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Abstract— In this research, we have taken a biomimetic
approach to the control of musculoskeletal humanoids. A
controller was designed based on the motor directional tuning
phenomenon seen in the motor cortex of primates. Despite
the simple implementation of the control scheme, complex
coordinated movements such as reaching for target objects
with its upper body was achieved, and is demonstrated in the
accompanying video. The controller does not require an internal
model, and instead constantly observes its body in relation to
the external world to update motor commands. We claim that
such an embodied approach to the control of musculoskeletal
robots will be able to effectively take advantage of their complex
bodies to achieve motion.

I. INTRODUCTION

The aim of robotics research is to create physical au-

tonomous agents that can move in the real world while

accomplishing given tasks robustly. Biomimetic robots ap-

proach this goal by imitating bodily structures and behaviors

of biological organisms, as they are already prime examples

of autonomous systems operating in unstructured environ-

ments. Among them, musculoskeletal humanoids mimic the

human musculoskeletal system, and are comprised of artifi-

cial muscle actuators spun across a passive joint structure.

Many of the control schemes successfully applied to

whole-body musculoskeletal humanoids are model-based

methods that are derived from concepts in robotics. Kawa-

harazuka et al. has used neural networks to model the

relationship between joint space and muscle space [1], [2],

and Jäntsch et al. has achieved torque control of muscu-

loskeletal robots through tension-based control by computing

the dynamics of the robot from a geometric model [3],

[4]. Such model-based methods, while achieving joint-space

control that can be used together with conventional robotic

planners, are often set back by the nonlinear properties of the

musculoskeletal robots which makes them hard to model.

On the other hand, model-free approaches have been re-

searched as well. These tend to have simple rules to compute

actuator output, and exploit the dynamic properties of the

robots to achieve efficient control. Niiyama et al. achieved

bipedal running of a musculoskeletal legged robot, by taking
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Fig. 1: Overview of motor directional tuning.

advantage of the spring-like properties of pneumatic muscles

[5]. Martius et al. used a one-layer neural network that maps

sensory input to actuator output, which produced emergent

behavior on a musculoskeletal robotic arm [6].

One of the proposed applications of musculoskeletal

robots is their use as a human body simulator [7]. Muscu-

loskeletal simulators such as OpenSim exist that can simulate

dynamics of the human body, and are used in physiological

research to analyze musculoskeletal dynamics and verify

hypotheses regarding motor command generation [8].

Musculoskeletal robots can be regarded as a physical

manifestation of such simulators, as its control program

can be overwritten with any algorithm and various sensory

information can be obtained from the distributed modules.

Compared to computational simulators, motor control strate-

gies applied to physical robots have some practical use; they

can be used in real-world situations as a new control strategy

for musculoskeletal robots.

This research attempts to mimic human motor control at

an algorithmic level. Since the hardware of musculoskeletal

humanoids are designed with a biomimetic approach, we

can expect that a similar approach to their software can

efficiently control these robots. However, compared to the

musculoskeletal structure, much less is understood about the

specific processes underlying human motor control. Thus, the

physiological phenomenon must be appropriately abstracted
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Fig. 2: Pathway of motor commands.

to an algorithm that can be run as a controller.

Similar approaches have been taken for musculoskeletal

robots, to create controllers that can emulate various reflexes,

such as the stretch reflex or reciprocal innervation between

antagonistic muscles [9], [10]. However, these were low-level

motor control strategies that can be seen in the spinal cord,

and do not involve the higher-level regions such as the brain.

In this research, we have created a controller that emulates

the phenomenon seen in the motor cortex called ”motor

directional tuning”. This paper is structured as follows. In

Section II, we will detail the original phenomenon seen

in the motor cortex of primates. Then, in Section III, we

will introduce the proposed controller that is based on the

concept of motor directional tuning, and demonstrate its

performance on reaching movements with a musculoskeletal

arm. In Section V, we will apply the same controller to

control the neck muscles of the musculoskeletal humanoid

and combine it with an eye joint angle controller to achieve

gaze control behavior.

II. MOTOR DIRECTIONAL TUNING SEEN IN THE MOTOR

CORTEX

Motor directional tuning is a phenomenon seen in various

parts of the brain regions involved in motor control, in

which neurons are activated in an orderly fashion based

on the direction of arm movement [11]. Fig. 1 illustrates

this phenomenon. The motor cortical cells that exhibit this

phenomenon each have a ”preferred direction” that they are

tuned to. This represents the arm movement direction in

which the cell is most active. The cell’s activity gradually

decreases as the movement direction deviates from the cell’s

preferred direction. The activity of the cell plotted against

the arm’s movement direction is called a ”directional tuning

profile”, and in Fig. 1 the directional tuning profiles of

2 cells are shown. It draws a bell-shaped curve with its

peak at the cell’s preferred direction. In the 1989 study

by Georgopoulos et al. that first reported this phenomenon,

hundreds of measured cells exhibited this behavior [12].

Motor directional tuning can be seen in arm movements in

3D space, and is stable across different movement amplitudes

[13], [11]. This suggests that movement direction is one of

the most dominant descriptors of arm movement, and motor

cortical neurons are activated based on that variable.

Thus, we can expect that a cell tuned to a particular

direction will activate a group of muscles that will move the

hand in that direction. The activity of all the cells activated

by motor directional tuning contribute to the final output,

which are the neural signals sent to the muscles.

Here, it is important to recognize the role of the motor

cortex in the motor system. The motor cortex exists in

the mid-level of the motor control command pathway, as

illustrated in Fig. 2. Therefore, the representations of output

in the motor cortex are more abstracted than the individual

muscle level. Instead, even a small stimulation in this area

elicits activation of several muscles at once [14]. The infor-

mation from the motor cortex are converted to commands for

individual muscles as they pass through the motor command

pathway.

The cerebellum and basal ganglia exist at a higher level

than the motor cortex. The cerebellum is involved in sensory

feedback and generation of coordinated movement, and the

basal ganglia is involved in suppression of unwanted move-

ments and initiation of movements.

At a lower level than the motor cortex, upper motor neu-

rons in the brainstem centers use the motor commands from

the motor cortex and combine it with sensory information

such as vestibular, auditory, and visual information to keep

balance of the body in response to internal and external

disturbances. The motor commands from the motor cortex

and brainstem centers travel through the neurons in the spinal

cord and brainstem, where they finally are sent to muscles

via the α motorneurons.

III. A CONTROLLER FOR MUSCULOSKELETAL

HUMANOIDS BASED ON MOTOR DIRECTIONAL TUNING

Fig. 3 gives an overview of the proposed controller. Each

muscle has a ”muscle preferred direction”, represented by

a unit vector ci for muscle i. The matrix C stores all the

muscle preferred direction vectors used in the controller, as

in Eq. 1. The number of muscles being controlled is n.

C =
[
c1 c2 . . . cn

]T
(|ci| = 1, i=1, 2, ..., n) (1)

In the actual phenomenon of motor directional tuning, the

”preferred direction” is reprensented by cells in the motor

cortex, and is more abstracted than the individual muscle

level. However, in this proposed method, for simplicity, each

preferred direction corresponds to a single muscle. Therefore,

to differentiate from the original term, we call this the

”muscle preferred direction”. The process for measuring each

muscle preferred direction for a musculoskeletal robot arm

is described in Section IV-A.

The movement direction vector m is calculated according

to the robot’s task. The calculation process for an arm

reaching movement is described here.

The movement direction vector m represents the intended

direction and magnitude of movement of the arm. For
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Fig. 3: Overview of proposed controller when applied to controlling arm movement.

reaching tasks, it was calculated by the following process.

v = ptarget − phand

m =

{
v/Dthresh if |v| < Dthresh

v/|v| otherwise

(2)

Here, | · | expresses the L2 norm. ptarget and phand are

respectively the position of the target and hand in 3D space.

m is parallel to the vector from the hand to the target v,

and is normalized by Dthresh with a maximum length of 1.

Dthresh is determined based on the accuracy required in the

reaching task. A smaller value improves precision, but when

reaching from afar, could cause overshooting and oscillation

around the target.

For other tasks, the movement direction vector can be

calculated in a similar fashion. For example, in a handle

rotation task as depicted in Fig. 3, the vector would be

tangent to the handle. In this research, only the reaching

task was performed.

The cosine of the angle between each muscle preferred

direction ci and movement direction m can be calculated

from a simple matrix operation in Eq. 3, and then the

directional activation di can be calculated from Eq. 4, which

is based on the circular normal distribution used in research

of motor directional tuning [11], [15].

Cm

|m| =

[
cT1m . . . cTnm

]
|m|

=
[
cos θ1 . . . cos θn

] (3)

di = |m|gi {b+ k exp(κ cos θi)} (i=1, 2, ..., n) (4)

The parameters introduced in Eq. 4 will be explained.

κ determines the width of the tuning profile, as shown

in Fig. 4. In this experiment, κ was set to 1 and the half

width of the tuning profile is 128◦, wider than what has

been physiologically observed. The median value of the half

width of the directional tuning profile was 56◦ in the motor

cortex [15]. This difference in width of the tuning profile

is because the distribution of muscle preferred directions is

sparse compared to that of preferred directions in the motor

Fig. 4: Shape of directional tuning profile (described in Eq.

4) with different values of κ.

cortex. Whereas hundreds of cells have been observed to

exhibit motor directional tuning, in this proposed controller,

only 9 muscle preferred directions exist for arm movement.

By having a wider directional tuning profile, we can ensure

that muscles are activated across all movement directions.

b and k are set so that di takes a value between 0 ≤ di ≤
|m|gi across all values of θi. They can be calculated as

k =
1

eκ − 1/eκ

b =− k

eκ

(5)

gi is the gain for each muscle, and when |m| ≤ 1, defines

the maximum tension output from that muscle. Since muscles

closer to the center of the body tend to require more force

output, gi values for proximal muscles are set to be larger

than that of distal muscles. Their values were determined

experimentally through trial and error.

After the activation di is obtained, the tension command

values to be sent to the robot is calculated by an exponen-

tially weighted moving average function in Eq. 6. It acts as

a low-pass filter, to prevent sudden changes in tension.

T t
i = αdi + (1− α)T t−1

i (0 < α < 1) (6)

The value α in Eq. 6 is the smoothing factor of the

exponentially weighted moving average function. It can be
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TABLE I: Values of parameters used in experiment.

symbol description value
κ parameter for tuning profile 1
k parameter for tuning profile 0.425
b parameter for tuning profile -0.156
τ time constant (arm, head) (1.4, 0.7) [sec]
Δt timestep (arm, head) (0.25, 0.1) [sec]
α smoothing factor (arm, head) (0.16, 0.13)

Tbias bias tension to keep wire taut 6 [N]
Tmax maximum tension limit for safety 400 [N]
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Fig. 5: Arrangement of upper muscles of Kengoro [1].

determined from a time constant τ and control cycle Δt.

α = 1− e−Δt/τ (7)

The time constant τ is the time it takes for T t
i to increase

from zero to 1−1/e ≈ 63.2% of the original signal di, when

di is kept constant.

Finally, the actual tension commands sent to the robot

are processed with Eq. 8. To keep the muscle wire taut, the

tension commands are kept above a constant offset Tbias and

the command saturates at Tmax to prevent large tension values

from damaging the robot.

T command
i = min{Tbias +max{T t

i , 0}, Tmax} (8)

The values of each parameter which were used in the

experiments are shown in Table II for gi, and Table I for

the rest.

IV. IMPLEMENTATION OF THE PROPOSED CONTROLLER

ON MUSCULOSKELETAL HUMANOID KENGORO

The musculoskeletal tendon-driven humanoid Kengoro

was used in this study. Kengoro has a musculoskeletal

structure that closely resembles the human form, and is used

as a platform for research on musculoskeletal robots [16].

Fig. 5 shows the muscle arrangement of the upper body of

Kengoro. Table II lists the muscles used for each controller

in this research. The arm controller uses 9 muscles, and the

neck controller uses 4 muscles. The value gi is the gain

defined for each muscle and will be introduced later.

Fig. 6 shows the link and joint structure of Kengoro’s

upper limb. Among these, the shoulder joint and elbow joint

was used in the arm controller, adding up to 4 degrees of

Fig. 6: Structure of Kengoro’s upper limb [1].

TABLE II: Muscles used in each controller and their gains.

controller muscles gi [N]
Arm #10 Infraspinatus 450

#11 Deltoid (front) 450
#12 Deltoid (middle) 450
#13 Deltoid (rear) 450
#14 Subscapularis 450
#15 Pectoralis major 300
#18 Biceps brachii 150
#19 Brachialis 100
#20 Anconeus 70

Neck #1 Longus coli 100
#6 Splenius capitis 200
#7 Obliquus capitis superior (left) 120
#7 Obliquus capitis superior (right) 120

freedom. The neck is comprised of 6 springs. The scapula

and spine was not moved in this research.

A. Process to obtain muscle preferred directions of arm

muscles

The muscle preferred directions for each muscle ci were

obtained from a characterization process on the physical

robot. They represent the direction of arm movement which

the contraction of that muscle causes. By measuring them

on a physical robot, we can capture characteristics not fully

reproduced by a computational model.

The process is detailed in Algorithm 1. To obtain the

muscle preferred direction for a muscle, tension is increased

on just that muscle and the movement of the hand is observed

by using the AR marker located on the forearm.

Fig. 7 shows the muscle preferred directions measured on

the right arm.

B. Variance of muscle preferred directions across different

poses

In our current implementation, the same muscle preferred

directions are used across all poses. However, especially

with the arm, where there is a complex musculoskeletal

structure, the effect that a muscle exerts on the body differs

depending on the pose of the robot. Thus, the muscle acti-

vation calculated from a constant muscle preferred direction

may not cause the arm to move in the intended movement

direction. For reaching movements, small differences in
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Fig. 7: Result of muscle preferred directions measured on

right arm, displayed on 3D model for visibility.

Algorithm 1 Algorithm for calculating preferred directions.

1: robot is set to initial pose P by operator

2: for i = 1 to n do
3: p0 ←[position of hand]

4: Ti = Ti+ΔT (keep tension of other muscles constant)

5: sleep(2 [sec])

6: p1 ←[position of hand]

7: v ← p1 − p0

8: ci ← v/|v|
9: set robot to pose P by muscle length control

10: end for
11: C =

[
c1 c2 . . . cn

]T
12: RETURN C

(a) 8 poses in which muscle preferred directions were measured.

(b) Circular standard deviation of muscle preferred directions.

Fig. 8: Circular standard deviation of muscle preferred di-

rections measured in various poses.

intended movement direction and actual movement direction

is not a concern. This is because as long as the controller can

move the arm to bring the hand closer to the target, the hand

can asymptotically reach the target. We have attempted to

quantify this effect, by measuring muscle preferred directions

in different poses and analyzing its variation.
A simulated model of Kengoro was used in this evaluation.

This model is implemented as a tendon-driven robot on

the MuJoCo physics engine [17]. The muscle preferred

directions were measured in 8 different poses across the

workspace as shown in Fig. 8 (a), and their circular stan-

dard deviations were calculated, as shown in Fig. 8 (b).

Two types of coordinates were used to express the muscle

preferred directions: forearm-fixed, and external coordinates.

The average circular standard deviation was smaller for the

forearm-fixed coordinates, at 0.53 [rad], or 30◦. Thus, we

can expect that for most of the workspace, the difference in

intended movement direction and actual movement direction

will stay within 90 ◦, and the hand can asymptotically reach

the target.
In this research, a forearm-fixed coordinate was used.

This also has the advantage of being computable from just

the camera image. As long as both the hand and target

AR markers are in sight, the movement direction vector

can be calculated. If we were to calculate the vector in

external coordinates, the orientation of the camera will also

be necessary.
Next, we evaluate this controller for a reaching motion.

C. Comparison of Reaching Experiment with Model-Based

Controller

A comparison experiment between the proposed controller

and a controller based on a geometric musculoskeletal model

was run in order to evaluate the proposed method. The task

was to reach a visual target which was positioned (500, 50,

50) [mm] from the origin of Kengoro’s coordinates (located

at the base of the spine) with its hand, which was defined to

be (10, -40, -150) [mm] from the AR marker on its forearm.
The geometric model-based method used for comparison

is comprised of two steps. It first moves the robot to the

desired position xhand by solving the inverse kinematics of

the arm. The muscle lengths are computed from the model

and sent to the robot. In the equation below, f is the mapping

between robot pose and muscle length.

θ = inverse kinematics(xhand)

Lmuscle = f(θ)
(9)

Since the geometric model does not completely match the

physical robot, even after this operation there will be an error

Δx between the hand and target. The next step incrementally

attempts to minimize this error in operational space. The

robot was continuously controlled with the following simple

update rule using the joint Jacobian J . The newly computed

muscle lengths were continuously sent to the robot.

Δθ = rJ−1Δx ( 0 < r ≤ 1)

θ ← θ +Δθ

Lmuscle = f(θ)

(10)
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r is a coefficient which determines how fast the hand

converges to the target position. In this experiment, r was

set to 0.002 and the control cycle was 0.25 [sec].

For the proposed method, the Dthresh seen in Eq. 2 was first

set to 0.4 [m], then was halved every time the arm motion

stopped. This was in order to gradually improve the accuracy

of the reaching motion, while preventing overshoots when

too small a threshold is used from the beginning.

The results are shown in Fig. 9. It shows the robot at the

end of the sequence, as well as graphs of muscle tension

and distance between the hand and target. For the proposed

method, the recognition result and computed movement

direction vector m is shown with the robot, and for the

comparison method, the internal geometric model is shown.

The model-based method achieved a higher precision.

When the robot reached the target pose computed from

inverse kinematics, it only had a precision of around 200

[mm]. After that, the incremental update through the use of

joint Jacobian improved the accuracy, finally reaching closer

than 7 [mm] to the target. On the other hand, the proposed

method could only reach within 25 [mm] of the target. Most

of this error was in the +z direction (parallel to the forearm,

in the proximal direction).

The reason for the remaining error in the proposed method

can be attributed to the uneven distribution of the muscle

preferred directions. As can be seen in Fig. 7, there is

a sparse distribution of muscle preferred directions in the

z direction (parallel to the forearm). Thus, there is weak

activation of the muscles for this movement direction. This

is a limitation of the current scheme for motor directional

tuning based control, and we expect that by incorporating

synergistic relations between muscles to the control scheme,

precise movement in such directions will become possible.

As for muscle tensions, the proposed method had lower

muscle tension overall, and no muscle increased over 150

[N]. On the other hand, in the model-based method, the

tension for #19 Brachialis (elbow flexor) and #20 Anconeus

(elbow extensor) increased as the incremental update pro-

gressed, reaching as high as 320 [N].

The high tension in the model-based method is due to the

error between the model and robot. The model error is why

the first pose solved by inverse kinematics does not actually

reach the target. The update rule with joint Jacobian improves

operational space accuracy on the real robot, but sacrifices

model precision. In the end, there is a large pose difference

between the model and robot, as can be seen in Fig. 9. This

is especially prevalent on the elbow, and results in buildup

of large internal tension. This phenomenon can be alleviated

by improving the precision of the model, such as by using

vision to update the joint-muscle mapping[1]. However, there

will always be some error between the model and robot, and

problems due to model error will persist.

In the proposed method, no internal model is used and

muscle tension is calculated from the current relationship

between the hand and target. Due to this, the muscle tension

can be kept low compared to the other method. There is no

internal force resulting from antagonistic muscle pairs, since

Fig. 9: Reaching experiment with proposed and model-based

controller.

only agonist muscles are activated from motor directional

tuning. For example, from Fig. 7, it can be seen that the

elbow flexors (#18 and #19) and extensor (#20) have muscle

preferred directions in opposite directions. Thus, when the

flexors are active, the extensor is inactive, and vice versa.

As such, the simple activation rule from motor directional

tuning can result in efficient usage of muscles.

V. GAZE CONTROL USING THE PROPOSED CONTROLLER

The proposed controller was also apploed to control the

neck muscles, combined with eye angle control with a

more traditional controller. Human eyes have foveated vision,

where there is a higher density of photoreceptors around

the center of their field of vision. Such higher-resolution

vision accounts for only a 1 ∼ 2◦ visual field, and humans

constantly move their eyes to take in visual information

around themselves [14]. When combined with neck motion,

a wide area can be observed without moving the torso.

Although the robot used in this research does not have

foveated vision and has a constant resolution across its field

of vision, it is still advantageous to implement such strategies

since it can effectively increase the field of view of the

camera. This is especially important for the proposed arm

controller, since it must always have both markers on the

arm and the target in sight to compute the muscle tension

command. By coordinating the movement of the eye and

neck, the robot can direct its gaze to a wider area, and

therefore its arm can reach a wider workspace.

Two separate controllers were used to achieve this motion.

The neck muscles were controlled by the motor directional

tuning based controller, while the eyeball movements were

controlled through conventional frame calculations. Each

controller will be explained in the following subsections,
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followed by experimental data when these controllers were

run at the same time.

A. Eye Angle Control

Algorithm 2 Process for eye control.

1: reset reference IMU pose

2: loop
3: if object is outside threshold then
4: follow object (duration 500 [ms])

5: reset reference IMU pose

6: else
7: VOR (duration 5 [ms])

8: end if
9: end loop

Algorithm 2 describes the process run on the eye. When

the target object (in this case, the AR marker on the target

object) is not in view, or is near the center of the field of

vision, the VOR (vestibulo-ocular reflex) process is run. This

reads the IMU values and sends joint angle commands to the

eye so that the gaze direction is kept constant. It tries to keep

the same gaze direction as when reset reference IMU pose
is last called.

When the target object is outside a predefined threshold in

the camera image, the follow object function is called and

the eye is moved to re-center the object in the field of view.

B. Neck Muscle Control

The proposed controller based on motor directional tuning

was used to control the neck muscles. They were controlled

to align the head orientation with the eye gaze direction.

The movement direction vector m was calculated from the

eye joint angles in a process similar to Eq. 2.

veye = (θy, θp − 0.1[rad])T

m =

{
veye/0.17 if |veye| > 0.17

veye/|veye| otherwise

(11)

θy and θp are respectively the yaw and pitch angles of the

eye, in radians. m is calculated as a vector from (θy, θp)
to (0, 0.1). The offset of 0.1 [rad] for the pitch angle is to

counter the effect of gravity when looking down.

For the neck muscle controller, the muscle preferred direc-

tions were determined empirically from the musculoskeletal

structure.

C. Gaze Control Experiment

The behavior of the controllers when they are run simul-

taneously is demonstrated in Fig. 10. First, the robot moves

its eyes to an external visual target. Then, the neck is rotated

to match the head orientation with the eyes. During this neck

movement, gaze direction is kept constant due to the VOR.

The eye joint angle graph shows that after the eyes deviate

from their initial position at (b), they return to the center

position at (c). The neck muscles are activated by motor

directional tuning to rotate and raise the head.

Fig. 10: Gaze control movement in reponse to a visual target.

Fig. 11: I/O of each controller used in upper body control.

This coordinated behavior between the eye and neck

muscles is not controlled by a central process, and is an

emergent behavior that arises from two separate processes,

coupled only by the eye joint angles.

D. Combining Gaze Control with Arm Control

Fig. 12 shows the behavior of the robot when the con-

trollers for the arm, neck and eyes are run simultaneously.

By controlling the gaze direction, the robot was able to reach

a wider space than with a fixed camera angle. Each of the

inputs and outputs of the three controllers are illustrated in

Fig. 11. Although these controllers do not directly communi-

cate with one another, coordinated motion was achieved by

the upper body.

VI. CONCLUSION

In this research, we developed a biomimetic controller for

musculoskeletal humanoids, and applied it to the control

of the arm and neck. This controller uses a simple rule

based on motor directional tuning to compute muscle tension
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Fig. 12: Reaching for visual target with its upper body.

commands, and does not require an internal musculoskeletal

model. Because it is not based on a physics model, we

consider that this method can be easily applied to other types

of musculoskeletal robots whose characteristics are difficult

to model, such as pneumatic artificial muscles.

This controller maps movement direction given in oper-

ational space into tension commands, which are described

in muscle space. It does not utilize the joint space, and

parameters in this space (e.g. joint angle, joint torque) is

not represented in the controller. Since humans are not

considered to have organs that directly measure joint an-

gle [18], [19], we believe that a biomimetic controller for

musculoskeletal robots also should not utilize direct mea-

surements of joint angles. Thus, the arm controller does

not solve inverse kinematics to generate reaching motion, as

conventional methods do. Instead, it constantly monitors the

current relationship between its body and the target object,

and activates muscles according to that relationship.

This controller takes advantage of the presence of the

robot, and achieves motion through a simple mapping be-

tween input and output. By imitating the process seen in

primates, we believe that the controller takes an embodied

approach to the control of musculoskeletal robots.

Although this controller has realized efficient activation

of muscles, it has failed to achieve comparable precision as

model-based approaches. One possible improvement to this

controller is to modify the mapping between each preferred

direction and each muscle. Currently, their relationship is

described with a simple one-on-one relationship, and is fixed

even as the arm pose changes. By instead utilizing more

complex mappings such as neural networks, we hope to

create a motor directional tuning based controller that can

take into account the synergistic relations between muscles,

and update itself by constantly observing its input and output.
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