
Skill-based Programming Framework for
Composable Reactive Robot Behaviors

Yudha Pane, Erwin Aertbeliën, Joris De Schutter and Wilm Decré

Abstract— This paper introduces a constraint-based skill
framework for programming robot applications. Existing skill
frameworks allow application developers to reuse skills and
compose them sequentially or in parallel. However, they typi-
cally assume that the skills are running independently and in a
nominal condition. This limitation hinders their applications for
more involved and realistic scenarios e.g. when the skills need
to run synchronously and in the presence of disturbances. This
paper addresses this problem in two steps. First, we revisit how
constraint-based skills are modeled. We classify different skill
types based on how their progress can be evaluated over time.
Our skill model separates the constraints that impose task-
consistency and the constraints that make the skills progress
i.e. reaching their end conditions. Second, this paper introduces
composition patterns that couple skills in parallel such that
they are executed in a synchronized manner and reactive to
disturbances. The effectiveness of our framework is evaluated
on a dual-arm robotics setup that performs an industrial
assembly task in the presence of disturbance.

I. INTRODUCTION

The demand for mass customization has forced manufac-
turing processes to be more agile than ever before. As a
consequence, robotic systems, as one of the key enabling
technologies, need to be more configurable and adaptable
to a wide range of situations. Furthermore, since many
aspects from the environment cannot be modeled accurately,
in many cases robots also need to be reactive with respect to
unforeseen disturbances. That is, utilizing online information
e.g. sensor measurements to adapt their trajectory in order
not to violate constraints such as collision avoidance.

Programming a complex reactive behavior requires a
different approach than the traditional methods of simply
specifying point-to-point (PTP) or impedance motion. This
is especially important because robot programming is often
performed by application developers who typically have less
expertise in robotics. They also need to develop applications
in a shorter time, thus programming with simple motion
primitives is too laborious and undesirable.

One of the solutions proposed in the literature is skill-
based robot programming [1] [2] [3] [4]. Skills give robots
the capability to perform a certain behavior e.g. trajectory
following or force-based insertion. Skills are implemented by
encapsulating the underlying motion controller and exposing
a set of configurable parameters to the users. This way,

*This work was supported by Flanders Make SBO PROUD and MUL-
TIROB

All authors are with the Dept. of Mechanical Engineering division RAM,
KU Leuven, Celestijnenlaan 300, Heverlee 3001, Belgium, and members of
Core Lab ROB, Flanders Make.
Corresponding author: Yudha Pane. e-mail:yudha.pane@kuleuven.be

application developers can easily reuse the skills without
having to deal with writing the reactive behavior themselves.

In this paper’s context, we define the term composability
as the ability for application developers to compose existing
skills in order to yield a predictable combined and desired
behavior. One of the main limitation of the current skill-
based programming frameworks is their limited composabil-
ity. This in turn reduces the reusability of existing skills.
This problem is partly due to the limitation of the underlying
skill specification and the relatively rudimentary composition
patterns i.e. the possible ways of composing skills. For
instance, existing frameworks allow application developers to
specify skills and compose them to be executed concurrently
or sequentially. But they do not facilitate to specify more
complex composition such as imposing synchronization con-
straints between concurrent skills or composing skills to
handle non-nominal situations such as collision or human-
induced disturbances.

In this paper, we present a new skill programming frame-
work based on a constraint-based approach. Our frame-
work differs from existing solutions because it not only
allows the programmers to change the skill parameters,
but also allows them to apply and specify composition
constraints to create coupled behavior between the skills.
These composition constraints are presented as patterns; they
are semantically well-defined, thus can be understood and
reused by application developers. The contributions of this
paper are: i) a constraint-based skill model that separates
the task and progress constraints, ii) reusable composition
patterns for composing skill behaviors in non-trivial manners,
iii) evaluation of the proposed framework in the context of
dual arm robotic assembly task.

The remainder of the paper is organized as follows. In
Section II, we present an overview of the previous work.
Section III describes how we model constraint-based skills.
The different composition patterns are presented in detail
in Section IV. We evaluate the framework in an industrial
assembly task and report the results in Section V. Section VI
concludes the paper.

II. RELATED WORK AND MOTIVATION

Methods to generate real-time, reactive robot motion while
executing a nominal task constitute an extensive research
area within the robotics community. A variety of techniques
have been proposed to address different applications. In the
context of collision avoidance behavior, approaches based on
potential function are one of the most widely-used techniques
[5]. Efforts to combine local and global planning result in a

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 7087

mixed method, such as elastic strips [6]. In [6], it is possible
to compose nominal behavior with non-nominal ones such
as following path while avoiding obstacle and maintaining
posture by assigning priority levels.

Meanwhile, in the context of reacting to a contact sit-
uation, constraint-based techniques such as the task frame
formalism (TFF) are more often used [7]. This formalism
allows us to specify force/torque-controlled tasks along and
around independent task frame axes. More recently, there has
been significant progress in constraint-based programming,
resulting in, among others, the iTaSC [8] [9], eTaSL [10],
and stack-of-tasks (SoT) frameworks [11].

The iTaSC framework can explicitly model geometric
uncertainty to improve robustness of the task execution with
respect to disturbances. It also proposes the use of feature
coordinates to enable more general constraint expressions.
However, with iTaSC, the programmer is forced to formulate
a six DoF virtual kinematic chain (VKC). This restriction is
not necessary in eTaSL, thus the singularity problem inherent
with the VKC can be avoided. In eTaSL, the separation
of concerns between the task specification and the solver
is properly addressed, such that the same specification can
be executed with different types of solver. The SoT is an
alternative framework that differs from eTaSL and iTaSC in
the way the optimization problem is solved. In particular,
a null-space projection technique is used such that lower
priority constraints will not affect the higher priority ones.

One main advantage of the constraint-based approach is
the composability of constraints. Programmers can develop
robot skills by composing constraints instead of composing
trajectories. When the constraints are conflicting, different
weights or priority levels can be assigned. Another advantage
is that, in most cases, the skills can be executed in real-time,
and therefore are suitable for industrial robot tasks.

Due to its versatility, the constraint-based approach is
adopted as the underlying method in developing skill-based
programming frameworks. For example, in [2], Thomas et
al. propose LightRocks, a domain specific language (DSL)
for programming sensor-based skills. The skill is specified
based on an extended TFF. The programmers can compose
skills using the UML/P state chart model.

Another example is the framework developed by Nägele et
al. [4] [12] where the skill specification is based on iTaSC.
It facilitates to instantiate new skills from already existing
instances by following the prototype pattern. More complex
skills can be composed hierarchically, both in sequential and
parallel manner.

Other frameworks achieve flexibility using path planning
or ad hoc motion generation instead of a constraint-based
reactive approach. This approach can achieve a considerable
amount of flexibility but with a slower reactivity. An addi-
tional drawback is a reduced composability between skills
since they do not share a common underlying specification.
One example is proposed by Pedersen et al. [1], who
showed that skills can either be executed using a TFF-based
controller or by an off-the-shelf motion planner [13]. The
framework allows non-experts to compose skills sequentially,

Fig. 1. Cooperative object transfer with dual arm setup

forming a task. A transition occurs when the post-conditions
of the source skill and the pre-conditions of the target skill
hold. Another example is from Stenmark et al. [3] [14].
Their work does not particularly focus on composability of
skills, but rather on how to parameterize the skills in an
intuitive way. They also evaluated their prototype tool for
programming dual-arm tasks by non-robot experts [14].

The above mentioned frameworks reduce the effort in
skill programming by abstracting away the low-level coding.
However, the relatively simple composition rules limit the
level of complexity that can be achieved for the robot
behavior. In our approach, composing two skills does not
simply mean merging their constraints, but also introducing
additional constraints that describe the coupled behavior
between the composed skills. This is particularly relevant
when the execution of skills is subject to non-nominal
conditions or disturbances. For example, consider the prob-
lem of transferring a box with two robots as illustrated
in Figure 1. Each robot executes a sequence of skills to
approach the box and bring it to a target pose. In the nominal
situation, the two skills can be executed independently in
parallel. However, in a non-nominal situation such as in the
presence of human-induced disturbance, each robot should
adapt its skill’s progress to maintain a proper grip. Here, the
simple composition strategy will fail. Alternatively, one may
argue that such a problem can be solved by a single skill
that controls both robots, forming a closed kinematic chain
with the object. However, this implies the need to create
a skill that is application-specific, hence not so reusable.
The perspective of this research is to provide application
developers with a set of generic skills, while facilitating the
creation of more complex skills by means of compositions.

III. CONSTRAINT-BASED SKILL MODELLING

This section presents the underlying model that describes
how a constraint-based skill is specified and structured. The
model serves as a guideline for skill developers i.e. robotics
experts who implements skills. The developed skills can then
be configured and reused by the application developers who
are the domain-experts. This way, the application developers
can focus on defining the tasks at hand and selecting the
suitable skills. In this work, we adopt eTaSL to specify the
skill’s constraints. This choice is due to its strong separation
of task specification and execution and its relatively mature
development. Furthermore, one of the advantages of eTaSL is

7088

the support of feature variables. These are auxiliary variables
that are used to specify degrees of freedom in the skill.
Such variables are useful not only for specifying how a skill
progresses, but also how it deviates from the nominal path.
We explain this in more detail below.

A. Constraint and Monitor

A skill is mainly composed of a set of constraints and
monitors. The constraints and monitors are acting upon ex-
pressions. The expressions can depend on input signals such
as sensor values. These expressions can also be specified
as outputs. The skill developers typically spend most of
their effort in specifying and testing these two components.
Ideally, the developed skill should represent a well-defined
reactive robot behavior, specifying not only the nominal
behavior but also how to deviate in case of disturbances. This
way, it is easier for the application developers to predict the
resulting motion and select suitable skills for their use cases.

In eTaSL, a constraint is imposed on a kinematic expres-
sion e:

e = f(q, χf , t) (1)

where q ∈ Rnr denotes the nr joint variables , χf ∈ Rnf

denotes the nf feature variables and t ∈ R is time. Skill
developers can specify a constraint by imposing target values
(equality) or bounds (inequality) on the expresion either in
position or velocity level.

In a more formal notation, a constraint can be represented
as a tuple C := 〈e, ed, Cr〉 where e is the kinematic expres-
sion that we want to constrain, ed is the desired value/bounds
for the expression, and Cr is the assigned controller. The
target ed may consist of the feedforward and feedback terms
ed = {ėff

d , e
fb
d }. In eTaSL, the controller steers e such that it

converges with the following dynamics:

ė = ėff
d +Kc(e

fb
d − e) (2)

The control gain Kc can be set to obtain a desirable time
constant.

Monitors continuously evaluate an eTaSL expression and
trigger events once certain conditions are met, e.g. when the
pose error between is lower than a given threshold. They are
useful for end conditions of skills, such that transition to the
subsequent skills can be performed.

From the point of view of the application developers, skills
are simply configurable and composable building blocks. The
detailed implementation of the skill-specific constraints and
monitors are abstracted away from them. Instead, they are
exposed to the constraints and monitors’ parameters, which
can be adapted to suit the target application.

B. Specifying Skill Behavior with Constraints

Constraints are the main component of a skill as they
determine the robot’s overall behavior. This work makes a
distinction to skill’s constraints into either task or progress
constraint. Task constraints result in a skill behavior of
staying in the task space. Meanwhile, the progress constraints
result in a behavior of advancing skill, i.e. it drives the

Fig. 2. A Cartesian motion skill that moves a robot end-effector to a target
pose while following a given path (dashed line). The blue solid line signifies
the path already travelled.

Fig. 3. The structure of constraints in a skill specification

skill from its initial to goal condition. Together, these two
constraint classes result in a robot that performs the skill-
specific behavior while trying to get closer to its goal
state. As an illustration, consider a path following skill as
depicted in Figure 2. The skill moves the robot end-effector
from initial pose Ti to a target pose Tf . Here, the task
constraints will keep the robot end-effector on the path.
At the same time, the progress constraint will enforce the
end effector to move along the path by following a given
progress profile. This separation of constraint types in a skill
specification is in contrast to previous works that treat all
task constraints uniformly. Such a distinction is beneficial
since it introduces a degree-of-freedom within the task space.
The skill can optimize this degree-of-freedom to resolve
non-nominal situation such as the presence of disturbances
or conflicting objectives. Furthermore, it also allows us to
compose skills by synchronizing their progresses, as will be
shown in the subsequent section.

The task and progress constraints can have different
weights and priorities. If the task constraints’ weight is larger
than the progress constraints’ weight, then the robot prefers
to remain in the task space and sacrifices its progress when-
ever a disturbance occurs. Conversely, when the progress
constraints have larger weight or higher priority, then the
robot prefers to stay on track with its nominal progress while
deviating from its task space. This way, different deviating
behavior can be achieved by varying the two constraints
weights or assigning different priority levels to them.

Figure 3 outlines the constraints structure in a skill speci-
fication. The skill may be composed of be n task constraints
and m progress constraints. Each task constraint cti ∈ C has
its own weight wti and priority pti . A constraint cti will
not violate ctj when pti > ptj , regardless of their weights.
The weights difference will only have an effect when the
two constraints are in the same priority level. The relative

7089

importance between the task and progress constraints can be
adjusted by setting w̄t and w̄p. These weight factors will
be multiplied with the weight of each task and progress
constraint, respectively. This way, the relative importance
within the same constraint group remains the same.

C. Modelling Skill Progress

A progress constraint is imposed on progress variable,
s = [0, 1], which is a normalized scalar expression that
measures the skill’s advancement in continuous time. The
skill starts when s = 0, while s = 1 implies the skill
has reached its end goal. This paper assumes that s is
an increasing function in the nominal situation i.e. in the
absence of disturbances. As an example, consider again the
path-following skill of Figure 2. Assuming the robot tracks
the path by following a target pose generated by a motion
profile, the progress variable is simply s =

χfpv

L where χfpv
denotes the coordinate along the path and L denotes the path
length. A progress constraint can be specified such that s
increases with a constant speed. As the motion profile is a
function of the path coordinate χfpv , the task constraints will
enforce the robot end-effector to track the generated pose
while satisfying the constant progress speed in a nominal
situation. In general, the progress variable of a given skill
can be mathematically expressed as a function of the joint
and feature variables s = f(q, χf).

Although the separation of task and progress constraints is
useful to achieve different behaviors, specifying a progress
constraint is not applicable to all skills. This is because
not every skill has an explicit measure of advancement. For
example, skills that solely performs reactive behavior upon
disturbance such as collision avoidance or admittance motion
do not actually ”make progress” as time elapses. For these
types of skill, progress constraints do not exist.

D. Classifying a Skill Based on its Progress

As different skills produce different behaviors, how their
progresses are defined may be different. Based on the prop-
erty of their progress variables, we analyze and classify
different types of skills. Such classification is needed in
determining whether two skills can be composed together
using the patterns proposed in Section IV.

The different skill types along with their examples are
summarized in Table I. The left column (Type-I) describes
the first category of skills whose progress can be expressed
as a function of the optimization variables q and χf . We say
that that their s values are instantaneously observable and
controllable. The second group (Type-II) are skills that, in
nominal condition, have increasing progresses, but the values
are neither observable nor controllable. These skills typically
finish upon detecting certain events. An example is guarded
motion, i.e. a skill that approaches an object with unknown
location and stops as soon as contact is made. As the skill
runs, it becomes closer to the object, thus the progress
increases. But due to the unobservable end state, its value can
not be quantified. Finally, the last group (Type-III) belongs to
skills that do not have defined progresses, therefore lack the

progress constraints. These skills typically do not produce
any motion in a nominal condition, but perform reactive
motion in the presence of disturbance. An example is an
admittance motion skill where the robot only moves when
force is applied. Since these types of skills do not make
progress by themselves, they are commonly composed in
parallel with progressing skills.

IV. COMPOSING BEHAVIORS WITH COMPOSITION
PATTERNS

More complex reactive behaviors can be programmed
by means of composing skills. This paper focuses more
on composability in continuous level while assuming that
the discrete-level composition can be simply specified with
well-known coordination models such as finite-state machine
(FSM) or behavior trees.

We consider more involved parallel behaviors in which the
composed skills are not just running independently, but they
are governed by coordination schemes, namely composition
patterns. Each pattern results in a different composition
behavior with well-defined semantics such that application
developers can reuse them for their target applications.

Formally, a composition pattern CP can a viewed as a
function that maps two skills into a new composed skill:

CP : S × S → S (3)

where S denotes the skill set. Application developers can
create increasingly more complex behaviors by composing
multiple patterns. For example, given two different compo-
sition patterns CP1 and CP2, more complex compositions can
be created:

CP1 ◦ CP2 : (S × S)× S → S (4)

A. Progress Synchronization Patterns

These patterns are motivated by tasks that require time-
domain synchronization of robot behaviors. In such tasks,
the active skills not only run simultaneously, but they have
to reach their goals in a synchronized manner. In general,
these patterns handle such problems by imposing constraints
on the skills’ progress variables. Here, we propose two
synchronization patterns.

1) Master-Slave Synchronization: This mode is useful
when a task requires one skill to follow another’s progress.
The skill that is assigned a ”master” role may progress
independently with respect to the ”slave” skill. When the
master skill is perturbed, the slave skill has to adjust its
progress variable accordingly to maintain a synchronized
motion. In eTaSL, the constraint that realizes this pattern
is imposed on the slave’s progress variable:

c = 〈e = sslave, ed = {ṡff
master, smaster},Cproportional〉 (5)

where Cproportional ∈ Cr is a controller that satisfies (2).
This pattern can be viewed as an operation that is applied to
two skills S1, S2 ∈ S:

ComposeMasterSlave : S1× S2→ S3 (6)

7090

TABLE I
DIFFERENT SKILL CLASSIFICATION BASED ON THEIR PROGRESS VARIABLE PROPERTIES

Type-I: Skills with controllable progress Type-II: Skills with uncontrollable progress Type-III: Non-progressing skills

• The progress variable is instantaneously
observable and controllable

• Varying the progress variable moves the
skill along its task space

• Example: Cartesian motion with motion
profile

• The progress variable can not be instan-
taneously determined and controlled

• Reaching the goal condition is only
known upon an event detection

• Example: guarded motion

• The progress variable can not be defined
• Complement the progressing skill to ac-

tually achieve a task
• Examples: admittance, collision avoid-

ance

where the master, S1, can be either Type-I or Type-II skill
while the slave, S2, is a Type-I skill to ensure controllability.
This operation results in a composite skill, S3, which inherits
the master skill’s type.

2) Peers Synchronization: In contrast to the previous
mode, where the slave skill follows the master skill’s
progress, this mode does not assign a ”master” nor ”slave”
role. Both skills have to converge together to a common
progress state, in such a way that one skill adapts when
the other is perturbed. This pattern is realized by imposing
constraints on each skill’s progress variables with:

c = 〈e = si, ed = {ṡff
i , sj},Cproportional〉 (7)

where i and j are the indices of the two composed
skills. The progress of skill-i evolves such that it follows
its own feedforward term ṡff

i and react to the difference
to its peer’s progress sj . This behavior is similar to the
consensus algorithm presented in [15] applied to a simple
two-agents scenario. The cooperating agents try to converge
to a common information state - a progress variable in this
case. This pattern operates on two skills:

ComposePeers : S1× S2→ S3 (8)

where the composed skills S1 and S2, and the resulting skill
S3 all belong to Type-I.

B. Weight Scaling Pattern
The last composition pattern is intended for composing

a progressing skill with a non-progressing counterpart. This
pattern is useful for combining nominal with a reactive skill
behaviors when their constraints are not compatible with
each other’s. For example, consider the composition of the
Cartesian motion skill of Figure 2 with an admittance motion
skill. We want a combined behavior such that the robot
moves its end-effector along the path, but reacts whenever a
human-induced force is applied by stopping its progress.

Combining the two skills by simply executing their con-
straints together does not result in the desired behavior. On
one hand, the Cartesian motion skill imposes the following
task constraint:

ccartesian = 〈e = Tworld
ee , ed = Tpath,Cproportional〉 (9)

where Tworld
ee is the robot’s end-effector pose expression w.r.t.

the world frame and Tpath is the target pose. On the other
hand, the admittance skill imposes:

cadmittance = 〈e = −KaT
ee
ee , ed = W ee

ee ,Cproportional〉
(10)

where Ka is the admittance matrix and W ee
ee is the measured

wrench applied by the human. The admittance skill moves
the robot end-effector with a scaled velocity proportional to
the applied wrench. When the force is absent, the Cartesian
motion skill enforces the robot to move along the path
while the admittance skill enforces the robot to stop. These
conflicting constraints result in an undesirable behavior.

This composition pattern addresses this problem by means
of varying the skills’ weights. In the nominal condition with
no disturbance, the pattern assigns a higher weight to the
progressing skill. Meanwhile, in the presence of disturbance,
the reactive, non-progressing skill gets a higher weight. The
weights allocation is done by following a smooth function
to avoid unwanted jerky motion.

To this end, the weights are scaled with a sigmoid function
that changes value according to an activation signal ζ ∈ R.
In the case of Cartesian motion with admittance skill, the
activation signal can be the norm of the measured wrench
ζ = ||W ee

ee ||. In this paper, we choose a hyperbolic tangent
function wscaling = tanh(αζ), where α is a scalar parameter
to adjust the sigmoid’s steepness. The skills’ weight factors
are then scaled accordingly, resulting in:

w̄composition =

[
(1− wscaling)S 0

01×2 wscaling

] w̄it
w̄ip
w̄jt


(11)

The superscripts i and j denotes the weights for the progress-
ing and non-progressing skills, respectively. S ∈ R2×2 is a
diagonal, selection matrix whose elements can be set to ‘0’
or ‘1’ in order to select whether the scaling is applied to the
task or progress constraints. This pattern can be expressed
as an operation that is applied to two skills:

ComposeWeightScaling : S1× S2→ S3 (12)

7091

big rotor

small rotor

housing

Fig. 4. The rotary compressor parts to be assembled. Note that the detail
of the rotors’ helical meshing is not visible.

where S1 can be either Type-I or Type-II skill, while S2 is
a Type-III skill. Applying this operation results in S3 that
inherits S1’s type.

V. EXPERIMENTAL VALIDATION

This section reports the results of an assembly task per-
formed by skills that were composed and executed with the
proposed framework. The goal of the experiment is to show
how the framework is applied to specify skills and their
compositions in the presence of disturbances.

A. Problem scenario

We consider an assembly task of an industrial compressor
which consists of two rotors as shown in Figure 4. The
experiment is performed by a dual-arm setup consisting
of a KUKA LBR iiwa and a LWR4 robots that are po-
sitioned in proximity. The two robots’ workspace overlap
such that collision can occur. Each robot assembles one
rotor into the compressor housing and they both execute
the task simultaneously in order to minimize idle time. In
addition to collision between the robots, another non-nominal
disturbance is the presence of human exerting force to the
robot during execution time.

B. Implemented skills

1) Cartesian Motion: The Cartesian motion moves a
designated end-effector frame from an initial to target pose.
In order to obtain a smooth motion, a trapezoidal motion
profile is defined to generate a Cartesian path as a function
of a feature variable Tpath = f(χfpv). Tpath is equal to the
target pose when χfpv = tend, where tend is the total duration
of the motion profile. A progress constraint is imposed to
χfpv such that its value increases as time elapses. This skill
belongs to the Type-I category, with a progress function that
can be instantaneously evaluated and controlled.

2) Force-Based Insertion: Due to their tight clearance, the
rotors assemblies are difficult to perform using a position-
based skill. Therefore, they need to be assembled using a
sensor-based skill that continuously checks the contact force.
We specify the skill using the task constraints as described
in [7]. This skill also belongs to the Type-I category.

3) Collision Avoidance: The collision avoidance skill is
specified by imposing inequality constraints to the closest
distance between two pairs of shape primitives. These shape
primitives approximate the robot links and they are usually

modeled with simple geometry e.g. boxes or capsules to re-
duce computation cost. Due to its non-progressing behavior,
this skill belongs to the Type-III.

4) Admittance Motion: Another Type-III skill that we
implemented is a reactive skill that performs admittance
behavior by reacting to an external force disturbance. In our
experiment, this skill is used to reject the disturbance applied
by a human.

C. Composing the Skills

By knowing the expected skill behaviors and their types,
the application developers can compose them with the appro-
priate patterns. We developed the application by first creating
a sequential composition of the nominal skills i.e. the skills
that each robot executes without considering disturbances.
The sequences are specified with the FSM model proposed
in [16]. The second step is to compose the nominal skills
with the reactive skills to address the human disturbance. To
this end, weight scaling pattern is used for combining the
admittance with the Cartesian motion behaviors.

The rotors need to be assembled one at a time to avoid
collision. Therefore, when the two robots are about to collide,
one needs to be prioritized over the other. In eTaSL, this
can be realized by assigning different priorities or weights
between the two robots’ skills. Here, we opted for applying
different weights such that the LBR iiwa has more priority
than the LWR4 robot. Furthermore, for each progressing
skills, larger weights are assigned to the task constraints
relative to the progress constraints. This way, the robot stays
close to its task space in the presence of disturbance or when
the other robot pushes it back. The resulted composed skills
is visualized as a simplified state diagram shown in Figure 6.
The diagram shows the sequential transitions between skills
as well as pairs of skills that are subject to composition
patterns. In order to demonstrate the synchronization be-
havior, we impose a master-slave pattern to the pre-picking
task of the LWR4 with the pre-insert task of the LBR iiwa.
The experiment shows that the composed skills successfully
perform the assembly tasks. The snapshots of the robots
performing is shown in Figure 5.

D. Analyzing the Composition Behaviors

1) Combination of the Cartesian Motion and Admittance
Behaviors: The weight scaling pattern is used in combining
the nominal Cartesian motion and the admittance behavior
during the pre-picking subtask of the small rotor. Here, the
pattern uses norm of the measured wrench as the activation
signal. This causes a change in the weights between the two
skills, as shown in Figure 7 (normalized for readability). The
disturbance were applied twice: between t = 3.4 to 6.2 and
t = 10.7 to 12.3 seconds. Note that we did not compensate
for robot’s dynamic force, therefore the measured force
values are not zero outside the disturbance period. As the
force increases, the Cartesian motion skill’s weight reduces
while the admittance’s weight increases. When the force is
large enough, the robot gets pulled from its nominal progress,
as shown in the bottom plot of Figure 7.

7092

Fig. 5. Snapshots of the assembly process. Each robot performs a sequence of gripping and inserting the rotor. Human disturbance is acting on the LBR
iiwa robot (iii).

Fig. 6. The overall sequential and parallel compositions for the rotors assembly task. Description about each block is provided in the bottom right part
of the figure. The arrows denote sequential skill transitions.

TABLE II
COMPARING THE FEATURE BETWEEN FRAMEWORKS

Feature our framework Pedersen [1] Thomas [2] Stenmark [3] Nagele [4]

Skill implementation eTaSL TFF, motion planner TFF iTaSC, robot primitives iTaSC
Continuous-level composition parallel, coupled n/a n/a n/a parallel, independent

Discrete-level composition FSM sequencer statechart FSM, sequencer statechart
Constraints resolution priority, weight n/a n/a n/a priority

Task & progress constraints separation yes no no no no
Domain-specific Language no no yes no yes

2) Synchronization Behavior of two Cartesian Motion
Skills: The pre-insert task of the small rotor is synchronized
with the pre-pick task of the big rotor using the master-
slave pattern (Figure 5.v). Here, the pre-pick task of LWR4
is assigned the ”master” role while the pre-insert task of
LBR iiwa is assigned the ”slave” role. Their progress evo-
lution is plotted in Figure 8. These two skills started at a
different time. The pre-picking task is already active from
the beginning of the experiment, but is unable to progress
for some time (between t = 13 to 25 seconds) due to the
more prioritized LBR iiwa obstructing its path. As soon as

it can proceed, the progress increases again and the LBR
iiwa makes the transition from post-pick to pre-insert tasks
(t = 25.6 seconds). Since the pre-insert task is subject to the
master-slave synchronization, it quickly tracks the master’s
progress. The plot shows that the synchronization is achieved
with small progress error.

VI. DISCUSSION AND CONCLUSION

This paper proposes a skill-based programming framework
that enables application developers to compose reactive be-
haviors that handle disturbances and synchronization con-

7093

0 2 4 6 8 10 12 14
0

20

40

m
ea

su
re

d
fo

rc
e

(N
)

0 2 4 6 8 10 12 14
0

0.5

1

no
rm

al
iz

ed
 w

ei
gh

t

cartesian
admittance

0 2 4 6 8 10 12 14

experiment time [seconds]

0

0.5

1

sk
ill

 p
ro

gr
es

s

Fig. 7. The scaled skill weights during pre-picking task of the small rotor.
The disturbance force and the skill progress are also shown.

0 5 10 15 20 25 30

experiment time [seconds]

0

0.2

0.4

0.6

0.8

1

sk
ill

 p
ro

gr
es

s

pre-insert small rotor (LBR iiwa)
pre-pick big rotor (LWR4)

Fig. 8. The evolution of the skill progresses under master-slave synchro-
nization pattern.

straints during the task execution. A skill specification that
separates the task and progress constraints is modeled. Dif-
ferent skill types are classified based on how their progress
is determined. Non-trivial composition of skills is performed
by applying reusable composition patterns.

A comparison between our framework and the state of the
arts [1] [2] [3] [4] is outlined in Table II. Our framework’s
main advantage is the higher composability in continuous
level that allows to specify parallel and coupled behaviors.
This composability is either not addressed or not formalized
in [1] [2] [3]. Other frameworks are more flexible in the
skill implementation. For example, [3] allows to use both
iTaSC and robot-specific motion primitives to realize a skill.
However, such flexibility also introduces problems when
multiple skills are composed and executed together. When
there are conflict between the skills, it is more difficult to
resolve which skills should be prioritized. Due to its stronger
ties with the underlying constraint-based task specification
framework eTaSL, our work can use both priorities and
weights to address this issue. As a topic for future work,
we recommend the introduction of a domain-specific lan-
guage (DSL) to support formal verification, as available in
frameworks [2] and [4].

A test case of compressor rotors assembly performed by a
dual-arm robot setup is evaluated to verify the effectiveness
of the framework. The assembly task is subject to non-
nominal conditions including the collision between the two

robots, perturbation by a human, and a synchronization
constraint between selected skills. Desired deviating behavior
is obtained by properly assigning different weights/priorities
to the composed skills. The composition patterns facilitate
combining nominal and reactive skill behaviors as well
as achieving synchronization of the skills’ progress. The
experiment shows successful execution of the assembly task.

ACKNOWLEDGMENT

The work reported in this paper was supported by Flanders
Make SBO PROUD and MULTIROB in Belgium.

REFERENCES

[1] M. R. Pedersen, L. Nalpantidis, R. S. Andersen, C. Schou, S. Bøgh,
V. Krüger, and O. Madsen, “Robot skills for manufacturing: From
concept to industrial deployment,” Robotics and Computer-Integrated
Manufacturing, vol. 37, pp. 282–291, 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.rcim.2015.04.002

[2] U. Thomas, G. Hirzinger, B. Rumpe, C. Schulze, and A. Wortmann,
“A New Skill Based Robot Programming Language Using UML
/ P Statecharts,” IEEE International Conference on Robotics and
Automation (ICRA), pp. 461–466, 2013.

[3] M. Stenmark and E. A. Topp, “From demonstrations to skills for
high-level programming of industrial robots,” AAAI Fall Symposium -
Technical Report, vol. FS-16-01 -, pp. 75–78, 2016.

[4] F. Nagele, L. Halt, P. Tenbrock, and A. Pott, “A prototype-based skill
model for specifying robotic assembly tasks,” in IEEE International
Conference on Robotics and Automation (ICRA), 2018.

[5] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” pp. 500–505, 1985.

[6] O. Brock and O. Khatib, “Elastic Strips: A Framework for Motion
Generation in Human Environments,” The International Journal of
Robotics Research, vol. 21, no. 12, pp. 1031–1052, 2004.

[7] H. Bruyninckx and J. De Schutter, “Specification of force-controlled
actions in the ”Task frame formalism” - A synthesis,” IEEE Transac-
tions on Robotics and Automation, vol. 12, no. 4, pp. 581–589, 1996.

[8] J. D. Schutter, T. D. Laet, J. Rutgeerts, W. Decre, R. Smits, E. Aertbe-
lien, K. Claes, and H. Bruyninckx, “Constraint-based Task Specifica-
tion and Estimation for Sensor-Based Robot Systems in the Presence
of Geometric Uncertainty,” The International Journal of Robotics
Research, vol. 23, no. 3, pp. 433–455, 2007.

[9] R. Smits, T. De Laet, K. Claes, H. Bruyninckx, and J. De Schutter,
“iTASC: a tool for multi-sensor integration in robot manipulation,”
in 2008 IEEE International Conference on Multisensor Fusion and
Integration for Intelligent Systems. IEEE, aug 2008, pp. 426–433.

[10] E. Aertbeliën and J. De Schutter, “ETaSL/eTC: A constraint-based task
specification language and robot controller using expression graphs,”
in IEEE International Conference on Intelligent Robots and Systems,
2014, pp. 1540–1546.

[11] N. Mansard, O. Stasse, P. Evrard, and A. Kheddar, “A versatile
Generalized Inverted Kinematics implementation for collaborative
working humanoid robots: The Stack Of Tasks,” in Advanced Robotics,
2009. ICAR 2009. International Conference on, no. 8, 2009, pp. 1–6.

[12] L. Halt, F. Nagele, P. Tenbrock, and A. Pott, “Intuitive constraint-
based robot programming for robotic assembly tasks *,” in IEEE
International Conference on Robotics and Automation (ICRA), 2018.

[13] M. R. Pedersen, L. Nalpantidis, A. Bobick, and V. Krüger, “On the
Integration of Hardware-Abstracted Robot Skills for use in Industrial
Scenarios,” 2nd International IROS Workshop on Cognitive Robotics
Systems: Replicating Human Actions and Activities, 2013.

[14] M. Stenmark, M. Haage, and E. A. Topp, “Simplified Programming of
Re-usable Skills on a Safe Industrial Robot: Prototype and Evaluation,”
ACM/IEEE International Conference on Human-Robot Interaction,
vol. Part F1271, pp. 463–472, 2017.

[15] D. Kingston, Wei Ren, and R. Beard, “Consensus algorithms are input-
to-state stable,” pp. 1686–1690, 2005.

[16] M. Klotzbücher and H. Bruyninckx, “Coordinating Robotic Tasks and
Systems with rFSM Statecharts,” Journal of Software Engineering in
Robotics, vol. 1, no. January, pp. 28–56, 2012.

7094

