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Abstract— Interactive decision-making and motion planning
are important to safety-critical autonomous agents, particularly
when they interact with humans. Many different interaction
strategies can be exploited by humans. For instance, they
might ignore the autonomous agents, or might behave as selfish
optimizers by treating the autonomous agents as opponents, or
might assume themselves as leaders and the autonomous agents
as followers who should take responsive actions. Different
interaction strategies can lead to quite different closed-loop
dynamics, and misalignment between the human’s policy and
the autonomous agent’s belief over the policy will severely
impact both safety and efficiency. Moreover, a human’s in-
teraction policy can change as interaction goes on. Hence,
autonomous agents need to be aware of such uncertainties on
the human policy, and integrate such information into their
decision-making and motion planning algorithms. In this paper,
we propose a policy-aware interaction strategy based on game
theory. The goal is to allow autonomous agents to estimate
humans’ interactive policies and respond consequently. We
validate the proposed algorithm with a roundabout scenario
with real traffic data. The results show that the proposed
algorithm can yield trajectories that are more similar to the
ground truth than those with fixed policies. Also, we estimate
how humans adjust their interaction strategies statistically
based on the proposed algorithm.

I. INTRODUCTION

Imagine that you are driving towards a narrow bridge
with another car from the opposite direction. The bridge
is narrow enough such that only one car can pass at a
time. You and the other car (agent) are driving at similar
speeds and are both away from the entrances at similar
distances. In this two-agent game, suppose that you know
exactly the other agent’s reward function, can you accurately
predict the agent’s behavior and plan for the best responses?
Unfortunately, the answer is no. There are multiple reasons
that prevent you from accurate prediction. A major one lies
in the uncertainties of the interaction strategies that the agent
is taking. In this game, the other agent can take either
cooperative strategies or competitive ones, or completely
ignores you, i.e., not interacting at all. Those different
policies can lead to quite different actions even though the
reward function is exactly known. Moreover, as interaction
goes on, the other agent might change the interaction policy.
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An inattentive driver might become attentive as you two get
closer, and a driver who behaves aggressively might become
conservative as your behavior is observed. Such uncertainties
and time-varying strategies can make the prediction of their
behaviors and the corresponding trajectory planning even
more challenging.

The illustrative example above revealed one general prob-
lem in a two-player game: with known reward functions,
the closed-loop dynamics of the game can have many dif-
ferent equilibriums due to different strategies of the players.
Some very popular equilibriums include Nash equilibrium
[1], Stackelberg equilibrium [2], and Pareto equilibrium [3].
Hence, to enable autonomous agents to effectively interact
with humans in human-robot interaction scenarios such as
driving, most of previous work has explicitly or implicitly
assumed a fixed strategy of the human and optimize for the
best action of the robot. For instance, Talebpour et al in [4]
studied a lane-changing scenario assuming non-cooperative
Nash strategies with V2V communication. On the other hand,
in [5]-[8], the authors bypassed this issue by assuming that
the human is an optimal agent which has direct access to
the robot’s future actions. However, such assumption is in
general too strong to hold in practice. In [9] the authors pro-
posed a nonlinear receding horizon game-theoretic planner
using Nash equilibrium and tested the algorithm using racing
cars in simulations. Similarly in [10], the Nash equilibrium
solution is adopted to generate human-like motions. Many
others used the Stackelberg strategy to model the interactions
between the human and robot, such as [11]-[14]. In [13], Li
et al adopted the k-level Stackelberg strategy to approximate
humans. In [15], the authors discussed the impact of four
different strategies over the interactions between a human
driver and a vehicle collision avoidance controller.

We define an interaction strategy as a solution type in a
two-agent game. Most of the work above has not explicitly
considered the uncertainties of interaction strategies, and
hence do not offer sufficient flexibilities for the autonomous
agents to deal with time-varying strategies of humans during
interaction. Moreover, no real traffic data has been utilized to
evaluate the effectiveness of different interaction strategies.

Our key insight is that humans are flexible and uncer-
tainty in terms of game strategies. Safety-critical autonomous
agents that interacting with humans need to be aware of
such uncertainties and time-varying strategies, and design
decision-making and motion planning strategies that can
adapt.

To address the aforementioned challenge, in this pa-
per, we propose a strategy-aware interaction algorithm for
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autonomous systems. We model the two-agent interaction
problem as a two-player game. At each time step, based
on observations, the robot agent updates its beliefs on
potential interaction strategies of the human. Five different
strategies are included in the strategy set to mimic different
sophistication levels of humans: a Nash competitive strategy,
a Pareto cooperative strategy, a Stackelberg strategy, a rule-
based strategy and an inattentive strategy (ignoring). With
such beliefs, a model predictive control (MPC) belief-space
motion planning is performed. We validate the proposed
algorithm on real traffic data, and estimate the statistical
results on humans’ selection of interaction strategies.

Our contributions in this work are summarized as follows:
A framework for strategy-aware interaction in games.
Instead of assuming a fixed interaction strategy, we pro-
pose an interaction algorithm allowing autonomous agents
to adaptively plan based on its estimate of the human’s
preferred solution types of the game. Such a framework
can effectively deal with potential uncertainties and time-
varyingness of the human’s interaction strategy, and thus
improve the safety and efficiency of the interaction.
Validation on real traffic data. We validate the proposed
framework on real traffic data in a roundabout scenario.
Through such validation, we collect the distributions of
humans’ interaction strategies over the specified five strate-
gies. Moreover, results show that the proposed algorithm
can achieve more human-like trajectories compared to other
algorithms with fixed strategies.

II. PROBLEM STATEMENT

We consider the interaction between two vehicles: the
ego vehicle (-)ego and the other vehicle (-)omer. We use
5=(Sego, Sother) tO represent the state variable, 4 for the
predicted action, v, for the ground truth action and 7y for
all the possible actions. The closed-loop dynamics of the
vehicles, which we assume to be fully observable [16], are
given by

t+1 t

&) = f(,yt’ Ségm S(;ther) (1

where 7%, s* denote, respectively, the action and state of the
vehicles at time t.

We assume that both agents are noisily rational optimizers.
Namely, at time step ¢, each of them (i#j€{ego,other})
is optimizing an individual finite-horizon (n steps) cost
function C; given by

n—1
Ci(yh) =D e(sh, 41+, 44 0,), )
k=0

and then execute the first action and repeat the process at
the next time step t+1. 6; characterizes the preference of
the vehicle 7. We can see that the optimal solution for agent
1 depends on its estimate over the other agent’s actions,
denoted by ’y;Jrk for k=0,--- ,n—1. Hence, in order to
find the best v!=arg max C;(7}), agent i needs to estimate
Ai=A5, - ,’yfr"_l] based on its belief over agent j’s
interaction strategy.

In practice, ~¢, st are all continuous. However, to facilitate
computation of the games, we discretize them. For instance,
the action (acceleration) space can be discretize into a list
with choices as a = [-2, 1,0, 1]m/s%.

III. MONTE CARLO TREE SEARCH UNDER DIFFERENT
GAME STRATEGIES

A. Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a heuristic-based
search algorithm. It has been widely used to solve many
game-theoretic problems such as the Go game in [17].

Based on the receding horizon algorithm, if the horizon
is n steps, we need to build a tree with depth of 2n + 1.
Specifically, the root node represents the initial state of the
two vehicles, with the odd levels for the decisions of the
ego car and even levels for that of the other car. At each
pair level, the two vehicles make decisions simultaneously,
as you can see in Fig. 1.

S(nitial)
Initial State

—

Fig. 1: A illustration of the search trees to solve a finite-
horizon optimization problem: the yellow root node repre-
sents the initial state of the two vehicles, and blue nodes
are the actions by the ego vehicle and green nodes are for
the other vehicle. Each paired layer in the red dotted box is
assumed to happen simultaneously.

Given the cost function in (2), we can design the cost
function for the tree search as follows:

Cuors(v) =C(y)+0- \% Nyisit/1og (N ) 3)

where n.i;; denotes the visit times of a certain children node,
and N denotes that of its parent node. 6 is a weighting factor
balancing between the exploration and exploitation.

B. Five Interaction Strategies

In this work, we consider five different interaction strate-
gies that the human might follow. The first three are theoretic
strategies whose equilibrium types are, respectively, Nash
(non-cooperative), Stackelberg (non-cooperative) and pareto
(cooperative). The remaining two are incomplete-information
approaches including a naive rule-based model (i.e., assum-
ing that the human thinks that the other agent is remaining
its current action through the horizon) and a ignoring policy
which depicts the situation when the target human does not
pay attention to the other agent. We simplify the notations
as: Nash, Stackelberg, Pareto, Constant, Ignore.
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1) Nash Strategy: In games, Nash equilibrium is a solu-
tion for a non-cooperative game where no player can gain
more utilities by changing only their own strategy [1]. Hence,
we need to find out the action sequences for both the ego
and the other agent which, respectively, minimize their cost
functions. The solutions should satisfy

’Yﬁ}* = argmancX ,’Y?_kv'Yy ;0x), “)
gh 0

7;/’* = argmanCY ,’YX 77§/+k GY) @)
Ty k=0

where (-)x and (-)y, respectively, denote the variables for
the ego vehicle and the other vehicle.
The search process with MCTS is described in Fig. 2.

S(nitia)

Initial State

X(3)
The ego car

Y\|X(»)

=1 The other car

Y@Ixw

Fig. 2: The MCTS process for a Nash equilibrium

2) Stackelberg Strategy: The Stackelberg leadership
model is a strategic game in which one of the players is a
leader which moves first, and the other player is a follower
which takes actions once he/she observes the actions from
the leader [2]. In this work, we denote the ego vehicle as the
leader, and the other car as the follower. With the Stackelberg
model, the two players make decisions sequentially: leader
first and then the follower.

More specifically, in order to choose the optimal action
for the leader X at time step ¢, we need to find the expected

response of the follower Y under a certain choice of v(X}):
n—1

tox|_t, t+n—1 . t+k _t+k
W = argmin Y cponiower (W AKF)(0)

Ty k=0
Then, based on the best response of Y for each possible
action of X, we can find the best decision of X as follows:

n—1
t, . t+k, t+k
V% = argmin Y creader (VKN D)
X k=0

We summarize the MCTS process in Fig. 3.

3) Pareto Strategy: Pareto efficiency or pareto optimality
is a state of allocation of resources from which it is im-
possible to reallocate so as to make any one individual or
preference criterion better off without making at least one
individual or preference criterion worse off. In our case, we
view two players equally important, which means the target
cost function should be:

n—1
t% B t+k t+k
(V¥ 7y")= arg min D ex(VF A 0x)
Vxy iz 0

®)
+ch 7w 0yl

S(Initial)

2. Find the

Initial State

X(3)-
| 4ward  The ego car
| List 3. Choose the

driver 2
The other car
The ego car

The other car

Fig. 3: The MCTS process for a Stackelberg equilibrium in
a two-player game.

Hence, the depth of the tree will reduce by half, but the
number of nodes in each layer will double. The MCTS
process for the pareto solution is shown in Fig. 4.

S(Initial)
Initial State

=1 X, YW} ﬁX y
L &

=2 NI

Fig. 4: The MCTS process for pareto equilibrium

00

Joint actions

Joint actions

4) Constant-Action Strategy: Using autonomous vehicles
as an application example, the constant action we assume
is that the vehicle will maintain its current speed, i.e.,
the acceleration is zero. Hence, with such assumption, our
decision space reduces to the action space of the ego vehicle.
The depth of the search tree will reduce by half and the
MCTS algorithm is described in Fig. 5.

S(rnitial)

=0 O

) Initial State
\\
=1 xw X(3)
[ The ego car
X X0)|X(2)
XWX A@)Xa
=2 The ego car
X(3)1X(®)

=3 ‘ The ego car
=4 The ego car

Fig. 5: The MCTS process for constant and ignoring policies

5) Ignoring Strategy: The ignoring strategy is introduced
to represent the scenarios when one agent is not paying
attention to the other agent that he/she is supposed to interact
with. For instance, for autonomous vehicles, their detection
of humans might be blocked due to sensor limitation or
miss detection. We assume that under such a strategy, the
ego vehicle cannot receive the state information of the other
vehicle. Thus the cost function for the ego vehicle should
only include terms defined on his own actions, as shown
in (9). The MCTS algorithm is the same as the one for
“constant-action” strategy shown in Fig. 5.

n—1
Cx(vk) = c(s', 7 0x) ©)

k=0
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IV. THE STRATEGY-AWARE INTERACTION ALGORITHM

To find out which strategies that humans prefer during
interaction, we adopt Bayesian inference to update the prob-
ability of each strategy. Let m; with i=1,2, 3,4, 5 denote the
five strategies. At each time step, the probability for the i-th
strategy P(m;) is updated recursively as follows:

Pt(ﬂ_in:t) o Pt_l(ﬂi|70:t_1) . P('yt\m) (10)

where ~* denotes the action that a human takes at time step
t. Based on the principle of Maximum Entropy, the posterior
probability P(~+!|m;) is given by

o~ BQ (' ,51)

tiAt ) —
P m) = . e PG

(1D
where ; denotes all possible actions the human would take
at time step ¢. >0 defines how close the agents conform to
the optimal strategy. As S— + oo, the agents behave more
rational and vice versa. Without loss of generality, we assume
B=1 and omit it for simplicity. This is a typical @-value
inference where Q* denotes the cost to go given a specific
action and the current state. To find Q* under each different
game policies, we run the MCTS algorithms discussed in
Section III-B. Here we modify the original MSCT algorithm
based on the posterior information and show how to conduct
the Bayesian Inference based on game theoretic approaches
in Algorithm 1.

Algorithm 1 The Bayesian Inference Algorithm

5€9° s°the Joint state of two vehicles

P(m;|at): The probability of adopting each policy
Covert the X — Y coordinate to [ — s coordinate.
Compute the collision point and transfrom the origin of

the | — s coordinate to that point.
other

L

5. Extract s%99, s within the interaction period

6: Initialize time ¢t = 1.

7. while [ > 0 and [2h¢" > 0 do

8: for m(i =1,...,5) do

9: Compute posterior probability P*(a;|m;) using
the cost value of children nodes using (s77¢, s?"¢") in
Algorithm 1.

10: end for

11: Update the prior probability P!(m;|a;) in (10)
12: t=t+ 1.
13: end while

Once the beliefs on policies are obtained, we integrate
such information into the motion planning algorithm for the
robot systems so that an expected utility under the game
policy uncertainties can be maximized, as given below:

5 n—1
Voo = argmin >~ P(mi) Y c(vih Abbhlm) - (12)
0 =1 k=0

With such a policy-aware interaction strategy, we can
design safer autonomous systems. Moreover, if the human
switch policies, the robot can efficiently identify that and
adapt its behaviors accordingly.

V. A CASE STUDY
A. Real Traffic Data on a Roundabout

We use the real traffic data in a roundabout to validate the
effectiveness of the proposed strategy. We consider the inter-
active merging at the roundabout from the INTERACTION
dataset [18], [19]. As shown in Fig. 6, one ego vehicle is
trying to merge into the roundabout, and the other vehicle is
already in the roundabout, passing by the entrance where
the first vehicle comes from. We collected 253 pairs of
such interaction trajectories where each trajectory contains
a sequence of the vehicle’s states and actions including
x—y coordinates, speeds, yaw angles and accelerations. We
convert the trajectories from x—y coordinates to coordinates
in Frenet frame (s—d) based on the centerline of lane, with
the origin point defined at the merging point of both paths.

(a) The roundabout map and inter-(b) An example of the extracted
active vehicles trajectories for interactive vehicles

Fig. 6: Illustration of the real traffic data

B. Experiment Settings

We select the planning horizon as n=>5 with a time interval
At=0.2s. As to the cost functions of both vehicles, to avoid
significant biases, we only consider the must-have features
for driving in the assumed cost functions, i.e., features for
speed and collision-avoidance. For agent i€{ego, other}, The
cost ¢(v}) at each step ¢ is defined as

(Vi) = w1 - [V] — Vaes| + wai - @ (Sf) ® ( j) A (Sia Sj)

(13)
where |v! — vges| quantifies the speed deviation from the
desired speed vges, and @ (s!) @ (sg) A (s@si) measures
the collision penalty (safety-related) of two vehicles. wy ;
and wy ; are, respectively, the weights for the speed and the
safety term. In this work, we set w; 1 = 0.05 and w; 2 = 5.
The definition of ¢(-) and A(-,-) are given by:

T, if 0<z<K,
p(z) = { 0. else (14)
Az, y) = |[K = [z —y| (15)

The hyper parameter K is a safety distance term. It is chosen
based on our degree of emphasis on safety. In our experi-
ment, we recommend K € [5,10]. The desired speed vges
is calculated based on the speed limit, the geometry of the
path and human’s acceptance range for lateral accelerations:

. 1.4
VUdes = ChP( m7 Oa Ulimit) (16)
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where k denotes the curvatures of the reference curve, and
Viimit 1S the speed limit. In this environment, we set it as
25mph as posted in the real map.

VI. THE RESULTS

Two studies were conducted. First, we evaluate the ef-
fectiveness of the proposed algorithm and compare it with
traditional motion planning algorithms with a fixed game
strategy. Second, we try to answer an motivation question
- what strategies do most human take during interaction?
We collected the statistical results via the Bayesian strategy
inference algorithm in Algorithm 1.

A. Performance of the Strategy-Aware Algorithm

We evaluate the performance of the proposed algorithm by
comparing the planned trajectories with ground-truth ones.
Comparison study is conducted between the proposed algo-
rithm and motion planning algorithms with fixed strategies.
Regarding those with fixed policies, we let the ego vehicle
execute exactly what the other vehicle assumes to adopt.
For instance, in a motion planning with fixed Stackelberg
strategy, the ego vehicle will behave as a leader and treat
the other vehicle as a follower. We calculate the mean
square error (MSE) of trajectories. The results are shown
in Table I. We can see that the proposed algorithm (Online
Bayesian) can generate trajectories that are closer to the
ground-truth ones compared to those with fixed strategies.
The Stackelberg strategy also achieved quite similar perfor-
mance. Such results indicate that human drivers might prefer
Stackelberg strategy more, and they also adapt their strategies
based on observations from other interacting agents. Some
illustrative examples are also given Fig. 7, where the left
column shows the ground-truth data, and the right column
shows the results from our algorithm at different time steps.
We can see that the trajectories are quite similar. We also

TABLE I: The MSE between the ground-truth trajectories
and the generated ones under different policies

PoLICcYy MSE

NASH 0.10042459 4+ 0.05012696
STACKELBERG 0.09466069 + 0.04708792
PARETO 0.10011574 4+ 0.05001701
CONSTANT 0.10070166 £ 0.05012868
IGNORE 0.12029486 + 0.05536152

ONLINE BAYES 0.09187242 4+ 0.04990228

calculated the minimum distance over all records using
different motion planning strategies: ours (Bayes) and those
with fixed policies. Results are shown in Fig. 8. We can see
that the proposed algorithm performs a little bit conservative
than the ground-truth trajectories, but it is safer than those
with “Nash”, “Pareto”, “Ignore” and “Constant”, and more
efficient than those with “Stackelburg”.

Another evaluation metric we adopted is whether the
motion planning algorithms can achieve the same interaction
results in terms of which vehicle passes the merging point

first. If one result from a motion planning strategy differs
from the ground truth, we will count as one “passing order
change” (POC). The results under the proposed strategy and
those with fixed strategies are shown in Fig. 9(a). We can
see that the proposed strategy-aware interaction algorithm
can best preserve the original passing order from the ground-
truth data. Fig. 9(b) shows the results on POC with different
weights between the speed feature and the safety feature
in the cost functions we use. We can see that as long as
the weight ratio between the two features can capture the
fact that humans care more on collision, the results of using
different policies in terms of POC did not change too much,
particularly for the proposed approach. This means that the
proposed algorithm is not very sensitive to the selection of
weight ratio in the cost function.

(a) Ground Truth, 1Is

N
)

(c) Ground Truth, 2s

Y

(b) Online Bayes, Is

N

“,., \

(d) Online Bayes, 2s

(e) Ground Truth, 3s

(f) Online Bayes, 3s

Fig. 7: Some illustrative examples.

B. Statistical Results of Human Drivers’ Policies

The second study we conducted is to estimate the human
drivers’ interaction strategies using the Bayesian inference
algorithm in Algorithm 2 using the real traffic data. Figure 10
shows some exemplar results where (a)-(e) are the results
where the human driver each has a dominating interaction
strategy, while in (f) it shows a strategy switching or drifting.
Initially the human driver tends to assume that the ego
vehicle is cooperative (Pareto strategy), but later on the
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Fig. 9: Results on POC with different weight ratios

human driver maintains suspicious about several potential
policies that the ego vehicle might take, although he/she

tends to believe more on the non-cooperative Nash strategy.
To collect the statistical results, we run the Bayesian infer-

ence algorithm on all the 199 pairs of interactive trajectories.
We calculate the following two items:

« policy switching frequency (PSF): this measure counts
how many times a human switches the policies during
one interaction. Such a measure can give us hints
on how frequently human drivers switch policies. For
instance, in the result shown in Fig. 10(a)-(e), the target
human did not switch policies, while in Fig. 10(f), the
human tended to switch.

e Dominance of policy (DOP): this measure quantifies
how long each policy is serving as a dominant policy. As
shown in Fig. 10(f), there were potentially two dominant

—— Nash
—— Stackelberg

— Nash
—— Stackelberg
o

Pareto — Ignore

Pareto Ignore

—— Constant —— Constant

06

Probability

6 s 0 3 o s 0
Interaction time Interaction time
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—— Nash —— Pareto —— Ignore —— Nash —— Pareto —— Ignore
10 Stackelberg ~—— Constant 0T Stackelberg —— Constant
7
0.6
08
05
5 s
Zo6 o4
z z
E 20s
204 S
-9} A~
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0.1
0.0 0.0
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

Interaction time Interaction time

(c) pareto (d) constant
—— Nash —— Pareto —— Ignore
Stackelberg  —— Constant
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>
Z06
2 o
£ =2
204 -
£ z,
:
£
02
0.0
0 2 4 6 8 10 12 L T re——
Interaction time Interaction time
(e) ignore (f) mixed

Fig. 10: Some illustrative examples of the policy inference

policies - the Pareto and Nash. We also considered the
duration period for each policy in this measure, i.e., the
dominating policies will be weighted by their dominant
periods.

Figure 11 shows the results on PSF. Among the 253 pairs of
interactive trajectories, in most cases, human switched only
once or twice for the game strategies. There is a significant
gap between three times and more. Such results can serve as
important prior knowledge when we design robots’ behavior.
We should not let the robot switch strategies too often and
should not let the robot assuming that the humans might
switch strategies too often, for instance, more than three
times during one interaction.

Results on the DOP are shown in Fig. 12. We can see
that human drivers during interaction are not that aggressive.
In most cases, particularly when two vehicles are still far
away from the merging point, the human drivers would like
to assume that the other driver is not paying attention to
themselves and thus behave cautiously, i.e., they are running
the “ignoring” strategy. When they are interacting, they tend
to be more cooperative than competitive since the “Pareto”
strategy dominates more than ‘“Nash”, “Stackelberg” and
“Constant” policies. Such results match our observations
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with courteous driving in human drivers in [7]: human
tends to be cooperative and courteous to each other during
interaction in mnct cranarine

60

50

=
5

Frequency

0 1 2 3 4 5 6 7 8
The number of dominant policies

Fig. 11: Results on PSF: in most scenarios, human will not
switch policies for more than three times.

1400
1200
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= =} @®
j=3 j=3 =1
(=] (=] (=]

IS
=]
S

0
s Nash
EE Stackelberg

B Pareto
Emm Constant

BN Ignore

Fig. 12: Results on DOP: in most cases, human drivers
are not interacting intensively, i.e., they are running the
“ignoring” strategy. When they are interacting, they tend
to be more cooperative than competitive since the “pareto”
strategy dominates more.

VII. CONCLUSION

In this paper, we designed a strategy-aware interaction
algorithm for safety-critical autonomous agents that interact
with humans. Based on a game-theoretic setting, we designed
a Bayesian inference algorithm to in-situ estimate the pos-
sible human policies against robot agents. Based on that,
a strategy-aware motion planning algorithm was developed
to generate safe actions in the presence of uncertain and
time-varying interaction strategies. We evaluated the strategy
performance via two studies with real traffic data: one on the
comparison between the ground-truth and the generated tra-
jectories, and the other one on the statistical model of human
policies in driving. We found that the proposed policy-aware
strategy can achieve more human-like trajectories. Humans
were also found to be cooperative in most scenarios without
switching policies frequently.

The work in this paper is one step further towards human-
like behavior design for autonomous systems. The work can
be further extended. For instance, more statistical results on
different interaction scenarios can be obtained to enhance
prior knowledge on human behavior for the research com-
munity. We can also explore strategies to integrate the policy

inference to reward learning so that reward functions can be
more accurately recovered when strategy uncertainties exist.
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