
Learning Topological Motion Primitives for Knot Planning

Mengyuan Yan1 and Gen Li2 and Yilin Zhu1 and Jeannette Bohg1

Abstract— In this paper, we approach the challenging prob-
lem of motion planning for knot tying. We propose a hierar-
chical approach in which the top layer produces a topological
plan and the bottom layer translates this plan into continuous
robot motion. The top layer decomposes a knotting task into
sequences of abstract topological actions based on knot theory.
The bottom layer translates each of these abstract actions into
robot motion trajectories through learned topological motion
primitives. To adapt each topological action to the specific
rope geometry, the motion primitives take the observed rope
configuration as input. We train the motion primitives by
imitating human demonstrations and reinforcement learning
in simulation. To generalize human demonstrations of simple
knots into more complex knots, we observe similarities in the
motion strategies of different topological actions and design
the neural network structure to exploit such similarities. We
demonstrate that our learned motion primitives can be used to
efficiently generate motion plans for tying the overhand knot.
The motion plan can then be executed on a real robot using
visual tracking and Model Predictive Control. We also demon-
strate that our learned motion primitives can be composed to tie
a more complex pentagram-like knot despite being only trained
on human demonstrations of simpler knots.

I. INTRODUCTION

Autonomous manipulation of deformable objects has
many potential applications, including robotic surgery, assis-
tive dressing, textile and clothing manufacturing, etc. Tying
knots with linear objects, e.g. ropes, is a common but
challenging task in this research direction. Various types of
knots are used in surgery or search and rescue. By teaching
robots to accomplish these tasks, we could aid surgeons in
saving more patients, and replace rescue task forces in high-
risk environments. However, teaching robots to manipulate
ropes and tie knots is hard. Ropes have a high-dimensional
state space which makes visual perception challenging. They
have a large action space and under-actuated dynamics, mak-
ing common planning algorithms either non-applicable or
computationally expensive. In addition, knot tying is a long-
horizon task for which some local planners for deformable
linear objects could fall into local minima [1, 2].

Knot theory and topology can help to guide motion plan-
ning for tying knots. For example, it can provide an abstract
action skeleton, i.e. a sequence of topological actions, to
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Fig. 1: The 3-level inference process for tying a knot. On the top level, we
search for topological paths from the start topology to the goal topology in
the graph defined by knot theory. On the second level, we ground each
edge in the topological path, which is a topological action, into robot
motion trajectories using trained motion primitives. Each motion primitive
will predict a robot motion spline curve conditioned on the geometric
configuration of the rope at the end of the previous stage, and the predicted
motion is simulated to obtain rope configurations during the manipulation.
On the bottom level, the simulated rope configurations will be used as
reference states for MPC to track on the real robot.

decompose the long-horizon knotting task into shorter sub-
tasks [3]. It can also help to prune out unpromising edges in
tree-based or roadmap-based motion planning methods [4].
However, motion planning for each topological action re-
mains challenging, and brute-force search for the physical
robot motions is prohibitively expensive due to the high-
dimensional action space and lack of intuitive cost functions
to abstract topological goals.

Learning from demonstrations provides a promising alter-
native. van den Berg et al. [5], Berenson and Abbeel [6] learn
to clone and enhance the robot trajectories for tying surgical
knots from human teleoperation. However, the learned robot
motion does not generalize to new string configurations.
We try to benefit from both knot theory and data-driven
methods, and propose to learn a library of topological motion
primitives which ground abstract topological actions in robot
motions and rope geometries. The motion primitives can
be composed to plan for various knots. We design the
learning algorithm to facilitate learning from few human
demonstrations and generalize to new rope configurations
and new knotting tasks.

Our key contributions are:
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• We define topological motion primitives, which translate
abstract topological actions into concrete robot motion
trajectories, conditioned on input rope geometric con-
figurations. They can be composed to solve a variety of
knotting tasks.

• We encode topological actions such that each topo-
logical motion primitive can instantiate a range of
them. Human demonstrations are only needed for some
topological actions and the topological motion prim-
itives learn to generalize to unseen rope shapes and
topological actions through reinforcement learning.

• We demonstrate that the topological motion primitives
can be composed to accomplish knot tying tasks on a
real robot. We also demonstrate that we can plan for
more complex knotting tasks than seen during training,
which has not been shown in previous works.

II. RELATED WORK

a) Planning for rope manipulation: Planning for rope
manipulation is a challenging task because of its high di-
mensional state space and highly under-actuated dynamics.
Moll and Kavraki [1], Tandon et al. [2] propose local
planners for Deformable Linear Objects (DLOs) based on
minimum energy curves. They can be used with tree-based
and roadmap methods to search for longer plans. Although
[1, 2] restrict the action space to the two ends of the rope,
planning can take hours for a simple deformation task. For
the long horizon and complex task of knotting, Saha and
Isto [4] build search trees by sampling robot motions, and
use knot theory to prune unpromising branches. The high
computational cost for search-based methods call for the use
of human knowledge to bias the search space. Wakamatsu
et al. [3] design strategies for choosing grasping points and
robot motions for each topological action step in knotting
tasks, but only verified their strategy in an untangling task.
Our work proposes to learn such strategies from human
demonstrations, which we call topological motion primitives.
By learning such primitives we generalize from very few hu-
man demonstrations to different geometrical and topological
conditions, and greatly improve the efficiency of tree-based
planning by intelligently biasing the sampling function.

b) Learning for rope manipulation: Several recent
works have learned dynamics models for ropes and used
them with Model Predictive Control (MPC) for manipulation
tasks. Li et al. [7] and Battaglia et al. [8] model ropes as
mass-spring systems, and use graph networks to learn rope
dynamics. Ebert et al. [9] learn a video prediction model,
without any physical concept of objects or dynamics. In
follow-up works, Ebert et al. [10, 11] investigate different
image losses. Han et al. [12] uses model-based reinforcement
learning (RL) for deforming a rope in 2D with fixed start and
goal configurations. While these works have demonstrated
short-horizon deformation tasks, the method does not directly
extend to knot planning, where the goal state is abstract,
represented by topology. Pathak et al. [13] learn an inverse
model that can predict robot actions for local deformation
tasks, however humans are responsible for providing a visual

plan that the inverse model will follow. Most related to our
work, Wang et al. [14] tackles the long-horizon planning
problem by embedding images into a plan-able latent space
where neighboring points in the latent space correspond to
images that are temporally close. Plans are generated using
A* search in the latent space and decoded to observations.
van den Berg et al. [5], Berenson and Abbeel [6] learn
surgical knotting skills from human demonstrations, however
only the robot end-effector trajectory is considered, and the
state of the thread being manipulated is not included in
the algorithm. Our work is different from the above works
in the following aspects. (1) We address the long-horizon
problem of knot tying, while [7, 8, 9, 12] only addresses the
problem of deforming a rope to a goal shape. (2) We build
on the previous work [15] which demonstrates estimation
and tracking of rope states from images, so that planning
and control can be done in state space instead of pixel
space [9, 13, 14]. (3) We learn from human demonstrations
and generalize to unseen situations by reinforcement learn-
ing, while previous works [7, 8, 9, 13, 14, 12] only use
self-supervised robot exploration data and are unlikely to
have seen successful multi-cross knots, and [5, 6] disregards
the rope states and cannot generalize to new rope states. (4)
Having access to the physical state of ropes, we use knot
theory to decompose various knotting tasks into the same
library of topological motion primitives, so that we can learn
them with demonstrations on simpler knotting tasks, and
compose the learned primitives to complete more complex
knotting tasks.

III. PROBLEM STATEMENT

We define the task of robotic rope knotting as follows. The
robot observes an untangled rope in its work space. The task
is specified by a goal topological state, whose representation
we will define in Sec. IV. The robot needs to find a plan
of grasping points and motion trajectories that can bring
the current rope configuration to a goal configuration with
the desired goal topology, and execute the motion plan with
visual tracking and MPC.

As shown in Fig. 1, we decompose the task of tying knots
of user-specified topology into 3 levels. At the top level,
knot theory defines a graph with topological states as nodes
and topological actions as edges. Possible topological action
sequences (topological plans) are obtained by graph search.
At the second level, we translate each topological action into
a motion trajectory of the robot and rope, conditioned on
the observed configuration of the rope. We call the mapping
functions topological motion primitives. Once the preceding
topological action has been translated into a robot motion
trajectory, the rope trajectory is obtained via simulation, and
the end configuration serves as the start configuration for
the subsequent topological action. At the bottom level, we
execute the motion plan on the real robot. We use a visual
tracking algorithm together with MPC to track the planned
rope trajectory in a closed-loop manner, adjusting the robot
motion commands to account for errors in rope dynamics
and for noise in perception and actuation.
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Fig. 2: Example geometric configurations and the representations of corre-
sponding topological states. The arrow represents the direction from head
to tail. ”o”/”u” indicate the vertical order of each intersection (short for
over/under), and ”+”/”-” indicate the sign of each intersection.

Reidemeister I (R1) Reidemeister II (R2)

Cross (C) Reidemeister III (R3)

index For R1 only. Index of the segment forming the new
intersection

over index For R2 and C. Index of the segment that will be
over the new intersection(s).

under index For R2 and C. Index of the segment that will be
under the new intersection(s).

left For R1 and R2. Binary. Whether the new face
(shaded) is on the left side of the top segment.

sign For R1 and C. Binary. Sign of the new intersection.
over first For R2 if over index = under index. Binary.

Whether the half segment closer to head will be
over the new intersections.

TABLE I: Top: examples actions in each category and their parameter
values. Bottom: Definitions of the parameters.

IV. BACKGROUND ON TOPOLOGY

We follow the representation of a rope’s topological state
in [16]. A topological state is defined based on a 2D
projection of the 3D curve. We use the horizontal plane in
the world frame as the projection plane. Some examples of
projected curves and their topological state representation
are shown in Fig. 2. Given a projection, we pick one end
of the rope as the head and the other end as the tail. As we
trace the curve from head to tail, we number the intersections
starting from 1. Each intersection will be encountered twice
and therefore receives two numbers. Then, we retrace the
curve, and when we encounter an intersection, record the two
numbers from the current and the other intersecting strand,
as well as a sign plus/minus and a relative vertical position
(over/under) between the current and the other intersecting
strand. A sign is determined by the following equation:

sign =
~lover ×~lunder

|~lover ×~lunder|
· ~ez, (1)

where lover and lunder are the directional vectors for the two
strands, and ez is the unit normal of the projection plane.

To transition between the topological states, there are
four categories of topological actions, and each category has
many topological action instances, indexed by a few discrete
parameters. Examples for each category are shown in Table I
(top) and the definition of parameters are listed in Table I
(bottom). Segments of the projected curve, separated by

intersection points, are indexed starting from 0 when tracing
the curve from head to tail.
• The Cross (C) action makes a new intersection using

the head/tail segment with another segment.
• The Reidemeister I (R1) action makes a new loop using

one segment of the curve.
• The Reidemeister II (R2) action makes two new inter-

sections of opposite signs, by pulling the middle of one
segment on top of another segment.

• The Reidemeister III (R3) action moves two neighbor-
ing intersections to the other side of a cross. We do
not consider this more complex action category in our
planning.

Note that these topological action categories are different
from the grouping into topological motion primitives in
Sec. V-A.

All topological states and actions form a directed acyclic
graph (DAG), with the trivial topological state (i.e. untan-
gled) as the root. Given a goal state, we can find one or
more paths from the trivial topological state. Fig. 1 (top)
shows a partial graph for the example of an overhand knot.
The overhand knot has two topologies with opposite chirality.
We show 2 of the 8 possible different topological paths.

V. LEARNING TOPOLOGICAL MOTION PRIMITIVES

Now we want to translate the abstract topological actions
obtained from graph search into concrete robot motion
trajectories and rope motion. The downstream closed-loop
controller will use the resulting rope and robot trajectories
as a reference.

We made two design choices in learning the topological
motion primitives. First, the action space of the motion
primitives will be long robot motion trajectories parame-
terized by spline curves, instead of small delta positions
commonly used for feedback policies. This choice drastically
shortens the horizon of the resulting RL problem so that
the training process will be stable and more data-efficient,
even with simple RL algorithms. Meanwhile, spline curves
are complex enough to allow successful knotting with only
a few re-grasps. Second, each topological motion primitive
needs to work for a group of topological actions in order to
scale to more complex knotting tasks. Thus we encode the
discrete topological action parameters, listed in Table I, as an
input to the motion primitives. The encoding is designed to
facilitate learning of the similarities among motion policies
that humans demonstrate for different topological actions.

We want the topological motion primitives to learn dis-
tributions of successful motion splines, conditioned on the
current rope shape and the topological action to instantiate.
Samples can be drawn from the learned distribution and
used in tree-search during inference. Each spline curve has
3 control points. The first control point will be on the rope
and serves as the grasping point. The last control point will
be on the supporting table plane so that the robot gently
releases the rope instead of dropping. The middle point can
be above the table plane and determines the maximum height
of the spline. This formulation leads to a 6D action space.
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Fig. 3: Examples applying the Mirror or Reverse transformation on the
geometric configurations and predicted robot motion splines. From Left
to Right: Examples for the R1, R2 and Cross category. Applying mir-
ror transformation to rope shapes and robot trajectories will change the
corresponding topological action to have the opposite ”sign” and ”left”
parameters. Reversing the rope geometries will change the corresponding
topological action to have the opposite ”left” and ”over first” parameters.

We observe that in most cases one motion spline is enough
to accomplish a topological action. For the cases where re-
grasping is necessary, we expect that sequencing a few such
spline curves could solve the problem. However, we leave
that to future work.

A. Two types of similarities in motion policies

In this section, we will introduce two types of similarities
in motion policies for different topological actions, to help
the topological motion primitives generalize. Based on these
similarities, we group all topological actions in the R1, R2
and Cross category into 4 topological motion primitives:

Set 1: All R1 actions.
Set 2: All R2 actions.
Set 3: Cross actions where the top segment is one end.
Set 4: Other Cross actions.

Cross actions are split into 2 sets based on the similarities
in grasping position on the rope.

The first type of similarity is based on spatial symmetries
in state transitions. The symmetries allow to reduce the
number of topological actions that need to be learned. The
topological actions that are not directly learned can be
instantiated by using their learned counterparts, and applying
geometric transformations to the rope configurations and
predicted splines. Fig. 3 shows examples for the two transfor-
mations: Mirror and Reverse. Each cell in the figure shows a
pair of transitions (s, a, s′) before (top in each cell) and after
(bottom in each cell) applying the indicated transformation.
Here s and s′ refer to the geometric rope configuration and
a is the robot motion spline shown as red dashed curves.
Each transition is also described, in the topological level, as
a transition (stopo, atopo, s

′
topo), and binary-valued parameters

for the topological action atopo are shown below the arrows.
The Mirror transformation reflects the rope geometries and
the robot trajectory about the horizontal axis (in fact, re-
flecting about any line in the plane has the same effect,
but we choose the horizontal axis in our implementation).
The corresponding topological actions before and after this
transformation will have opposite ”left” and ”sign” parame-
ters, but the other parameters will be the same. The Reverse
transformation switches the head and tail of the rope, but
keeps the robot trajectory unchanged. The corresponding
topological actions before and after this transformation will
have opposite ”left” and ”over first” parameters, segment

Fig. 4: Illustration of input encoding and network structure for topological
motion primitives. Top: The trunk network for both the actor and critic
network. The rope’s geometric configuration is encoded in 3 parts according
to the topological action to be instantiated, which is illustrated on the bottom
left. The rectangles with color gradients represent the output features of
attention modules [17], the color towards the left (right) edge of the rectangle
is the color of the query (value) feature to the attention module respectively.
The LSTM and MLP for each stream do not share weights. Bottom middle
and right: prediction for actor network and critic network, based on the
feature extracted from the trunk network.

indices will also change. Either transformation, when applied
twice, will be identity and produce no change.

As a result, it is sufficient to learn, for example, the
topological action R1(index=0, left=1, sign=1), and we can
use the same network to infer robot motion splines for
R1(index=0, left=±1, sign=±1). For example, to infer the
motion spline for R1(index=0, left=-1, sign=-1), we mirror
the start state, feed the transformed state into the network to
predict spline parameters, and then apply the inverse trans-
formation, i.e. mirroring, to the predicted spline parameters.
To infer the motion spline for R1(0, -1, 1), we use the
Reverse transform instead, and for R1(0, 1, -1) we use the
combination of both transformations.

The second type of similarity is more conceptual. When
making a new intersection, humans will grasp the segment
that will be over the newly formed intersection, and move
towards the segment that will be underneath. This common
strategy is captured by encoding the rope’s geometric con-
figuration into three parts: The segment which will be over
the newly formed intersection, the segment which will be
underneath, and the whole state which acts as task context
to e.g. avoid undesired self-collision. For R1 actions, the over
and under segment will be the same. The network structure
to process this input is shown in Fig. 4. Pairwise attention
modules [17] are used to propagate information between the
three streams.

B. Training and inference process
We will train the topological motion primitives in two

stages: (i) reinforcement learning for single-step tasks, where
each motion primitive is trained independently and demon-
stration data is used to bias initial exploration, and (ii)
reinforcement learning for multi-step knotting tasks, where
the motion primitives are sequenced to form the policy and
are trained jointly.

a) Collecting demonstration: With our action space
formulation, demonstration is simply given by clicking on
three points on an image of the start geometric configuration,

9460



Fig. 5: Illustration of the training and inference process for motion prim-
itives. States s are geometric configurations of the rope. Actions a are
6D vectors parameterizing spline curves. Rewards r are binary, indicating
success of the desired topological action. The critic network with weights
ψ predicts Q values and the actor network with weights θ predicts the
mean and variance µ,Σ for Gaussian action distributions. The black arrows
constitutes the policy during inference, as well as the behavior policy during
training. Green arrows indicate data flow and objectives during training.

indicating the position of the three control points of the
spline. Gaussian noise is added to the annotation to generate
sample motion splines, and the motions are simulated to
verify if the desired topological action is accomplished. All
the trials are saved and we refer to them as demonstration
data.

b) Independent training on single-step tasks: We adapt
QT-Opt [18] to train each topological motion primitive. The
training process is summarized in Fig. 5. QT-Opt trains a
critic neural network to approximate the Q function, and
uses the Cross-Entropy Method (CEM) to find the action
with maximum Q value as the policy. However, we find this
to be in-sufficient for our high dimensional action space.
Thus, we also train an actor network to predict Gaussian
distributions conditioned on the start configuration of the
rope to initialize the CEM process. The actor network is
trained with REINFORCE [19] with data from the replay
buffer. Although other methods such as Trust Region Policy
Optimization or Proximal Policy Optimization can be used,
we expect them to bring little benefit, since with our formu-
lation of the action space, the resulting RL problem has a
short horizon. The replay buffer is initially populated with
demonstration data, and this training stage will be referred to
as imitation learning. New data are added to the replay buffer
once imitation learning has converged, and this training stage
will be referred to as reinforcement learning.

c) Joint training on multi-step tasks: There are in-
finitely many geometric configurations that correctly instan-
tiate a topology. Some configurations are more favorable
than others because they make the next action easier. It
is hard to engineer a continuous reward function which
can bias the motion primitives towards generating more
favorable end states. Luckily, such a reward function is
available once we trained the library of motion primitives.
Let us say that the topological path found for a task is
(stopo, atopo, s

′
topo, a

′
topo, s

′′
topo), and geometric instantiations of

this topological path is (s, a, s′, a′, s′′). The state value
function Va′

topo
(s′) = maxa′ Qa′

topo
(s′, a′) is the predicted

success rate of a′topo starting from configuration s′. This
value thus is a reward for atopo, ratopo(s, a). Based on this
observation, we finetune the topological motion primitives
jointly on multi-step knotting tasks, where the RL horizon
is set to the number of topological actions in the path found

during topological graph search. The policy only receives a
reward of 1 at the end of the episodes if the desired knot
topology is achieved. Different from a normal RL problem,
different motion primitives are used for each time step in an
episode according to the topological plan, and each motion
primitive receives different transitions from the replay buffer
as training data. The same adapted QT-Opt algorithm is used
for this training process.

d) Grounding the topological path: tree search: Once
the four topological motion primitives are trained, we use
them as action samplers in tree search, to guarantee finding
a motion plan. From the top level topological planning, we
have found one or more topological paths from the untangled
state to the given knot topology. The paths form a DAG,
which we call the solution DAG. We start from the geometric
configuration of the untangled state as the tree root. At
each tree expansion step, we randomly select a node in the
tree (including both leaf nodes and non-leaf ones), biasing
the selection probability towards nodes whose topological
states are closer to the knot topology in the solution DAG
(measured by the number of edges on the shortest path in the
solution DAG). From the selected node, we randomly select
an outgoing edge in the solution DAG as the next topological
action to instantiate. We use the corresponding topological
motion primitive to predict a motion spline for the robot, and
this spline is executed in simulation to obtain the rope motion
trajectory. Note that the predicted spline is not guaranteed to
reach the desired rope topology prescribed by a topological
action. Therefore, the rope’s end configuration together with
its topology is only added to the search tree if the goal
topology of the topological action is reached. The tree keeps
expanding until the final knot topology is reached.

VI. CLOSED-LOOP CONTROL AND VISUAL TRACKING

To execute the planned robot motion on the real robot,
we sample way points from the robot motion spline, and
record corresponding rope geometric configurations from the
simulator. We use the rope motion trajectories as reference
states for MPPI [20] that tracks this rope motion. The
planned robot motion spline is used to initialize the actions
used in MPPI. We use the perception network in [15] to
estimate the initial rope state, and use the image space loss
and LSTM dynamics model in [15] to track the 3D rope
state across time. We extended the differentiable rendering
of rope states to 3D, by additionally taking the Kinect depth
images.

VII. EXPERIMENTS

We evaluate four aspects of our proposed method. First, we
quantitatively verify two hypotheses underlying our method:
using human demonstrations to bias the search for robot
motion splines can drastically reduce the number of samples
compared to brute-force search, and using reinforcement
learning on a wider range of start configurations improves
generalization compared to only using imitation learning.
Second, we show ablation studies that validate two design
choices: using both the actor and critic networks for learning
the motion primitives, and finetuning the motion primitives
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jointly on multi-stage knotting tasks. Both decisions im-
prove success rates of the motion primitives and reduce
search costs. Third, we compare our method to Causal
InfoGAN [14] as a baseline on knot planning. Finally, we
qualitatively demonstrate that our generated plan can be
executed on a real robot, and our method can plan for a
knot more complex than seen during training.

A. Value of using demonstrations and learning

1) Data: We evaluate on eight topological actions, listed
in Fig. 6. They are visualized in Fig. 1 (Top). For R1(0,1,1)
and R2(0,0,1,1), only one start configuration is demonstrated,
which is a straight line. For each demonstration, 480 splines
are generated by adding Gaussian noise, and simulated. For
each of the other six topological actions, we demonstrate
on eight start configurations and simulate 320 trials from
each configuration. All the trials are saved as demonstration
data. The eight topological actions are categorized into the
four topological motion primitives as described in Sec. V-
A. Thus, the demonstration data is also separated into four
buffers to train four pairs (actor and critic) of networks. The
categorization is reflected by vertical lines in Fig. 6.

2) Baseline: Our first baseline is to randomly sample
a motion spline from the whole parameter space. Our
second and third baselines use the demonstration data but
no further reinforcement learning. For the second baseline,
generalization is achieved by interpolating demonstrations.
For each demonstrated configuration, we fit a Gaussian
distribution to all successful spline parameters. For new
configurations, the Iterative Closest Point (ICP) distance to
each demonstrated configuration is calculated. we use the
exponential of negative ICP distances as the weights to
interpolate the Gaussian parameters. Splines are sampled
from the interpolated Gaussian distributions to evaluate the
success rate. For third baseline, we train our topological
motion primitives with imitation learning only.

3) Single-stage evaluations: For each topological action
we evaluate the success rate of predicted spline samples
for an unseen set of geometric configurations, but of the
same topology as seen during training. The results are shown
in Fig. 6. Comparing imitation-only motion primitives to
brute force search, there are up to 100x improvements in
success rates, thus reduction in search time, by using human
demonstrations. The imitation-only motion primitives also
have higher success rates than ICP interpolation on most
topological actions, especially R1(0,1,1) and R2(0,0,1,1),
suggesting the advantage of our neural network compared
to hand-designed methods. By further training the motion
primitives with reinforcement learning on a wider range of
rope shapes, we improve the success rate by 1.14x to 2.33x
compared to imitation-only.

4) Multi-stage knotting evaluations: We also evaluate the
number of branches in the search tree when planning for an
overhand knot. For simplicity we only follow one topological
path instead of all possible paths. This path involves a
sequence of 3 topological actions, R1(0,1,1), C(0,1,1) and
C(2,0,1). We use two start configurations and repeat 10

Fig. 6: Success rate of predicted spline samples for eight topological actions,
using a random sampler, the ICP interpolation of human demonstrations,
our motion primitive networks only trained with imitation learning, and our
motion primitives trained with imitation and reinforcement learning (Ours).
Black vertical lines indicate categorization of topological actions into the
four motion primitives.

experiments for each configuration, with different random
seed: (i) the start configuration is a straight line, which has
been demonstrated when training the motion primitives, and
(ii) the start configuration is an arc curve and generalization
is necessary. When using the ICP interpolation, the tree size
shows significant variance. Although the smallest trees only
have 3 branches, which is the theoretical lower limit, the
largest tree has 190 branches for the straight configuration
and 1428 branches for the arc. When using the imitation-only
motion primitives, the largest tree has 43 branches for the
straight configuration and 9 branches for the arc. When using
our motion primitives trained with both imitation learning
and RL, the tree size is kept below 5 for all 10 seeds, and
reaches the lower limit of 3 branches more than half of
the time. This greatly reduced search time demonstrated our
method’s superior generalization to new geometries.

B. Ablation studies

In this section we evaluate two design choices: (1) Using
both actor and critic networks for learning topological motion
primitives, as compared to only using one of the network,
and (2) finetuning the topological motion primitives jointly
on the overhand knotting task.

1) Benefit of using actor-critic: We evaluate the success
rate on the same sets of topological actions and rope configu-
rations as used in Sec. VII-A, and report the results in Fig. 7.
When training the critic only, CEM is initialized with a large
Gaussian covering the whole space of spline parameters,
and is run for 10 iterations to find the best action. When
training the actor only, we take samples from the predicted
Gaussian distribution. When training both networks, the actor
prediction is used to initialize the CEM, and CEM is run for
only 1 iteration.

From Fig 7, training with both actor and critic networks
achieves the best results for 7 out of 8 topological actions.
The advantage of training both networks, over using the
critic only, confirms that CEM is not effective enough in
finding maxima in a high dimensional action space, which
is also noted in [21]. The difference in success rate is
particularly big for topological actions C(2,0,1) and C(2,4,-
1), which require high accuracy robot motion. Using both
actor and critic also performs better than training the actor
alone, possibly for two reasons: (1) Gaussian distributions
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Fig. 7: Success rate of predicted spline samples for 8 topological actions,
using topological motion primitives trained using actor network only, critic
network only, and both networks together.

are not expressive enough to approximate the successful
spline parameter distribution. (2) REINFORCE is an on-
policy RL algorithm, but we are using it in our off-policy
setting with replay buffers, because we can only afford a
small amount of interaction with simulation. Therefore the
actor is overly optimistic near the boundary of successful
and failing spline parameters. We have experimented with
correcting this bias with importance sampling, but could not
stabilize the training.

2) Benefit of joint finetuning: We repeat the planning
process from randomly generated untangled start config-
urations to an overhand knot and evaluated the number
of evaluated branches. When using the motion primitives
trained independently, the number of evaluated branches is
4.3± 2.6 over 50 experiments. After finetuning, the number
drops to 3.4±0.6, showing notable improvement, especially
for the worst cases.

C. Comparison to Causal InfoGAN

We compare our method to using Causal InfoGAN [22]
on the same tasks of planning for single-stage topological
actions and the multi-stage overhand knot. We modified open
source code [22] to use the configurations of the rope instead
of images as observations. Causal InfoGAN learns to embed
the rope configurations into a latent space where a linear-
Gaussian stochastic transition model is prescribed. When
planning a path between given start/goal configurations, the
algorithm first project the given configurations into the latent
space, i.e. search for a point in the latent space that maps to a
configuration closest to the given start/goal, then interpolate
the straight line in the latent space from the projected start
point to the projected goal. The interpolation points are
mapped to rope configurations as way points that constitute
a plan. We trained the network using the demonstration data
for only one topological action, C(0,1,1). We also tried to
train the network on all demonstration data but cannot get
visually plausible results, due to commonly known training
instabilities of GANs.

We show visualization of the generated plans from the
single-stage model in Fig. 8. The top two rows are from
the training data and the bottom two rows are from the
same evaluation set of rope configurations used in previous
experiments. Within each row, the first and last images are
the given start and end configurations, and the second and

Fig. 8: Visual plan generated by Causal InfoGAN. This model is trained
on demonstration data for only one topological action, C(0,1,1). The plans
are visually plausible, although the bottom two lines’ motion strategy are
different from the demonstration data.

second last are the projected configurations. Different from
our method, Causal InfoGAN requires the end configuration
to be given, and we guarantee there is a feasible path for the
start and end configurations shown in Fig. 8. The distances
from the given start and end configurations to their projected
configurations are quite large. In the first row of Fig. 8,
the projected end configuration has a different topological
state than the given one. Between the projected start and
end configurations, the generated visual plans look plausible,
although the bottom two rows adopted a motion strategy
different from demonstration. The manipulation progress also
seems to be uneven, e.g. middle columns in the first row have
larger shape changes.

D. Plan execution on real robot

We show in the supplementary video that plans generated
by our motion primitives can be executed on the real robot,
with the help of visual tracking and MPC. Snapshots during
the execution process are shown in the bottom row of Fig. 1.

E. Generalization to more complex tasks

We show that the topological motion primitives trained
with the 8 topological actions above, where no more than
three intersections are present in the rope states, can be
used to find a plan for the more complex task of tying a
pentagram-like knot starting from the overhand knot. The
rope configurations (rainbow-colored solid lines) and the
predicted robot motion splines (green dashed lines) are
visualized in Fig. 9. This plan is found when only 12
branches are evaluated in the tree. We remark that the start
configuration for this more complex task is different from
the ones generated in the overhand knotting task, e.g. the
one shown on the bottom-right corner of Fig. 1. We manually
pulled out the head segment in order to demonstrate the more
complex pentagram-like knot task. The trained topological
motion primitives have not learned such pulling behavior,
since such behaviors are not required in the overhand knot
and not present in the demonstration data. We leave this to
future work.

VIII. CONCLUSION

We propose a 3-level motion planning and control algo-
rithm for knot tying. At the top level, knot theory decom-
poses knotting tasks into sequences of abstract topological
actions. The set of topological actions is shared across all
knotting tasks. Our key contribution is at the second level,
which is a set of topological motion primitives that generates
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Fig. 9: Topological path to a pentagram-like knot (top), and corresponding
motion plan (bottom). Rope configurations are shown with color gradients,
with blue as heads and orange as tails. Robot motion splines are shown in
green.

robot motion trajectories for each topological action, condi-
tioned on the observed rope configurations. At the bottom
level, the predicted robot motion trajectories are simulated,
and MPC tracks the resulting rope trajectory on real robots.
We train the topological motion primitives by imitation and
reinforcement learning. To generalize human demonstrations
of simple knots into more complex knots, we observe similar-
ities in the motion strategies of different topological actions,
and designed the network architecture accordingly to learn
such similarities. We demonstrate that our learned motion
primitives have significantly higher success rate in complet-
ing the required topological actions, compared to baseline
methods. When the motion primitives are used as samplers
in a tree-search framework, a much smaller tree is grown
before a valid motion plan is found. We verified that the
generated robot motion plan can be executed on a real robot
using visual tracking and MPC. We also demonstrated that
our learned motion primitives can plan for a more complex
pentagram-like knot, even though the human demonstrations
are only on simpler tasks. This suggest that it is possible
to scale the learned motion primitives to increasingly more
complex knotting tasks without human intervention.

There may be several challenges in extending this work
to a wide range of object types and knot types. Although
we are confident this method applies to ropes with varying
thickness and length, other object types such as cables, may
be very stiff such that they return to their original shapes
when released from the gripper. Very thin threads such as
surgical suture may be hard to observe from depth images
thus making 3D perception hard. To extend to more complex
knot types, the robot would need to learn additional skills,
such as pulling one segment from underneath existing inter-
sections, or rearranging the rope to make next steps easier.
The former may also require two robot arms to cooperate.
These challenges may be addressed by some changes to the
method. For example, by allowing each motion primitive to
predict more than one robot motion spline when necessary,
and providing demonstrations of re-arranging or pulling. To
use multiple arms, the actions space may be extended. For
example to acquire the pulling skill, the motion primitive
could additionally predict an end-effector pose for the second
arm to hold one point of the rope, while the first arm pulls
another segment.
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