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Abstract— Collision avoidance in unknown obstacle-cluttered
environments may not always be feasible. This paper focuses on
an emerging paradigm shift in which potential collisions with
the environment can be harnessed instead of being avoided
altogether. To this end, we introduce a new sampling-based
online planning algorithm that can explicitly handle the risk
of colliding with the environment and can switch between
collision avoidance and collision exploitation. Central to the
planner’s capabilities is a novel joint optimization function
that evaluates the effect of possible collisions using a reflection
model. This way, the planner can make deliberate decisions
to collide with the environment if such collision is expected
to help the robot make progress toward its goal. To make
the algorithm online, we present a state expansion pruning
technique that significantly reduces the search space while
ensuring completeness. The proposed algorithm is evaluated
experimentally with a built-in-house holonomic wheeled robot
that can withstand collisions. We perform an extensive paramet-
ric study to investigate trade-offs between (user-tuned) levels
of risk, deliberate collision decision making, and trajectory
statistics such as time to reach the goal and path length.

I. INTRODUCTION

Achieving high mission performance in face of risk is a
common trade-off in robot motion planning [1]. The trade-off
becomes increasingly important for planning and navigation
of robots with noisy actuation and sensing (such as small
and inexpensive robots), especially when there is need to
deploy them rapidly into dangerous or otherwise not easily
accessible areas. A key source of risk includes possible
collisions when navigating in an unknown environment.

Autonomous navigation in unknown environments can
impact several applications ranging from surveying and
inspection to search and rescue [2], and has thus received
significant attention. Conventional planning and navigation
strategies have used geometric representations of boundaries
to define collision free paths with convergence guaran-
tees [3]. In partially-known environments, planning with
local information based on instantaneous sensor data for col-
lision avoidance is appealing for computationally-constrained
platforms requiring high-rate collision avoidance [4]. Three
main categories exist for local collision avoidance planning
algorithms [5], which include planning by reacting to sensor
data [6], map-based planning using sensors to build maps or
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Fig. 1: This study’s holonomic wheeled robot (left) navigating in
a confined corridor environment populated with obstacles (right)
while harnessing collisions. A supplementary video showing in-
stances of the experiments can be found in https://www.
youtube.com/watch?v=S3oYebJRfA0.

using a priori known global maps [7], [8], and planning to
maximize exploration coverage [9], [10].

However, as robots increasingly venture outside the pro-
tected lab environment and into the real—uncertain—world,
guaranteeing collision avoidance becomes an even more
challenging task [11], [12]. If a conservative local planner
is employed to avoid collisions in cluttered environments,
the robot may not be able to find a feasible path to the
goal even if one exists. At the same time, recent advances
in material science and mechanical design have helped
introduce robots that can safely withstand collisions (e.g.,
small legged robots with exoskeletons [13], aerial robots with
protective cages [14], and soft robots [15]).

Taken together, these observations may explain an emerg-
ing paradigm shift: Collisions with the environment could
be harnessed instead of being avoided. In fact, it has been
demonstrated how allowing for collisions can benefit motion
planning and control [16], localization [17], sensing [18],
and robot agility in terms of rapidly changing direction of
motion [19]. Collisions can also be useful for exploration
of cluttered unknown environments [20]. Our work in this
paper focuses on online motion planning that balances col-
lision avoidance and harnessing collisions for mobile robot
navigation in unknown environments.

Understanding the trade-offs and balancing between per-
formance and risk has been a research focus for a while.
One approach is to utilize the concept of inevitable collision
states (ICS) for safe path planning [21], where the states that
cannot avoid future collision must be prohibited. However,
identifying appropriate ICS can be challenging for robots
with noisy actuation and sensing. A different approach is
to generate an explicit risk function based only on partial
information of the robot state i.e. its location with respect
to obstacles, while ignoring its speed and heading [22]–[24].
However, ignoring the kinematic and dynamic properties of
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the robot may yield imprecise results. Merging these two
types of approaches is possible through a continuous risk
function based on the concept of collision time, which is
the time in which the vehicle can hit the obstacle along its
heading, if it were to lose control [25].

While current risk-aware approaches can describe trade-
offs between risk and reward of collision avoidance in mobile
robot navigation, they cannot help determine how to best
utilize those collisions in unknown environments. In related
yet distinct efforts, models for reflection on obstacles have
been developed to capture velocity, position, and uncertain-
ties that result to collisions [20], [26], [27]. These works
can be leveraged to explicitly include boundary interactions
within planning algorithms. When the environment is known,
collisions can serve as a practical means to improve the
effectiveness of trajectories; through dissipation of energy
or redirection of momentum, colliding agents can thus be
endowed with greater maneuverability [28]. Moreover, ac-
cepting collisions can help relax some of the safety condi-
tions when generating a (conservative) path based on ICS
planning; the latter may in cases make reaching a desired
goal position slower [2]. In previous work [29], we showed
how wall-following maneuvers can benefit a stochastically-
moving robot to reach its goal in ingress/egress tasks.

In this paper, we design a reactive sampling-based planner
for collision-resilient mobile robots navigating in unknown
obstacle-cluttered environments. The planner relies only on
local information about the environment gathered through its
sensors. We first propose a reward function to evaluate the
effect of possible collisions based on a reflection model for
the robot. We define a risk function based on the concept of
collision time. The reward function is integrated with the risk
function and a distance metric cost into a joint optimization
function for motion planning.

The main contributions of the paper are as follows.
• We present a planner capable of evaluating the trade-offs

between harnessing and avoiding collisions in unknown
environments.

• We propose a novel formulation of reward function
based on a reflection model to help the robot utilize
collisions in motion planning.

• We present a pruning technique that can significantly
reduce the search space while maintaining the solution
quality and ensuring completeness.

The proposed algorithm is tested with the Omnipuck
holonomic wheeled robot [26], which we built in-house. The
robot includes a reflection ring to help withstand collisions
and rapidly change direction of motion after a collision by
passively redirecting impact energy. The algorithm is tunable
by the user, and thus able to produce less risky paths at the
expense of increasing overall path length and lowering the
chance of utilizing collisions when appropriate.

II. SAMPLING-BASED PATH PLANNING ALGORITHM

Consider a global (unknown but bounded) map populated
with an unknown number of static obstacles. The state
q = (x, y, θ, v) includes the robot’s center of mass position

(x, y), as well as the direction θ and magnitude v of its
instantaneous velocity. We assume that 1) the robot is capable
of building a local map of the environment from different
sensors (such as a LIDAR) as it navigates, 2) the obstacles
in the environment are closed convex sets, and 3) the robot
can receive bearing and range information about the goal.

A. Sampling on Local Configuration Space

Let M ⊂ R2 be a sliding local map to represent the
environment. The map moves with the robot; its size is a
hyper parameter selected by the user. After computing a
visibility polygon (e.g., created through ray casting [30]), we
extract the local free space F , obstacle-extending frontiers
Bi, i = 1, . . . , N due to M identified obstacles, and the ob-
servable obstacle boundaries ∂O1, . . . , ∂OM . Then, the local

map can be expressed asM = F ∪ (
N⋃
i=1

Bi)∪ (
M⋃
i=1

∂Oi)∪U ,

where U is the unobservable part of the local map (Fig. 2).1

If the goal is not within F ,
N⋃
i=1

Bi is sampled to generate a

set of candidate states to be explored at future iterations. Let

S = {sα = (xα, yα) : sα ∈
N⋃
i=1

Bi} be the set of positions of

all sampled points on the boundary. Positions on each Bi can
be sampled according to some user-defined distribution, e.g.,
uniformly. Let Θ = { 2πnl

Nl
: nl = 0, . . . , Nl} be the set of

Nl ∈ N+ allowable velocity directions for state expansion.
This paper adopts the 8-orientation state expansion, that is
Nl = 8. Lastly, let V = { vmaxnv

Nv
: nv = 0, . . . , Nv} be

the set of Nv ∈ N+ allowable velocity magnitudes for state
expansion. We set Nv = b length(Bi)

∆l c, where ∆l is a hyper
parameter that determines sampling on a frontier Bi. Then,
the sampling configuration space is

C = S ×Θ× V .

The size of C depends on the size of
N⋃
i=1

Bi and how it

is sampled, and on the values of Nl and Nv . Sampling the
velocity vector space (Θ,V) presents an interesting trade-
off. Larger Nl and Nv are expected to yield better results
overall as they implicitly constrain the position vector space
S. However, doing so will increase the size of C and lead to
higher computational complexity for planning. Exploring this
trade-off is outside the focus of the present paper. While we
utilize frontiers, our method is different in that we do not set
bounds on velocities based on inevitable collision states but
instead evaluate and predict the effect of potential collisions,
in unknown environments. Our method can also be tuned to
switch between collision exploitation and safety (in the latter
case by recovering upper velocity bounds as those used in
current collision-avoidance frontier-based methods).

The mechanism to switch between collision exploitation
and safety (as well as predict the effect of collisions) is based
on constructing a special set E . This set contains the unit vec-
tors tangent to each ∂Oj , j = 1, . . . ,M where ∂Oj and any

1Note that U contains all partially-observed obstacles with the exception
of their observable boundaries.
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Fig. 2: Instance of sampling on a local map with two obstacles.

Bi intersect. For example in Fig. 2, E = {e1, e2}. Elements
in set E represent the direction of the predicted boundaries
of partially-observable obstacles. For convex obstacles, set
E is typically different from the frontier. In the limit that E
and the frontiers coincide, our algorithm will produce a safe
collision avoidance behavior as there will be no collisions
that can be potentially exploited. (Colliding in that case
may be counterproductive.) As we discuss shortly, predicted
boundaries are critical in order to be able to estimate possible
future collisions, and serve as an integral part in defining
this work’s risk (in terms of obstacle collision) and collision
reward cost functions.

B. Formulating the Planner Optimization Function

The planner seeks to select a sequence of intermediate
states qs ∈ C that take the robot from a current state qcur (in
the local map) to the goal state qgoal. Each intermediate state
qs ∈ C is calculated by solving the (local) unconstrained
optimization problem

qs = arg min
qs∈C

[wpJpos + wrJrisk + wvJvel] . (1)

The cost function in (1) is a weighted sum of individual costs
{Jpos, Jrisk, Jvel}, each representing distinct objectives:
• Minimizing Jpos finds the shortest path between qcur

and qgoal. (See Section II-B.1 and Algorithm 1.)
• Minimizing Jrisk chooses the least risky path in terms

of avoiding collisions. (See Section II-B.2 and Algo-
rithm 2.)

• Minimizing Jvel picks an as high as possible number of
beneficial collisions while maintaining as high speed as
possible; this is where the novelty of our cost function
arises from. Instead of designing a stop maneuver to
ensure the robot always stays in free known space, this
cost will generate a potential to make the robot go and
exploit the unknown area, colliding with obstacles and
using collisions as a means to steer toward the goal.
(See Section II-B.3.)

Values for weights {wp, wr, wv} are hyper parameters
selected by the user, and allow the algorithm to be tuned
for balancing safety, risk, and exploration.

1) Generating Jpos: To determine an intermediate state
qs, we begin by computing Jpos via Algorithm 1. In the
inputs to Algorithm 1, pcur and pgoal are the current and
goal positions, ps ∈ S is the position of the candidate point
in the sampling configuration space, ppre is the previous
position, and pini is the initial starting point. A penalty factor

fa ∈ [1,∞] is applied to force the robot not to vary its
orientation beyond a prescribed threshold θthres.

We first approximate the length of the path from the cur-
rent position pcur to the goal position pgoal which consists
of the actual cost PathLength(pini,ppre,pcur,ps) and
the heuristic cost PathLength(ps,pgoal). We then assign
the penalty factor fa to regulate direction of motion, and
normalize the output to yield Jpos = normalize(Ppose).

Algorithm 1: Generate Ppos
input : pcur, pgoal, ps, ppre, pini, θthres, fa
output: Ppos

1 PLactual ← PathLength(pini,ppre,pcur,ps)
2 PLheuristic ← PathLength(ps,pgoal)
3 Dpos ← PLactual + PLheuristic
4 if ∠(ppre,pcurrent,ps) ≥ θthres then
5 Ppos ← fa ×Dpos

6 else
7 Ppos ← Dpos

8 end
9 return Ppos

2) Generating Jrisk for a point: We define the risk as the
probability of colliding with obstacles. To generate Jrisk,
which is an explicit evaluation of probability of collision,
we follow Algorithm 2. In the inputs to Algorithm 2, vs
is the velocity of the candidate point, E is the set of unit
vectors ei of predicted obstacle boundaries, pp = (xp, yp)
is the potential collision point based on E , and δv is a
positive infinitesimal value used to evaluate Jrisk based on
the distance between the robot and the obstacles when the
robot is stationary.

Algorithm 2: Generate Jrisk
input : ps, vs, pp, E , δv
output: Jrisk

1 if ‖vs| > 0 then
2 sp ← pp − ps
3 dp ← ‖sp‖
4 vc ← ‖Proj(vs, sp)‖
5 else
6 vc ← δv
7 dp ← arg minei∈E distance(ps, ei)
8 end
9 tc ← dp

vc
10 Jrisk,h ← normalize( 1

tc
)

11 Jrisk,g ← −fθθsight
12 Jrisk ← Jrisk,g + Jrisk,h
13 return Jrisk

We determine the heuristic part of Jrisk by calculating
the collision time tc [25] based on the current state and
the predicted boundary of the obstacle in U if the candidate
velocity ‖vs‖ > 0. Otherwise, we generate Jrisk given δv
and dp where dp is the minimal distance between the robot
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and the obstacles in the environment. We use Jrisk,g =
−fθθsight (line 11), where θsight is the angle of the narrow
region as illustrated in Fig. 2. Weighting θsight with a
constant penalizing factor fθ ∈ [0, 1] helps prevent the robot
from going into narrow regions in F .

3) Generating Jvel: This cost forces the robot to exploit
the unknown area, colliding with obstacles and using colli-
sions as a means to steer toward the goal. It is the distinctive
element with respect to other related algorithms (e.g., [2], [4],
[5]) in the sense that it relaxes the condition of calculating
and enforcing inevitable collision states (ICS). In [26], a
reflection model is generated to fit the behavior of a holo-
nomic robot after colliding with the environment. Works [26]
and [20] show that bouncing motion primitives can be lever-
aged in fast planning algorithms to generate minimum-time
trajectories. We simplify the complex problem of vehicle-
surface interactions using Garwins model [31]. Then we can
generate an explicit reward function to evaluate whether the
robot can benefit from the reflection-like bouncing behavior.

Rref (t) =

{
〈vref ,unitgoal〉 pref /∈ F

penalty otherwise .
(2)

The reflection velocity vref in (2) is the instantaneous
velocity of the robot after impact. It is calculated by taking
the norm of ep which lies along the predicted boundary and
is directed toward U . We apply a rotation to ep and denote the
normal vector as np = Rot(ep,

π
2 ). vref can then be derived

from vs and np based on the reflection model. pref is an
estimation of the robot’s position after a user-defined time
interval. penalty is a penalty value in [−∞, 0] to prevent the
robot bouncing back to the currently known space.

After we compute the explicit heuristic function to evalu-
ate risk and reflection in unknown space, we then generate
Jvel which represents how the impact velocity on the bound-
ary will affect future behavior of the robot. The effect of
velocity in C can then be approximated by

Jvel = −〈vs,pgoal−pcur〉(1−Jrisk,h)−RrefJrisk,h . (3)

C. Candidate State Pruning for Online Implementation

To make the algorithm online, we develop a two-step
pruning technique for reducing the number of candidate
states qs ∈ C. States are removed based on either their
position and/or their velocity vector (see Fig. 3).

Position-Based Pruning: In position-based pruning, can-
didate states with positions that are less likely to be selected
are dynamically identified and removed from C. The chance
for a candidate state to be selected based on its position
alone depends on the number of neighboring candidate states
and their relative distance to the goal, and whether there is
separation by free or unobservable space. For example, in the
illustrations shown in Fig. 3a and Fig. 3b, candidate states
lying on B2 are pruned because they are close to candidate
states lying on B3 which in turn are closer to the goal, and
they are separated from them by free space F .

Position-based pruning does not remove candidate states
that may be far from the goal (such as those lying on

B1 and B4) to promote exploration and to handle potential
uncertainties (e.g., robot drift or under-estimation of collision
impact). Instead, it removes states that are expected to
have a similar effect, if selected, toward exploration. The
completeness can be guaranteed assuming that the obstacle
is convex, since the algorithm always enforces exploration
of the unknown space U . However, the pruning technique
cannot guarantee completeness in maze-like environments.

Velocity-Direction-Based Pruning: In velocity-based
pruning, candidate states with velocities directed toward the
free space F are pruned. As in position-based pruning, the
objective here is to retain the candidate states with velocities
that encourage exploration. For example, in the illustrations
shown in Fig. 3b and Fig. 3c, all candidate states remaining
after position-based pruning are evaluated once more, and
only those that lead toward unobservable space U are kept.

III. TRAJECTORY GENERATION

We are now ready to introduce our trajectory generation
algorithm for collision-resilient robots navigating in un-
known obstacle-cluttered environments. Recall that no prior
knowledge of the map is required. The algorithm consists
of two components: 1) generating appropriate waypoints via
B-spline interpolation, and 2) selecting appropriate low level
collision-free or collision-harnessing maneuvers.

A. B-spline Generation

Once the intermediate state qs is found, we use the cubic
B-spline [32] to interpolate a spline with control points as
WP . The Python B-spline interpolation function in the scipy
package is used to generate a cubic B-spline Spl is the set
of points in the B-spline. A trajectory is then generated from
Spl using a time interval T defined as

T = max{Tv, Tmap} , (4)

where Tmap is the time needed to update the sliding map
and Tv is the maximum velocity of the robot. We can
approximate Tv by

Tv = Psafe ×

N∑
i=2

‖WP [i]−WP [i− 1]‖

vmax
(5)

where Psafe is the parameter which restricts the reference
velocity to stay within the range [0, vmax]. In our case, we
choose N = 4 to keep the minimal number of control points
for cubic spline.

B. Maneuver Selection

We utilize a low-level switching controller to ensure that
the robot follows the trajectory and reaches the desired
waypoint. At each instance when the sliding local map
is updated, the controller switches between the following
strategies: free-space, boundary following [29], [33], and
flow-through [27] as described in Algorithm 3. From the
switching strategy, the robot will determine whether the B-
spline trajectory is suitable or it needs to generate a new ref-
erence trajectory as illustrated in Fig. 4. In all strategies, the
robot follows reference trajectories using a PID controller.
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Fig. 3: Example of pruning on the sampling configuration space C.
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Fig. 4: The switching controller deals with potential collisions that may occur in future time.

Algorithm 3: Maneuver Selection
input : WP, pc
output: controller class

1 if pc = ∅ then
2 controller class = free space
3 else
4 v← WP4−WP1

‖WP4−WP1‖
5 v← Rot(v, π2 )
6 vc ← pc −WP1

7 if 〈v,vc〉 ≥ 0 then
8 controller class = flow through
9 else

10 controller class = boundary following
11 end
12 end
13 return controller class

When the robot does not face a collision, it utilizes the
free-space strategy and follows the trajectory generated from
the B-spline qspl as depicted in Fig. 4a. If colliding at
position pc, the robot will utilize either the flow-through or
the boundary following strategy. Let qbound be the trajectory
projection on the boundary. If 〈v,vc〉 < 0, then the robot will
use the boundary following strategy. The collision point pc,
where the B-spline qspl first intersects the obstacle boundary
bO, is referred to as the engaging point pd. At this point,
the robot will follow a newly generated reference trajectory
qbound, generated by projecting qspl to the boundary bO
up until the disengaging point. The boundary following

maneuver is depicted in Fig. 4b.

qref (t) =

{
qspl(t) s = off

qbound(t) s = on .

φ(s, x) =


off s = off, ‖p(t)− pc‖ ≥ δ
on s = off, ‖p(t)− pc‖ ≤ δ
off s = on, ‖p(t)− pd‖ ≤ δ .

If 〈v,vc〉 ≥ 0 and qspl ∩ O 6= ∅, then the robot will use
the flow-through maneuver as depicted in Fig. 4c. qflow is
generated by projecting qspl to vector WP [4]−WP [1].

qref (t) =

{
qspl(t) s = off

qflow(t) s = on .

φ(s, x) =

{
off s = off, ‖p(t)− pc‖ ≥ δ
on s = off, ‖p(t)− pc‖ ≤ δ .

IV. EXPERIMENTAL RESULTS

A. Robot and Environment Setup

We implement our proposed algorithm on the collision-
resilient Omnipuck platform [26] which we built in-house
(Fig. 1). The body of the Omnipuck robot is surrounded by
a reflection ring that enables it to collide safely with the
environment and rebounce from it. The robot operates in an
2.4m×2.4m confined corridor environment with rectangular
pillars serving as static convex obstacles as shown in Fig. 1.
The position of Omnipuck is captured using a 12-camera
VICON motion capture system. A laptop with a 2.3 GHz
i7 CPU and 12 GB RAM processes position data and sends
controller commands to the robot at a frequency of 20 Hz.
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Fig. 5: Experimental trajectories with Tmap = 0.2s. (a) High risk path with intentional collision reflection. (b) High risk path without
intentional collision reflection. (c) Low risk path without intentional collision reflection.

We utilize the ray casting algorithm [30] to simulate LIDAR
behavior and generate a current sliding map. See https://
www.youtube.com/watch?v=S3oYebJRfA0 for in-
stances of our experiments.

B. Effect of Harnessing Collisions

To examine the effect of different weight factors w =
[wp, wr, wv] in (1) on planning the motion of a collision-
resilient robot in unknown environments, we select weight
factors that emphasize components of the objective function
(1) to generate either a low/high risk path or a path that har-
nesses collisions. We consider three case studies as follows.
• A high risk trajectory that intentionally collides with the

environment to harness collisions is generated when (1)
is optimized with wv set to a large value.

• A high risk trajectory that may unintentionally collide
with the environment without harnessing collisions is
generated when (1) is optimized with wr set to a small
value and wv set to zero.

• A low risk (‘safe’) trajectory that seeks to avoid colli-
sions altogether is generated when (1) is optimized with
wr set to a large value and wv set to zero.

A higher wv is expected to produce a risky trajectory
which can utilize the reflection after colliding to continue
making progress toward the goal. We anticipate that in this
way the robot can reach the goal with a shorter arrival time
and path length. To test this hypothesis, we run 20 closed-
loop experimental trials with map update time Tmap =
0.2 sec with each of the three strategies listed above. The
top speed in all cases is vmax = 1.2 m/s.

Experimental results are shown in Fig. 5. Individual trials
for each case are overlaid on an augmented-obstacle rep-
resentation of the environment map. We notice that when
the planner can tolerate more risk (i.e. lower wr), then the
robot will try go through the two narrow corridors to decrease
arrival time and total path length. However, if no mechanism
to harness collisions is in place, and unintentional collisions
do happen, some of them may have a negative effect on
the robot trajectory. For example, in Fig. 5(b) some trials
collide with the left side of the top obstacle, effectively
increasing both the arrival time and the total path length.
On the contrary, if the planner deliberately seeks to collide
when needed (Fig. 5(a)) we observe that no such negative

collisions occur. As expected, a risk-averse (i.e. higher wr)
planner will seek for longer trajectories through the wider
parts of the environment (Fig. 5(c)).

The improvement (%) when utilizing collisions in terms
of arrival times and total path length can be clearly seen in
Table I. Results reveal that our proposed planning algorithm
to harness collisions has a major impact in terms of mean
arrival time. Mean total path length is similar to the case of
high-risk planning without explicitly harnessing collisions,
but significantly better that in the case of low-risk planning.

TABLE I: Improvements of collision-harnessing planning in terms
of arrival time and total path length when compared to high-risk
and low-risk planning without intentional collisions.

Improvement (%) High risk path Low risk path
Arrival time mean 7.60 8.53
Arrival time STD 3.48 2.39
Path length mean 2.32 16.01
Path length STD 0.99 0.47

C. Parametric Study on Different Mapping Times

Finally, we investigate the effect of map update time
Tmap. We collect 20 experimental trials for each of the
three strategies, and for Tmap ∈ [0.2, 0.4, 0.6, 0.8, 1.0] sec
in the same environment, thus giving rise to a total of
300 experimental paths. Results are shown in Fig. 6. As
Tmap increases, both mean arrival times and mean total
path lengths for all three strategies increase. This is because
uncertainty in the controller increases as the duration to
update the map increases. In all cases, harnessing collisions
yields better results; however, the rates of increase in arrival
times and total path lengths do not appear to depend on the
employed planning strategy.

V. CONCLUSIONS

We present a new reactive planning algorithm suitable
for collision-resilient robots in unknown environments. The
planner allows for potential collisions to be harnessed to
improve robot navigation in obstacle-cluttered environments.
Experiments show that integrating collision harnessing in
online planning can decrease both the arrival time and path
length of generated trajectories when compared to high-risk
trajectories without utilizing collisions (> 7%, > 2%), and
risk-averse safe trajectories that avoid collisions altogether
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Fig. 6: Arrival time and path length with different Tmap.

(> 8%, > 16%). At each planning interval, the pruning
technique can save about 3.1ms of computational time.

The work herein contributes foundational algorithmic tools
to support the emerging paradigm shift where robots might
deliberately choose to collide with the environment, should
that help them make progress toward an assigned goal they
are tasked to reach. In addition, the pruning technique intro-
duced in this work can apply to other planning algorithms
as well, to help reduce the computational time in support
of online operation. Future work will focus on analyzing
in detail the effect of the various quantities that determine
the degree of pruning. We will also focus on experimental
evaluation in more complex environments.
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