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Abstract— The snake-like robot without wheels is a bio-
inspired robot whose high degree of freedom results in a
challenge in autonomous locomotion control. The use of a
Spiking Neural Network (SNN) which is a biologically plausible
artificial neural network can help to achieve the autonomous
locomotion behavior of snake robots in an energy-efficient
manner. Approaches that use an SNN without hidden layers
have been applied in the single-target tracking task. However,
due to the complexity of the 3D gaits on a wheel-less snake robot
and the imprecision of the pose control while in motion, they
have some fluctuation that adversely affects their performances.
In this work, we design two multi-layered SNNs with different
topology for a wheel-less snake robot to track a certain moving
object. The visual signals obtained from a Dynamic Vision
Sensor (DVS) are fed into the SNN to drive the locomotion
controller. Furthermore, the Reward-modulated Spike-Timing-
Dependent Plasticity (R-STDP) learning rule is utilized to train
the SNN end-to-end. Compared to the SNN without hidden
layers, the proposed multi-layered SNN with a separated hidden
layer shows its advantage in terms of robustness.

I. INTRODUCTION

With the increase in the demand for special-purpose
robots, especially in disaster rescue [1], space exploration [2],
and surgery [3], the bio-inspired snake robot has attracted
more and more attention. Various snake-like robots have been
developed for the purposes as mentioned, such as the snake
robot with wheels [4], the wheel-less snake robot [1], and
the crawler snake robot [5]. The corresponding locomotion
control approaches have been proposed as well, including
kinematic modeling [6], CPG controlling [7], etc. However,
the autonomous locomotion control of the wheel-less snake
robot remains a challenging and poorly solved issue, due to
the high degree of freedom and the use of complex 3D gaits.

To perform autonomous locomotion tasks consisting of
perception, decision making, and action, Spiking Neural
Network (SNN) provides a biologically plausible and energy-
efficient model [8]. It has two significant advantages: (1)
SNN is good at processing time-dependent patterns because
spikes processed and propagated in SNNs carry temporal
information. By using SNNs, fewer neurons are needed in the
controller than those of the classical neural networks [9]. (2)
SNN is able to directly process the visual spikes generated
by a DVS. Therefore, it can make full use of the properties
of DVS, such as detecting motion with low latency and high
dynamic range, to improve the perception ability of a robot
in mobile scenarios, especially for target tracking.

There have been numerous literature attempting to achieve
autonomous locomotion of a mobile robot by using SNNs. In
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Fig. 1. The framework of the SNN-based target tracking control on a wheel-
less snake robot. The accumulated frame of the DVS is encoded into spikes,
green points are positive events, yellow points are negative events. The ROI
is divided into 10 grids in blue without overlap. After processing by a SNN,
output spikes are decoded into control signals for snake robot. The relative
angle β between two modules is illustrated on the upper-left(β = −30◦).

one of these reports [10], a basic SNN only composed by an
input layer and an output layer was applied to autonomously
control an arm of a humanoid robot. Cao et al. [11] designed
an SNN-based controller to implement the target tracking on
an autonomous vehicle robot. Bing et al. [12] proposed a
reward assignment algorithm for training an arbitrary multi-
layered SNN and achieved autonomous target tracking on a
snake robot with passive wheels under a 2D slithering gait.
Compared to the 2D slithering gait, the 3D slithering gait
of the wheel-less snake robot will reduce the pose stability
and enlarge the shift range of the target in the camera view
while following a moving target.

However, researches on the SNN-based autonomous lo-
comotion control of a wheel-less snake robot are still rare.
Chen et al. [13] proposed a hybrid neuromorphic computing
paradigm and achieved semi-autonomous locomotion of a
wheel-less snake robot. In our previous work [14], a static
target tracking framework partly based on SNN was proposed
for a wheel-less snake robot. The SNN was only used to
detect the object so that it is a non-end-to-end model without
training.

In this work, we address the issue of SNN-based moving-
target tracking on a wheel-less snake robot. Two multi-
layered SNNs with different topology are designed to achieve
end-to-end target tracking, and further, a Dynamic Vision
Sensor (DVS) is utilized to perceive the target and encode it
as spikes that are fed into the SNN to drive the locomotion
controller of the snake robot. Furthermore, we use the R-
STDP learning rule to train a multi-layered SNN with a
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Fig. 2. The topology of the basic SNN.

unified hidden layer and another one with a separated hidden
layer, respectively. Finally, a basic SNN without hidden
layers is built as a benchmark for evaluating the tracking
performance of the proposed multi-layered SNNs.

II. METHODOLOGY

In the Neurorobotics Platform (NRP) [15][16], we create
the framework for target tracking control of a wheel-less
snake robot. This section describes the model of the wheel-
less snake robot mounted with a DVS, the SNN models, and
the R-STDP learning rule.

A. Simulation Environment

The simulation environment is built in NRP where a target
sphere with a radius of 30cm is spawned 1.6m in front of
a wheel-less snake robot, as shown in Fig. 1. The sphere
moves along a predefined trajectory, while the target moves
a little bit faster than the snake robot, but not further away
from the snake robot than the initial distance.

1) Wheel-less Snake Robot: The wheel-less snake robot
used in this work has 17 modules that are connected alter-
natively in dorsal and in lateral directions by using 1-DoF
revolute joints. The first module, namely the head module,
is a hollow cylinder where a DVS sensor is mounted. Unlike
a biological snake that can continuously curve its body, the
snake robot creates a 3D shape by rotating its joints along
a fixed axis in the range of [−90◦, 90◦]. This allows the
snake robot to perform 3D gaits inspired by motions of the
biological snake, such as slithering, rolling, and sidewinding.

In this work, the wheel-less snake robot moves under the
slithering gait [17] which is described in the equation:

αi =

{
PiAo sin(iΩo + tωo + δo) + Co, i is odd
PiAe sin(iΩe + tωe) + Ce, i is even

(1)

where αi is the joint position of the i-th joint (i ∈ [1, 16]),
P is the linear dependency, A is the amplitude, Ω is the
spatial frequency, ω is the temporal frequency, δ is the phase
difference, and C is the body offset, the subscript o indicates
the horizontal joint, e indicates the vertical joint. The robot
is easily controlled in which direction it should go by just
adjusting Co. In order to keep the orientation of the head
module parallel to the movement direction, a compensation
Ccompensation is applied to the first joint so that the DVS
can always sense the environment in front of the snake robot
while moving. As a result, objects in front of the robot will
periodically change their position in the horizontal direction
throughout the movement.

2) Neuromorphic Vision Sensor: The Dynamic Vision
Sensor (DVS) is a neuromorphic vision sensor, also known
as an event-based camera [18]. In contrast to frame-based
sensors, DVS outputs asynchronously events that respond to
the change in brightness in the order of microseconds. For
each pixel, only if the difference of brightness exceeds a
certain threshold, a spike is emitted. The spikes are encoded
as Address Event Representations (AERs), that is, each spike
can be represented as a tuple (x, y, t, p). (x, y) is the position
of the triggered pixel, t is the timestamp, and p is the polarity
of event, +1 indicates the positive spike while -1 indicates
the negative one. A simulated DVS with 128×128 pixels was
applied in this work.

B. Basic SNN Architecture

The purpose of building a basic SNN is to set up a
benchmark for evaluating the performance of multi-layered
SNNs. Getting inspired by [10][19], we design an SNN
without hidden layers for our wheel-less snake robot as
shown in Fig. 2. This basic SNN consists of ten Poisson
neurons as spike encoders, ten LIF input neurons and two
LIF output neurons, and two more spike detectors. Input
neurons and output neurons are fully connected by R-STDP
synapses, while Poisson neurons and spike detectors are
connected to the main body by one-to-one connections with
static synapses. A Poisson neuron is regarded as a spike
generator that transforms numerical values into spike trains
with a proportional firing rate to drive an input neuron. In
order to parrot these spikes to pass through the input layer,
we set the refractory period of input LIF neurons to zero
and set their threshold voltage close to the resting voltage.
Finally, spike detectors collect the spikes generated by output
neurons to spike decoders directly connecting with the robot
controller.

C. Multi-layered SNN Architecture

Different from SNNs without hidden layers, a multi-
layered SNN is composed of an input layer, an output layer,
and at least one hidden layer. We designed two multi-layered
SNNs as shown in Fig. 3 and Fig. 4, respectively. Both of
them have a separated input layer and a separated output
layer, aiming to control the head module and other modules
in two phases. Ten input neurons responsible for processing
DVS spikes and obtaining the position of the target in the
image plane are grouped into the first layer. Six input neurons
used for gathering the joint positions and two output neurons
make up the second layer. The output neurons in the second
layer are responsible for controlling the head of the snake
robot to face the target, while the output neurons in the last
layer are responsible for controlling the movement direction
of the snake robot body to follow the target. The idea behind
this is the processing of the data from different sensors in a
hierarchical order before fusing in the hidden layer.

The difference between two multi-layered SNNs is
whether it has a unified hidden layer. As shown in Fig. 3, its
hidden layer is unified and consists of eight neurons. Neurons
in the hidden layer are fully connected to output neurons.
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Fig. 3. The topology of the multi-layered SNN with a unified hidden layer.
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Fig. 4. The topology of the multi-layered SNN with a separated hidden
layer.

In contrast, the SNN as shown in Fig. 4 has a separated
hidden layer. Neurons in the left part of the hidden layer
are connected to the left output neuron while neurons in
the right side are connected to the right output neuron. The
separated hidden layer means less interaction between two
output neurons.

D. Data Encoding and Decoding

In order to drive an SNN, data from sensors need to
be encoded as spikes which can be understood by spiking
neurons, and control signals need to be decoded as values
to control motors. All data is updated at a fixed simulating
timestep that is 20ms in our case.

Different from the real DVS, the DVS in NRP outputs the
significant difference of intention between two consecutive
image frames so that all events occur at the same time. We
first select a ROI and then divided it into 2×5 grids, as shown
in Fig. 1. We use the grid with five columns so that there
is a column in the middle of the view. The major benefit is
reducing the fluctuation of the control signal when the target
is right in front of the snake robot. Each grid is corresponding
to a Poisson neuron. We set the firing rate of Poisson neurons
to a certain frequency that is the product of the number of
spikes Nevent occurred in each grid and the frequency of
data updating. Hence, the firing rate f is calculated by

f = Nevent/tstep (2)

Moreover, three pairs of input neurons in the second layer
of the multi-layer SNN are used to encode the joint position
of the first, third, and fifth joint, respectively. According to
Eq. 1, these horizontal joints can provide information about

the pose of the snake robot in the horizontal plane under the
slithering gait. Each joint position is encoded by a pair of
Poisson neurons, one for the positive angle and the other for
the negative angle. It means that only one Poisson neuron is
active at a time so that the firing rate of a pair of Poisson
neurons is given as follows:

fP = max(0, kα), fN = max(0,−kα) (3)

where fP represents the firing rate of the Poisson neuron for
the positive angle, while fN is that for the negative angle. α
is the joint position and k is a positive coefficient. This can
be interpreted as the neuron activity, releasing the antagonist
and the agonist simultaneously. Taking Fig. 1 as an example,
the joint position β, the rotating angle of module 3 to module
4, is negative so that fP is 0 and fN is positive.

For decoding, the output of the network is represented by
a pair of neurons as well. The difference of the spike number
between two output neurons in each simulation time period
is decoded as the turn direction, then normalized by using
the total number of spikes occurred on both neurons, which
is shown as follows:

Dnorm = (Nr −Nl)/(Nr +Nl), Dnorm ∈ [−1, 1] (4)

where Nr is the spike number of the right neuron and Nl

is the spike number of the left one, Dnorm represents the
intention of changing the current direction.

In order to avoid bursts of the turn direction, we apply a
filter to smooth it. Dt, the final turn direction, is given by

Dt = min(1,max(−1, (Dt−1 + ηDnorm))) (5)

Where η is a constant coefficient that defines how aggres-
sively the direction can be changed. Dt is always in the range
of -1 to 1, which can be projected to a turning angle as the
robot has a finite steering range.

E. Reward function for R-STDP learning

1) Reward-modulated Spike-Timing-Dependent-Plasticity:
Reward-modulated spike-timing-dependent-plasticity is de-
rived from neuroscience studies. In this model, the weight
change of a synapse is calculated by the eligibility trace
of STDP and a supervised signal areward from a dopamine
neuron. The mechanism of R-STDP can be described by the
following equations [20][21][22].

The eligibility trace of STDP is defined by

ċ = − c

τc
+ STDP (∆t)δ(t− spre/post) · C1 (6)

where τc is the time constant, δ(t) is the Dirac delta function,
spre/post is the time when a pair of pre- and post-synaptic
spikes occurs, and C1 is a constant coefficient. Only when the
pre-synaptic spike occurs before the post-synaptic one within
a time window, will the eligibility of the STDP increase.
Then, the dynamics of the reward are described by

ṅ = − n

τn
+
δ(t− sn)

τn
· C2 (7)

where n is the neuromodulator concentration, τn is the time
constant, sn is the release time of the neuromodulator, and
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Fig. 5. Tracks of the target. (a) is for training, (b) and (c) are for testing. The wheel-less snake robot starts moving at point (-5.0, 0.0), and when each
training episode finished, the track will be axisymmetric about the x-axis.

C2 is a constant coefficient. If b is defined as the baseline
concentration of the neuromodulator, the weight change is
then given by

ẇ = c · (n− b) (8)

2) Reward Assignment: Finding a suitable reward func-
tion is crucial for the successful training of SNNs. In this
work, rewards for output neurons are defined by the angle
between the moving direction of the robot and the target:

rright = −rleft = atarget · Creward (9)

where rleft and rright are the rewards for the left and
right output neuron, respectively, atarget is the angle to the
target, and Creward is a positive coefficient. In other words,
synapses connected to the left neuron get the same positive
reward when atarget is negative, and vice versa. It means
the neuron on the same side as the target will get rewarded
while the other side will get punished.

Moreover, to propagate rewards to the hidden layers of
SNNs, a method similar to the back-propagation algorithm
used in the previous study [12] is also employed. The reward
for the j-th neuron in the i-th layer counted from the output
layer is given by

ri,j =

∑ Yi�1

k=1 (ri−1,k · wi,j,k)

max (|wi,j,1|, |wi,j,2|, . . . , |wi,j,Yi�1 |) · Yi−1
(10)

where Yi−1 is the number of neurons in the (i− 1)-th layer,
ri−1,k is the reward of the k-th neuron in the (i − 1)-th
layer, wi,j,k is the weight of the synapse that connects the
k-th neuron of the (i−1)-th layer and the j-th neuron of the
i-th layer. We take the SNN shown in Fig. 3 as an example,
each neuron in the hidden layer has two outgoing synapses.
Thus, the reward for the hidden layer is calculated by

rh =
rl · wl + rr · wr

max(|wl|, |wr|) · 2
(11)

where rl and rr are the rewards for the left and right neuron,
respectively, wl and wr are the weights of the synapse
connected to the left and right output neuron, respectively.

III. EXPERIMENTS
Experiments for moving-target tracking were conducted

in the Neurorobotics Platform (NRP). This section describes
differences between experimental setups and shows the re-
sults of the training phase. To train the networks, an 8-like
path of the target is used as shown in Fig. 5(a). The wheel-
less snake robot would be trained by several episodes in
which the robot would follow the target moving alternatively
in clockwise and counterclockwise.
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Fig. 6. The changes in weights of the basic SNN as the dopamine
concentration (reward) decreases during training.

A. Benchmark Experiment

The basic SNN described in Sec. II-B was trained first as
a benchmark for testing performances of the proposed multi-
layered SNNs. The training for the first episode finished at
the 151093 simulation steps, for a period of 3021.86 seconds,
which shows the ability of the basic network in completing
the tracking task. Althouth the reward signals are decreasing,
the weights were still changing strongly. After completing
the second episode in the symmetric track, the training
process stopped after the weights gradually getting stabilized.
Fig. 7(a) shows the weight changes over the whole training
period, the rewards given to the output of the network, and
the mean angle and distance to the target over time.

B. Basic SNN with Head Controller

To avoid failures that could occur when the target moves
out of the field of view, we added a head facing component
into the basic SNN. The new network would control the
moving direction and also the facing direction of the head
module of the snake robot. Thus, an additional pair of output
neurons is added to steer the head in a similar architecture
to the other two output neurons in Fig. 2.

For this setup, the factor η described in the Sec. II-D is
0.02 for the head and 0.07 for the body, while the factor
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(a) The basic SNN
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(b) The basic SNN with Head Controller

Fig. 7. The performances of the basic networks in training. The green
curve is the mean angle of the head, the blue one is the mean angle of the
body, and the red one is the distance to the ball. The angle is the same as
the Body angle in case (a).

Creward is 0.0004 for the head and 0.0001 for the body.
The reward assigned to the head controller corresponds to
the angle of the head to the target. For the body controller,
the reward is proportional to the angle between the body and
the target which is calculated by

abody = ahead − dhead (12)

where ahead and abody are the angles the head and the body
make to the target, respectively, dhead is the compensation
related to the output of head controller to make the head
of the snake robot face the target. In this case, the robot
gets reset if the absolute value of either ahead is bigger than
40◦ or the average of abody is greater than 35◦ within 625
simulation steps, which is a movement period of the snake
robot to move its head from one end to the other and then
move back.

As shown in Fig. 7(b), this setup performs quite well at
the beginning because the rewards change weights strongly
enough and the target moves along a straight line away from
the snake robot. However, when the target moves in the
ladder path, the network gets more and more unstable. The
training stops several times resulting from the failure occurs
shortly after the start of the episode. It suggests that either
the network is not complex enough or the information for
the input of the SNN is not sufficient.

C. Multi-layered SNNs

The above experiments suggest that a basic network lacks
the complexity to solve this task, therefore two kinds of
multi-layered SNN were built. Since the head controller
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Fig. 8. The weight changes of the synapse connected to the body output
of SNN with a unified hidden layer and the performance of the SNN with
a unified hidden layer in training.
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Fig. 9. Performance of the SNN with a separated hidden layer in training.

worked well, the head output neurons would still be utilized.
These two output neurons and six neurons in charge of
encoding the joint angles make up the hidden layer. Head
output neurons only use the visual signals to estimate the
target direction in the image plane, then the body output
neurons utilize both the target direction and the angles of
the partial joints to adjust the pose of the robot body.

1) Unified Hidden Layer: For synapses connected to the
hidden layer, we used a larger τc to accumulate the STDP
eligibility over a larger time span. Consequently, the synapse
remembers information for a long time, which can trigger
the post-synapse neuron more frequently. On the other hand,
both the LTP and LTD window of STDP were scaled down
by the same factor τc to avoid drastic changes in the weights.

For this setup, the training phase was much longer than
the basic SNN. Fig. 8(a) shows the weight changes lessen
over time in this setup. As shown in Fig. 8(b), both the head
angle and the mean body angle with peaks of around 25◦

get stable at the end of the training.
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Fig. 10. The performance of the basic SNN, the SNN with a unified hidden layer, and the SNN with a unified hidden layer (from upper to lower) in
testing. The left column is the results testing on the ladder track, and the right colums are the results testing on the zigzag track. Angle Head is the real
angle between the head of the snake robot and the target, Direction Head and Direction Body are the values decoded by the head output neuron and the
body output neuron, respectively.

2) Separated Hidden Layer: We trained the SNN with a
separated hidden layer by using almost the same parameters
as that one with a unified hidden layer. As shown in Fig. 4,
the hidden layer was split into two groups with four neurons
each and all outgoing connections from a group connect to
only one output neuron. Hence, Eq. 11 can be simplified to

rhr
= ror · wr/|wr|, rhl

= −rol · wl/|wl| (13)

where rhr
and rhl

are the rewards for the hidden layer
connected to the right output and the left output, respectively.
ror and rol are the rewards for the right output neuron and
the left output neuron, respectively. wl is the weight of the
connection from a neuron in the left hidden layer to its
output, and wr is the weight of the connection from a neuron
in the right hidden layer to its output. This simplification is
the result of hidden neurons influencing only one body output
neuron. Training this SNN is also time-consuming and the
overall performance is comparable as shown in Fig. 9.

IV. TESTING RESULT

To test the performance of the trained networks two
different paths for the target are designed as shown in
Fig. 5(b), they have a similar curvature as the training path.
Both the original paths and the symmetric paths are tested.

A. Performance

Fig. 10 illustrates the performances of the basic SNN,
the SNN with a unified hidden layer, and the SNN with a
separated hidden layer, respectively. Charts in the left column
were tested on the ladder track while those on the right side
were tested on the zigzag track. First, the basic SNN finished
the test without any failure, even when the path was mirrored
on the horizontal axis. The mean angle between the head
of the snake robot and the target ball rarely surpasses an
absolute value of 4◦. In this case, the head angle and the body
angle are almost the same. The direction of the head which
is the value decoded by the head output neurons is zero, but
the direction of the body reaches the range limitation several
times. It means that the parameter for the gait controller
should be adjusted frequently to move towards the target.
Then, the network with a unified hidden layer was not able
to perform at all and never made it to the first episode. The
simulation was reset in every 50s when the SNN failed due
to the very high trend to go right of the snake robot. Finally,
the SNN with a separated hidden layer performed well and
kept the absolute mean angle of the head below 2◦. Although
the body angle was changing in a larger range than the basic
SNN, the directions responsible for adjusting the parameters
for the gaits of the snake robot dropped dramatically. It
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means that we can use fewer control signals with smaller
parameter change to achieve autonomous target following
on the wheel-less snake robot by using the proposed SNN
with a separated hidden layer.

B. Discussion

The results show that the basic network without hidden
layers is capable of navigating the snake robot to follow
the target, but it would fail when the target moves out of
the field of view. It cannot perform well when adding the
head controller to solve the target missing problem. After
adding the head controller to keep the head always facing the
target, the DVS input was found to be insufficient to make
output neurons excited. One reason might be the reduction of
generated events on account of less relative motion between
the head module and the target. Another reason is, the target
may not be in front of the robot when the target appears
in the central area of the DVS view. Therefore, additional
information, like the head joint position, has to be fused in
to distinguish the relative position of the target.

Nevertheless, the basic SNN with two kinds of output
neuron still performed badly when adding additional inputs
from joint encoders. In this more complex setting, neither the
DVS input nor the head joint positions can directly derive
an action on their own. Only with more information, like
the angle of other joints, and more complex network, a valid
decision can be made. This implicit the relationship between
so many inputs should be described by a more complex
network. This would also explain why none of the basic
networks with a head controller were stable.

More surprising was the bad performance of the SNN with
a unified hidden layer. Even though the weights have been
stable, it cannot control the robot. A possible reason is that
all synapses connecting the hidden layer to one output neuron
shared the reward and the synapses for left and right output
neurons had opposite polarity. Therefore, the reward signals
might weaken each other. The SNN with a separated hidden
layer could learn faster, as the weights of the hidden layer
were only adjusted for one neuron. It also performed better
with less direction fluctuations than the basic SNN.

V. CONCLUSIONS

In this paper, we design two multi-layered SNNs to
achieve the moving-target tracking control on a wheel-less
snake robot. The simulation experiments conducted in the
NRP demonstrated that the multi-layered SNN with a sepa-
rated hidden layer can achieve better tracking performance
than a basic SNN without hidden layers. Compared to the
basic SNN, the relative direction of the target to the robot is
with less fluctuation when using the multi-layered SNN with
a separated hidden layer, which means higher robustness and
less risk in missing target while the robot following.
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