init state and
time to estimate relative position

low-cost UWB (ultra-wideband) modules. The shared veloc-
ity information and individual range measurements are used
to estimate the relative poses among robots. The uncertainties
in pose estimation are taken into account for the VO based
collision avoidance algorithm. The main contributions of this
work include:

1) Developing a distributed collision avoidance architecture,
in which each robot performs its own motion planning
and shares the velocity information with each other. Such
a distributed framework is robust against local failures
and enables large-scale robot groups.

2) Developing a particle filter based algorithm to estimate
the relative poses among robots from the range only
measurements and shared information on velocities.

3) Developing an extended reciprocal collision avoidance
algorithm to tackle the uncertainties in the estimated
poses guarantees the robust performance of collision
avoidances in the real-world applications.

4) Developing both simulation and experiment platforms
for large-scale robot group navigation. The proposed
approach is validated using multiple Turtlebots equipped
with UWB modules in comparison with other state-of-
the-art methods.

The rest of the paper is organized as follows. Section
II discusses the related approaches to multi-robot collision
avoidance. Section III describes the system setup and prob-
lem statement. Section IV presents the proposed approach.
Section V provides simulation and experiment results. Sec-
tion VI concludes the paper and outlines future work.

II. RELATED WORK

Table I summarizes a comparison of various approaches
in terms of processing architecture, training requirements,
sensing modality, shared information, position requirement,
and computational complexity. It can be seen that RL based
approaches usually require a training stage, high-accuracy
pose estimation, and are more sensitive to the uncertainties
in pose estimation results. By comparison, VO based ap-
proaches involve less computational complexity and can be
more robust against estimation uncertainties with the help of
probabilistic models. Besides, the simulation based training
not only consumes more offline computational resources but
also imposes a limit upon the scale of the robot group for
training.

The VO method constructs a predicted collision area with
the information on relative pose and velocity between an
individual robot and dynamic obstacles to choose a proper
velocity [8]. By sharing certain information among multiple
agents, cooperative collision avoidance (CCA), and recipro-
cal VO (RVO) schemes have been developed for robot groups
in various sizes [9], [10]. To further reduce the decision
dilemmas or deadlocks for multiple robot motion planning,
hybrid RVO (HRVO) [11] and optimal reciprocal collision
avoidance (ORCA) schemes [14] have been proposed; the
former combines the VO and RVO to reduce the symmetry
of collision areas and the latter employs liner programming to
perform motion planning under constraints on velocities. The
ORCA method has also been extended for non-holonomic
(NH) robots, called NH-ORCA [15].

However, these VO based approaches usually assume per-
fect sensing of the poses of robots and require a new tracking
system for their real-world applications [16], [18]. Collision
avoidance with localization uncertainty (CALU) and convex
outline collision avoidance under localization uncertainty
(COCALU) have been developed to deal with uncertainties
in pose estimation, where each robot performs the adaptive
Monte-Carlo localization (AMCL) and derives uncertainty
models based on the particle filter while performing the NH-
ORCA or ClearPath [19], [20]. However, these approaches
only consider the uncertainties in the state estimation pro-
cess. Thus, the probabilistic RVO (PRVO) has been devel-
oped, which combines the RVO and probabilistic constraints,
to address the uncertainties in both state estimation and
locomotion [22]. However, the PRVO approach needs further
simplification for real-world implementation. Besides, all the
current VO based methods heavily rely on expensive high-
resolution sensors, such as camera and LiDAR, unsuitable
for applications of large-scale robot groups and in featureless
environments.

In our work, the proposed distributed multi-robot colli-
sion avoidance approach only uses the range measurements
and exchanges information on velocities among neighboring
robots. The NH-ORCA method is upgraded to determine
the optimal velocity for each differential-driven robot. The
impact of the uncertainties in state estimation upon the
individual robot is reduced since only the relative poses and
velocities are used to construct the VO space. The NH-
ORCA is extended by increasing the radius according to
the uncertainty in the estimated position. Besides, the range
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Fig. 2. The system framework of the proposed distributed range only multi-robot collision avoidance system.

measurements between robots can be easily obtained using
low-cost UWB modules. Since the proposed approach does
not need a training stage, there is no limit on the size of the
robot group in applications.

III. SYSTEM SETUP AND PROBLEM STATEMENT

A. System Framework

The framework of range only multi-robot collision avoid-
ance is shown in Fig 2. First, for robot i in a group of
robots, the range sensor like UWB tag, which can detect
the distances of other robots, is equipped. The velocities of
detected robots can be obtained via the subscriber-publisher
mechanism of the ROS [23] communication network. The
state of the differential-drive robot includes the position and
orientation in time t can be denoted as sti = [xti, y

t
i , θ

t
i ]. Each

robot is controlled by a pair of translational and rotational
velocities [vti , ω

t
i ]. Second, based on the range measurements

and the exchanged information on relative velocities, the
relative poses of the other robots in the coordinate system
of robot i are estimated and updated. Finally, the optimal
velocity that guarantees the collision-free motion of the robot
is chosen by using NH-ORCA, given the input of relative
poses of other robots with uncertainty models.

B. Non-Holonomic Robots Optimal reciprocal collision
avoidance

NH-ORCA is an extension of ORCA that guarantees the
collision free motion of multiple non-holonomic robots. The
locomotions of holonomic and non-holonomic robots in the
velocity of vH is shown in Fig. 3(a), which has a tracking
error ξtrack. The NH-ORCA includes three main steps. First,
the tracking error is added with the robot radius to construct
the safety envelopes and collision areas, as shown in Fig.
3 (b-c). Secondly, the set of allowed holonomic velocities
SAHV is computed using the velocity vH to limit the
tracking error bound. It is represented by a convex polygon
PAHV . Finally, within the set of safe velocities computed by
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Fig. 3. A comparison of holomonic and non-holomonic robots: (a)
locomotions, (b) safety envelopes, (c) collision areas of VO and ORCA,
and (d) motion planning of ORCA.

PAHV and ORCA, the optimal velocity closest to the desired
velocity is chosen and mapped into the corresponding non-
holonomic control inputs, as shown in Fig. 3 (d).

C. Problem Statement

For a group of non-holonomic robots navigating in the 2D
environment, the desired velocity is the velocity that guides
robots to the target position directly without the consideration
of obstacles within each time window. The main problems
of the range-only multi-robot collision avoidance include (1)
how to estimate the robot poses with range measurements
and exchanged information on velocities in a distributed way;
(2) how to find a safe velocity for each robot to achieve a
collision-free and time-efficient motion within a time horizon
τ given the robot poses with uncertainties.
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Fig. 4. The flowchart of relative poses estimation.

For a group of l robots, each robot can receive rang
measurements r and relative velocity measurements v from
neighboring robots at each time step. For robot i, the
probability of relative pose ptij of neighboring robot j is
derived from the range measurements rtij and velocity mea-
surements vtij over a period of time, P (ptij |r1:tij , v

1:t
ij ). Thus,

the optimization objective of each robot under N estimated
relative poses should be:

arg min
vi

E[T |p1:ti,1:N ]

s.t. ∀j ∈ [1, N ]

dij > 2r

(1)

where, T is the travel time, dij is the distance between
two robots, r is the robot radius. The goal of the proposed
approach is to calculate the optimal velocity to guide each
robot to a time efficient and collision free motion under the
estimated the relative pose derived from range and velocity
measurements.

IV. RANGE BASED COLLISION AVOIDANCE

We propose a distributed framework to utilize the ranges
among robots to estimate the relative poses in the robot
coordinate system. The estimated poses with uncertainties
are used as the input of NH-ORCA to choose the optimal
velocity. Besides, the NH-ORCA is extended to take into
account of uncertainties in pose estimation. The flowchart
of the proposed approach is shown in Fig. 4. In the dis-
tributed framework, all the robots perform the same collision
avoidance algorithm and choose their own optimal velocities
independently. Although those robots have different coor-
dinate systems, their control vectors and orientations can
be regarded as in the same coordinate system if the robot
orientations at the beginning are pre-known.

For a robot i with the control vectors [vti , ω
t
i ] and ori-

entation θti at time t, the velocity in x and y direction is[
vtix, v

t
iy

]
, where, vtix = vti ∗ cos θti , v

t
iy = vti ∗ sin θti . The

relative velocity and orientation of robot j with respect to
robot i at time t should be vtij = [vtjx − vtix, v

t
jy − vtiy]

and θtij = θtj − θti respectively. The relative coordinates
[pijx, pijy] of robot j can be mapped from the range dij
and bearing δij as following:

pijx = dij ∗ cos δij
pijy = dij ∗ sin δij

(2)

Thus, the relative state of robot j at time t can be denoted
as [ptijx, p

t
ijx, θ

t
ij ]. At each time step, the relative orientation

can be fused by extended Kalman filter (EKF). During EKF
process, the predicted orientation θtijpre can be calculated
from the relative angular velocity ωt

ij by the motion model.
The relative orientation θtij from the robots is the observation
to correct the estimation [24]. However, the relative bearing
δij is unknown which leads to the unknown coordinates.
Thus, we estimate the relative coordinates utilizing the par-
ticle filter as described in algorithm 1. Firstly, for m particles
at time t, the coordinates of particle k (k ∈ [1,m]) are
initialized with the fixed range dtij and randomly distributed
bearing δtijk between 0 and 2π. Secondly, at the next time
t + 1, each particle k utilizes the relative velocities vtij to
calculate a new predicted relative coordinate [pt+1

ijk , p
t+1
ijk ]

depend on the motion model described as following:

[pt+1
ijk , p

t+1
ijk ] = [ptijk, p

t
ijk] + vtij ∗∆t (3)

This motion model is the approximate estimate of the dif-
ferential motion model between each time step. The shorter
the time step, the smaller the error.

These coordinates can be mapped back to the range and
bearing by the following equation:

dt+1
ijk =

√
(pt+1

ijkx)
2

+ (pt+1
ijky)

2

δt+1
ijk = arctan(pt+1

ijky/p
t+1
ijkx)

(4)

Actually, the closer the mapped ranges are to the range
measurements dt+1

ij , the higher the accuracy of the coor-
dinates will be. Thus, the particle weight is generated by
the difference diff t+1

ijk between dt+1
ij and dt+1

ijk . We utilize
a Gaussian distribution with zero-mean and variance ϕw to
generate the probability of each particle as weight.

$t+1
ijk = f(diff t+1

ijk , 0, ϕw) (5)

Where, f(x, 0, ϕw) is the probability density function of
Gaussian distribution. Specifically, variance ϕw is decided
by the uncertainty of range measurement. Finally, the low
variance resampling step is applied to draw a new particle
set from the previous one depending on the particle weight
[25]. After some time, the coordinates of the particle set
will converge decided by the variance of bearing set. This
set represents the appropriation of the coordinates of robot
j respect to robot i. However, the particles may converge in
an incorrect and adjacent pose because of the uncertainties
or kidnapped problems. To recover from the failures, the
coordinates of parts of the particles are set uniformly depend
on current bearing after the initial convergence. For a particle
set with current average bearing δtij , the coordinates of n
particles (n < m) should be calculated from n bearings
which obey the uniform distribution between δtij − δrange
and δtij + δrange, where δrange is the distribution interval.
After several convergences under this situation, the particle
set tends to converge at the correct pose.

We use a Gaussian distribution, which extracts the mean
and variance from a particle set to represent the rela-
tive coordinates, including x and y direction. To save the
computational cost, after particle convergence, the relative
coordinates with Gaussian distribution are kept and updated
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using EKF localization by relative velocities and range
measurements. It should be noted that when the moving
direction is perpendicular to the range distribution, the range
measurements are unchanged and cannot filter the particles.
However, in this situation, the collision will never occur.

In multi-robot systems, each robot performs this algorithm
to estimate the relative coordinates with others. However,
the computational cost of implementing the estimation at
the same time is high, which influences the real-time per-
formance. Thus, the estimation is performed sequentially by
the value of distance.

Algorithm 1 Relative Coordinates Estimation
Require: For robot i and j, range measurement dtij , relative

orientation θtij , relative velocity vtij
1: Initialize m a coordinates particle set with range and

uniformly distributed bearing between 0 and 2π
2: for time t = 1...N do
3: for particle k = 1 to m do
4: Calculate new coordinates by Equation (3)
5: Generate particle weight by Equation (5)
6: end for
7: Low variance resampling
8: if particles converge initially then
9: Generate n uniform distributed bearings depend on

current average bearing
10: Reset the coordinates of partial particles
11: if particles converge continuously then
12: extract the particle set as a Gaussian distribution
13: end if
14: end if
15: end for

The NH-ORCA does not consider the uncertainty in
robot position. Thus we extend this approach to tackle
the estimated coordinates with Gaussian distribution. The
uncertainty of estimated relative states from the previous
step can be represented by the covariance ϕ which is a 3x3
matrix. The diagonal of this matrix [ϕ11, ϕ22, ϕ33] is the
variance in the direction of x, y, θ respectively. Depending
on the property of Gaussian distribution, the three times of
standard deviation are used to represent the maximum error
in x and y direction:

ξx = 3
√
ϕ11

ξy = 3
√
ϕ22

(6)

In the process of range-only filter estimation, there are
more uncertainties in the vertical direction of the range. The
maximum error ξmax should be:

ξmax =

√
ξx

2 + ξy
2 (7)

To guarantee the collision-free motion for robot i, the
radius of the robot j should increase by the maximum
error ξmax that should be rj + ξmax. Thus, during the NH-
ORCA, the radius of robot i and j should be ri + ξtrack
and rj + ξmax + ξtrack respectively. Then, the NH-ORCA is

Fig. 5. Four simulation scenarios with multiple Turtlebots.

Fig. 6. Robot trajectories of the four simulation scenarios.

performed with the inflated radius to calculate the optimal
velocity.

During the estimation process, before particles converge,
the time complexity for m particles and l neighboring robots
should be O(m ∗ l). After convergence, estimated states are
updated by EKF step. Thus, the time complexity should be
O(l). In the NH-ORCA step, which is used to calculate the
optimal velocity, the time complexity should also be O(l).

V. EXPERIMENTS AND RESULTS

A. Simulation Setup

Gazebo can simulate multi-robot systems in different en-
vironments [26]. ROS provides numerous libraries and tools
to help achieve various functionalities of the robot group.
We validate the proposed approach with various numbers
of robots in Gazebo. As shown in Fig. 5, each simulation
scenario is composed of multiple Turtlebots, which are pop-
ular open-source differential-drive robot platforms. Gazebo
can simulate the range measurements among robots with
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TABLE II
PARAMETER SELECTION

Estimation step Extended NH-ORCA step
parameter value parameter value

particle number m 300 robot radius 0.3m
particle number n 40 tracking error 0.05m

variance ϕw 0.02m time horizon 10s
sampling time 0.05s max neighbors 8

different levels of noise. In the beginning, multiple robots
were placed with pre-known orientations to simplify the
pose estimation. Parts of the key parameters of our approach
are selected, as shown in Table II. Specifically, particle
number m influences the accuracy of estimated relative poses
dramatically. More particles will get more precise results
but with higher time complexity. Variance ϕw affects the
particle convergence speed and accuracy, which is important
in real-time navigation. The trajectories of various numbers
of robots generated by our approach are shown in Fig. 6.
It can be seen that our approach can choose the optimal
velocity in a distributed way for each robot to achieve the
collision-free motion successfully.

B. Experiment Setup

Our approach is also tested in real-world experiments
with multiple Turtlebots. The experiment setup is shown in
Fig. 7, where multiple Turtlebots are placed with pre-known
orientations. Each robot is equipped with a UWB tag that can
measure the distance from other UWB tags. All the robots are
in the same ROS network and share the velocity information
with each other. Each robot performs the same algorithm and
optimizes its own velocity.

Fig. 7. The experiment setup of multiple Turtlebots.

C. Results and Discussions

Fig. 8. A comparison of differential approaches in terms of navigation
time and distance.

Fig. 9. A comparison of differential approaches in terms of success rate.

We use three indices to measure the performance of our
approach: the success rate, navigation time, and distance.
This approach is performed in simulation with the number of
robots from 2 to 8. We compare three approaches with differ-
ent range uncertainties represented by the standard deviation
σrange = 0.05m, σrange = 0.1m, σrange = 0.15m. The
HRVO and NH-ORCA are also tested to compare. Besides,
the NH-ORCA is performed with a centralized framework
to compare. It uses the global positions and velocities of all
robots without noise as input. HRVO and NH-ORCA are
the state-of-art VO based approaches to tackle the multi-
robot collision avoidance problem, especially for differential-
driven robots. Different configuration and scenario are tested
with 50 times, and the results are averaged, which are
illustrated in Fig. 8 and 9. Specifically, the success rate
demonstrates the effectiveness of collision avoidance. The
navigation distance and time grow up with the number of
robots. Compare to the ideal situation that there is no noise
during the computation process, our range based approach
can achieve similar collision-free motion but with more time
cost and traveled distance. The performance is determined
by the accuracy of the range, sampling time, and velocities
measurements.

VI. CONCLUSION

In this paper, a range-only distributed collision avoidance
approach for large-scale multi-robot systems has been pre-
sented. Each robot measures the distance of neighboring
robots via UWB modules and shares the velocities with each
other via the ROS communication network. The range mea-
surements and relative velocities are utilized to estimate the
relative poses of robots by using a particle filter. The proba-
bilistic distributions of relative poses are recursively updated
and integrated with an NH-ORCA scheme to achieve robust
collision-free motion planning of differential driven robots.
The simulations and experiments have been performed with
various numbers of Turtlebots in a 2D environment. The
results show that distributed collision-free navigation can be
achieved using low-cost range-only measurements. Compare
to other state-of-art VO based approaches, our approach does
not need the global localization and has similar effectiveness
of collision avoidance. Our future work includes developing
a learning scheme for the proposed approach and testing the
proposed approach with more robots.
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