
Dynamic Object Tracking for Self-Driving Cars Using Monocular
Camera and LIDAR

Lin Zhao1 , Meiling Wang∗1 , Sheng Su1, Tong Liu1 , and Yi Yang1

Abstract— The detection and tracking of dynamic traffic
participants (e.g., pedestrians, cars, and bicyclists) plays an
important role in reliable decision-making and intelligent nav-
igation for autonomous vehicles. However, due to the rapid
movement of the target, most current vision-based tracking
methods, which perform tracking in the image domain or
invoke 3D information in parts of their pipeline, have real-life
limitations such as lack of the ability to recover tracking after
the target is lost. In this work, we overcome such limitations and
propose a complete system for dynamic object tracking in 3D
space that combines: (1) a 3D position tracking algorithm based
on monocular camera and LIDAR for the dynamic object; (2)
a re-tracking mechanism (RTM) that restore tracking when
the target reappears in camera’s field of view. Compared with
the existing methods, each sensor in our method is capable
of performing its role to preserve reliability, and further
extending its functions through a novel multimodality fusion
module. We perform experiments in the real-world self-driving
environment and achieve a desired 10Hz update rate for real-
time performance. Our quantitative and qualitative analysis
shows that this system is reliable for dynamic object tracking
purposes of self-driving cars.

I. INTRODUCTION

Dynamic Object tracking is an important problem in
robotics and has wide applications range from mobile robot
navigation to autonomous driving. The detection and tracking
of traffic participants such as pedestrians, cars, and bicyclists
play an important role in decision-making and intelligent
navigation for self-driving cars. Given the image of an
arbitrary target of interest, the aim of object tracking is to
estimate its position in all the subsequent frames with the
best possible accuracy.

Although recent advances in object detection and tracking
start to approach a matured state [1], [2], there are still
several open problems in vision-based tracking approaches.
The majority of existing methods often perform tracking in
the image domain. In the absence of depth measurements or
strong priors, a single view does not provide enough infor-
mation to estimate the 3D layout of a scene accurately. Yet,
in mobile robotics and autonomous driving scenarios, precise
3D localization and trajectory estimation is of fundamental
importance. In order to prevent collisions, it is crucial to be
aware of the relative position of objects in world space.

*This work was partly supported by Program for Changjiang Scholars
and Innovative Research Team in University of Ministry of Education
of China in 2016 (IRT 16R06, T2014224), General Program of National
Natural Science Foundation of China (Grant No. NSFC 61173076), Training
Program of the Major Research Plan of the National Natural Science
Foundation of China (Grant No. NSFC 91120003). (Corresponding author:
Meiling Wang.)

1The authors are with the Integrated Navigation and Intelligent Navi-
gation laboratory, School of Automation, Beijing Institute of Technology,
China (email: zhaolin email@qq.com).

Practical applications usually face the requirements of on-
line program execution and interaction with users. Therefore,
the tracked target specified by the user can be represented
as a simple rectangular bounding box in the first frame,
which will result in the object representation including pixels
belonging to the background. In this case, effective depth
estimation algorithms are not guaranteed to be accurate when
estimating the depth of the target object.

In this paper, we propose a real-time spatial position
tracking system based on the combination of a monocular
camera and a LIDAR sensor to realize the tracking of
specified targets in actual traffic scenes. The tracking system
consists of three modules: mask generation, depth estima-
tion, and re-tracking mechanism. After given an arbitrary
rectangle bounding box in the first frame of the color image
sequences captured by the monocular camera, the mask
generation module tracks the selected object and generates
a binary segmentation mask that expresses whether or not
a pixel belongs to the target during the tracking process.
The generated mask provides pixel-level information for the
depth estimation module. Then based on the results of the
joint calibration between monocular camera and LIDAR, we
project the LIDAR point cloud onto the image plane to obtain
the sparse two-dimensional depth map. According to the
segmentation results of the target, the spatial position of the
target is estimated from the sparse depth map. Due to the
rapid movement, the target may leave the camera’s field of
view. In this paper, we develop a re-tracking mechanism that
maintains an object detection program and restores tracking
when the target reappears.

This tracking system is further developed based on the
existing excellent end-to-end target tracking networks. We
focused on the 3D position tracking of a single target and
re-tracking problem. In summary, our main contributions in
this paper are threefold:

1) A re-tracking mechanism (RTM) is developed to re-
store tracking after losing the tracked object. When
the object returns to the camera’s field of view, RTM
can quickly re-identify the original object and continue
tracking.

2) A strategy to fuse monocular camera data and LIDAR
data is developed. Using the geometry information
provided by LIDAR, the spatial position of the target
can be estimated.

3) We conduct a qualitative and quantitative evaluation of
the system on our self-driving car platform.

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 10865

II. RELATED WORK

In this section, we provide an overview of the most
representative techniques for the problems tackled in this
paper.

A. Object Tracking

In general, tracking algorithms can be categorized
into generative or discriminative based on their model-
construction mechanism [3]. Generative methods [4], [5]
model the association problem as a certain form of opti-
mization problem on graphs, which model the target region
in the current frame, and look for the region most similar
to the model in the next frame to predict the location.
Discriminative methods [6], [7] are also called tracking-by-
detection, where the target object is first obtained by an
object detector and then linked into trajectories via data
association.

Tracking-by-detection has been the prevailing solution to
object tracking in the past decade. Especially, the Correlation
Filter rose to prominence as a particularly fast and effective
strategy for tracking-by-detection [8]. Performance of Corre-
lation Filter-based methods has then been notably improved
with the adoption of spatial constraints [9], multi-channel
formulations [10], and deep features [11], [12].

B. Semantic Segmentation

Most modern object tracking frameworks use a rectangular
bounding box both to initialize the target and to estimate
its position in the subsequent frames. However, a simple
rectangle often fails to properly represent an object, this
can lead to incorrectly estimate the depth of the object.
This motivated us to produce segmentation masks during
the tracking progress while still only relying on an initial
bounding box.

The goal of semantic segmentation is to classify each
pixel of an image into a predefined class. A popular image
segmentation model is the encoder-decoder structure. The en-
coder part reduces the spatial resolution of the input through
downsampling to generate a low-resolution feature map,
which has high computational efficiency and can effectively
distinguish different categories. The decoder samples the
feature description up and restores it to the full resolution
segmentation graph. Similar to the object detection task,
there is a trade-off between accuracy and runtime. There-
fore, approaches like convolutional factorization [13], [14],
quantization [15], pruning [16], and dilated convolutions [17]
came up.

C. Depth Estimation

Depth estimation is a part of 3D reconstruction in com-
puter vision. The monocular depth estimation based on deep
learning is to fit a function that maps the image into a depth
map. However, there may be far fewer pixels in the object
than in the background, so the effective depth estimation
algorithms cannot ensure that the depth estimation of the
target object is accurate. A traditional usage of LIDAR point
cloud for tracking is to measure distances [18], provide 2.5D

grid representation [19], [20] or to derive some hand-crafted
features [21]. Recent studies [22], [23] have demonstrated
the value of using 3D point cloud as perception features
in autonomous driving. There are also methods [24] which
projects the point cloud to a sphere thus 2D CNN can be
applied for the segmentation task.

III. MASK GENERATION

The first step of mask generation is to select the Region
of Interest (ROI) where the target is located in the first
frame. To allow simple initialization, the ROI object is only
represented by a bounding box. The visual single object
tracking is often considered as a similarity learning problem,
which is usually addressed by Siamese architectures [25],
[26], [27]. Bertinetto et al. [25] train a fully-convolutional
Siamese network, which is referred to as SiamFC, on the
offline datasets. Their approach achieves very competitive
performance in modern tracking benchmarks at speeds that
far exceed the frame-rate requirements. Inspired by the
success of the fast-tracking approach, we similarly employ a
fully-convolutional Siamese neural network within the mask
generation module to obtain object tracking information in
real-time.

A. Network Architecture

The fully-convolutional Siamese network requires in-
putting an exemplar image X1 and a search image X2,
which are the ROI object we selected and a larger search
area, respectively. The Siamese network applies an identical
transformation to both inputs, which means that the exemplar
image and the search image are computed by the same
function Fθ(·), generating two feature maps Fθ(X1) and
Fθ(X2). After that, the two features embeddings Fθ(X1)
and Fθ(X2) are combined with a cross-correlation layer to
generate a response map:

Cθ(X1, X2) = Fθ(X1) ? Fθ(X2) (1)

where ? denotes cross-correlation operation, θ indicates the
parameters of the Siamese network, and Resnet-50 [28] is
employed to the identity transformation of shared weights in
this paper.The response map Cθ(X1, X2) is actually a score
map, and each spatial element on it encodes the similarity
measure between X1 and all candidate sub-windows within
X2.Therefore, the most responsive part of Cθ(X1, X2) cor-
responds to the location of the target in the search image.
We can track the position of the most similar part on the
search image X2 against the sample image X1 based on the
response map.

However, the response map only indicates position in-
formation on the image plane. It does not provide pixel-
level semantic information of the target object. Based on the
work of SiamFC, Wang Qiang et al. [1] propose a multi-
task learning method that combines video object segmen-
tation and visual object tracking by extending a branch for
training a segmentation task, which is called SiamMask. The
Siamese network is simultaneously trained in siammask for
three tasks: the corresponding bounding box, object score,

10866

Fig. 1. The mask generation and object tracking network architecture.

and segmentation mask of the tracked target object. Since
the basic task of mask generation is to obtain the pixel-
level information of the tracked object, its bounding box
is not utilized in the depth estimation module. Our method
only adopts the two-branch variant of SiamMask, that is,
two branch networks are added after the response map
Cθ(X1, X2), which are used to predict the object score and
segmentation mask respectively. The score branch outputs the
score of tracking results, which can be used to judge whether
the target is lost. The mask branch is used to output a binary
segmentation mask, which is used to express whether or not
a pixel belongs to the target object within the search image.
Both the binary segmentation mask and the object score are
implemented by a two-layer neural network:

Omask = Mφ(Cθ(X1, X2))
Oscore = Sw(Cθ(X1, X2))

(2)

where Mφ denotes the two-layers CNN for producing seg-
mentation masks with learnable parameter φ, Sw denotes
the two-layers CNN used to output scores with learnable
parameter w.

The architecture of the mask generation algorithm is
illustrated in Fig. 1. After obtaining the segmentation mask,
the center position of the search image X2 in the next frame
can be inferred and updated. The update strategy takes the
last estimated position of the target as the center of the
search image X2, that is, the center point oi of the binary
segmentation mask.

B. Loss Function

The Siamese network in SiamFC is trained on positive
and negative pairs extracted from a large-scale video dataset
with annotations. Each pair of training samples consists of an
exemplar image and a corresponding search image extracted
from the same video. A logistic loss is adopted in this
training process, which can be referred to as Ls:

Ls = log(1 + e−sy) (3)

where each pair is labeled with a ground-truth label y ∈
{+1,−1} and s is its real-valued score. In the case of pos-
itive pairs(y = 1) in SiamMask, a binary logistic regression
loss Lm is adopted for each ground-truth mask c of size
w × h:

Lm = 1+y
2wh

∑
ij log

(
1 + e−c

ijmij
)

(4)

where m is the predicted mask and both the superscript (i, j)
denotes the pixel coordinate of the corresponding mask. In
this way, the two-branch Siamese network optimizes a two-
branch losses Ltwo−branch:

Ltwo−branch = λ1Lm + λ1Ls (5)

where hyperparameters λ1 and λ2 are set to 32 and 1
respectively, according to the configurations in SiamMask.

IV. DEPTH ESTIMATION

The output of the previous section is a binary segmentation
mask of the search image. In this section, we describe how to
estimate the spatial position of the target object with respect
to the self-driving car from the binary segmentation mask
and the LIDAR point clouds. To describe the framework
combining LIDAR and Monocular camera, the coordinate
frames of the self-driving car is first introduced, namely the
LIDAR frame L and the camera frame C(see Fig. 2). For
convenience, the LIDAR coordinate system can be seen as
the car coordinate system, that is, the origin of the LIDAR
coordinate system represents the position of the vehicle.The
three-dimensional position of the target object in the LIDAR
frame is represented by Po = (xo, yo, zo).

Before the data fusion between LIDAR and camera, it
is necessary to know the transformation matrix between
the corresponding coordinate systems of both sensors to
provide redundant information in the same reference system.
Dhall et al. [30] propose a novel LIDAR-camera extrinsic
calibration solution by using 3D-3D point correspondences.
Their approach uses ArUco tags stuck on the cardboards

10867

with a point extraction algorithm to obtain 3D point corre-
spondences in the LIDAR as well as camera frames. The
two sets of 3D points can be used to find an accurate rigid-
body transformation between LIDAR frame L and camera
frame C. With the above calibration pipeline, the LIDAR
point clouds can be projected into the camera frame:

pC = RCLpL + tCL (6)

where pL = [xL, yL, zL] denotes the 3D coordinates of the
point clouds in the LIDAR frame, and pC = [xC , yC , zC]
denotes the 3D coordinates in the camera frame. According
to the pinhole camera model [29], there is a mathematical
relationship between the coordinates of a point in the three-
dimensional space and its projection onto the image plane: u

v
1

 = 1
zC

 fx 0 cx
0 fy cy
0 0 1

 xC
yC
zC

 = 1
zC

KpC (7)

where K indicates the camera intrinsic matrix. pi = (u, v)
indicates the coordinates of a point on the image plane. From
Eq 7, LIDAR point clouds are projected onto the image
plane. Since the segmentation mask of the target object is
known, namely we know which pixels on the image plane
whether or not belong to the target. The problem of 3D
position estimation can be simplified to calculate the depth
of the target object zobj in the camera coordinate system. In
an ideal situation, we can directly calculate the 3D position
of the target object based on the LIDAR point clouds that
overlap with the segmentation mask on the image plane.

Fig. 2. The coordinate systems of the self-driving car.

However, due to the sparsity of LIDAR point clouds, when
the distance between the dynamic target and the self-driving
car is relatively large, the number of LIDAR point clouds
that overlap with the segmentation mask on the image plane
will be small. Besides, there are cases of noise in LIDAR
point clouds or rough segmentation mask, etc. Considering
the above problems, a choice strategy is adopted to obtain an
accurate three-dimension position of the target object. After
the LIDAR point clouds are projected onto the image plane,
we take the following steps for each point puv:

1) Choose the projected LIDAR points in the search
image as a set F. Based on whether or not the points

are inside the object area (that is, the area with a pixel
value of one in the binary segmentation mask), we
divide the set F into a set Fb and a set Fo, where Fo
indicates the projected LIDAR points located inside the
object area, and Fb indicates the points located outside
the object area, namely the background area.

2) Count the number of the projected points in the point
set Fo and record it as Γ. In the case where the number
of points Γ is greater than a given threshold. Taking
the center point of the object area as the origin oi
(see Section III-A), the pixel distances dp between
the projected points of Fo and oi are calculated in
order. Then the depth of the target object zobj can be
calculated:

zobj =

∑
i∈Γ

1

d
(i)
p

z
(i)
C∑

i∈Γ
1

d
(i)
p

(8)

where d
(i)
p indicates the pixel distance between the

i-th projected point of Fo and oi, z
(i)
C indicates the

coordinate value of the i-th projected point in the z-
axis direction of the camera frame C. z(i)C indicates the
depth of the i-th projected point in the camera frame
C.

Fig. 3. The depth histogram for projected points

3) In the case where the number of points Γ is less than
the given threshold, we calculate a depth histogram of
the projected points in the set Fo with a fixed bin width
of ∆d = 0.2m (see Fig. 3). Elements in Fo are inserted
into the depth histogram. The maximum probability
interval in the depth histogram is considered to be the
vertical plane in which the object is located.

For a self-driving car, the object tracking is also a moving
object on the ground. According to the operating principle of
point clouds captured by LIDAR scanning, the point cloud
scanned onto the object can be approximated as a local
vertical plane. We consider the connection of points within
the object area and its neighborhood. Points inside the object
area and points in the neighborhood of the object area will
fall in different intervals of the depth histogram. A jump in
depth from the object to background corresponds to a gap
in bin occupancy. According to this constraint, the interval
of the object’s local vertical plane can be estimated. If the
number of projected points in the object area is less than the
given threshold and the above constraint relationship does
not exist. In this case, the object is considered to be lost.

10868

V. RE-TRACKING MECHANISM

Based on the score results generated by the mask gen-
eration module and the state given by the depth estimation
module, we can decide whether to convert the tracked state
to the state of loss. In the case of a lost state, the self-driving
car will follow its original planned trajectory.

Fig. 4. The whole process of RTM.

Generally, most target loss occurs when the target makes
a quick turn and disappears from the camera’s field of view.
When the lost target returns to the camera view, RTM can
deal with the tracking recovery problem. The workflow of
RTM is shown in Fig. 4. The universal fast object detection
framework YOLO [2] is used to output a rough target
detection on the input image. Since the LIDAR sensor has
a wide 360-degree surround scan range, the lost target will
still be scanned in the field of view of the LIDAR. When
target loss begins to occur, RTM records the target category
selected in the first frame (e.g. pedestrians, vehicles) and the
direction angle θl of the target with respect to the self-driving
car. RTM keeps running the YOLO detection algorithm
according to the recorded category to detect whether the
specified object category appears again in subsequent images.

When the target of the specified category is detected again,
RTM calculates a target azimuth θr in the LIDAR data
according to the depth estimation module and compares
it with the azimuth θl of the target when it is lost to
determine whether the re-detected target is in the vicinity.
Besides, RTM crops a temporary search image according to
the position of the target in the current image and re-inputs
it into the fully convolutional Siamese network. In order
to reduce computing resources, RTM only runs the score-
branch network. The output score of the network measures
the similarity between the previous exemplar image and the
temporary search image. Given a certain score threshold and
neighboring azimuth threshold (e.g. |θl − θr| < ∆θ), RTM
determines whether the previously tracked object reappears.
If the re-detected target satisfies the conditions of similarity
score judgment and adjacent azimuth judgment at the same
time, RTM resumes tracking and updates the search window
based on the bounding box of the detected object. When the
next image frame appears, the system continues to track the
specified target based on the updated search window.

VI. EXPERIMENTS
In this section, we present the experimental evaluation of

our 3D position tracking system for dynamic objects.

A. Experimental Setup

Fig. 5. Our self-driving car platform, equipped with monocular cameras
and a LIDAR sensor.

Unlike other object tracking experiments based on offline
annotated datasets, we evaluate the performance of the 3D
position tracking system through our self-driving car plat-
form in real-world driving scenarios. The self-driving car
platform as shown in Fig. 5, is equipped with monocular
cameras and a LIDAR sensor that is the Velodyne’s VLP-
16. The Velodyne VLP-16 LIDAR sensor has a 30◦ vertical
field of view, as well as a 360◦ horizontal field of view, and
the 16 planes represent an angular resolution of 2◦ in the
vertical direction. The monocular camera is installed in the
front of the car, which has a 135◦ field of view. We only
use a monocular camera to deploy our tracking algorithm
as well as a VLP-16 which is also installed in the front of
the car. The monocular camera is calibrated with respect
to the LIDAR frame using a LIDAR-Camera calibration

10869

pipeline [30] to find a rigid-body transformation between a
LIDAR and a camera for autonomous vehicles applications.
We integrated the entire three-dimension position tracking
system of dynamic objects into the self-driving car. All the
software runs on a PC with an NVIDIA GeForce GTX 2080.

B. Re-Tracking Experiment

To conduct dynamic object tracking experiments in the
case where the tracked object is lost, we artificially design a
driving environment with a 90-degree turn path as shown in
Fig. 6. During the 90-degree path turning process, the self-
driving car is prone to encounter the blind area at close range
due to the limited field of view of the monocular camera.
At this point, the tracked object is easy to move out of

Fig. 6. Re-tracking experiments

the camera’s field of view. Although the object cannot be
detected, there is a heading hold function on the self-driving
car that allows it to keep turning based on its planned histor-
ical trajectory. When the self-driving car enters the straight
area after the turn is completed, the target will return to the
camera’s field of view. We deploy advanced visual tracking
algorithms such as Deep SORT [31], [32] or SiamMask [1]
on our self-driving car to compare whether these algorithms
can restore tracking under the same experimental conditions.
Table I shows the results of the re-tracking experiment. It can
be seen that our algorithm can continue to re-track the target
after the target is lost (“Changed” indicates that the ID of
the target re-tracked is different from the original target). The
experimental results of missing the target in a turn show that
RTM is an effective object re-tracking strategy for the target
loss problem during driving with blind areas on a curve.

TABLE I
RE-TRACKING RESULTS

Method Deep SORT SiamMask RTM
Status Changed Lost Re-Tracking

C. Runtime Performance

We create multiple parallel threads to achieve a desired 10-
Hz update rate for real-time performance: mask generation
thread, depth estimation thread, and detection thread for
RTM. The detection thread and mask generation thread are
mutually exclusive. To manage intra-process communication
between different threads and sensors, the Robot Operating
System (ROS) was used. ROS provides already-implemented
sensor drivers for extracting point cloud data and color image
data from the VLP-16 and monocular camera, respectively.
The calculation time of different algorithm modules in our
system and the capture time of different sensor data is shown
in Fig. 7. Since the LIDAR data capture is run by a separate

program thread, the total time taken to track the 3D position
of the target is 83.3ms+15.2ms = 98.5ms on average under
the condition that the target is not lost.

Fig. 7. Process time for each step

D. Qualitative and Quantitative Results

Qualitative results of the 3D position tracking system
for dynamic objects are shown in Fig. 9. The intermediate
results are listed in detail according to the processing logic
of the system. We validate the adaptability of our system
by tracking different objects in different environments. The
maximum speed of the self-driving car does not exceed
10km/h during the experiments.

Fig. 8. The farthest tracking distance derived from the resolution of LIDAR,
θ = 2◦ denotes the angular resolution of LIDAR in the vertical direction.

Besides, we performed the farthest distance experiments
of the tracking algorithm. Ideally, the farthest distance of the
three-dimensional position tracking algorithm is constrained
by the image resolution and the angular resolution of the
LIDAR in the vertical direction. When the target is too far
away from the vehicle, the target occupies fewer pixels in the
image plane and is difficult to track. Moreover, the interval
of the lidar’s scan lines increases with distance. When the
interval is larger than the space occupied by the target, the
target cannot be scanned. With the resolution of the camera
allowed, we calculate the farthest distance of the 3D position
tracking algorithm. As shown in Fig. 8, we approximate the
farthest distance of our tracking algorithm when the height
of the ground object is equal to the interval between scan
lines of the LIDAR:

dmax = h
tan(θ2)

(9)

where h indicates the height of the target. For a pedestrian
with a height of h = 1.7m, The farthest distance of
our tracking system reaches 39.23m in real-world driving
experiments.

10870

Fig. 9. Qualitative results of our system. All experimental scenario data is derived from our self-driving car platform. (a) and (b) test the performance
of object tracking when obstacles appear in the search image. (c) and (d) test tracking a pedestrian riding bicycles. (e) and (f) test dynamic tracking
performance. The bottom row is a point cloud map showing the top view. We project the 3D position of the target onto a 2D plane in the bird’s-eye view
to assist the decision-making planning of the self-driving car. We use the red circle to indicate the position of the target in the two-dimensional top-view
map constructed by the point cloud. Note that the blue points in the map represent the noise, which will be filtered by our proposed position estimation
algorithm during the calculation of the three-dimensional position of the target.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a 3D position tracking pipeline
for self-driving cars. In particular, by fusing a LIDAR with a
monocular camera, our system achieves the goals of tracking
the target in images and estimating its depth. Furthermore,
we propose a re-tracking mechanism (RTM) to resume
tracking after the object is lost.

Despite the promising real-world vehicle experimental
results, our system still has limitations in the case of si-
multaneous tracking of multiple objects. As future work,
we would like to consider more practical issues related to
dynamic object tracking to improve the performance of self-
driving cars.

REFERENCES

[1] Wang, Qiang, et al. “Fast online object tracking and segmentation: A
unifying approach.” Proceedings of the IEEE conference on computer
vision and pattern recognition. 2019.

[2] Redmon, Joseph, et al. “You only look once: Unified, real-time object
detection.” Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016.

[3] Li, Xi, et al. “A survey of appearance models in visual object tracking.”
ACM transactions on Intelligent Systems and Technology (TIST) 4.4
(2013): 1-48.

[4] Wen, Longyin, et al. “Multiple target tracking based on undirected
hierarchical relation hypergraph.” Proceedings of the IEEE conference
on computer vision and pattern recognition. 2014.

[5] Kim, Chanho, et al. “Multiple hypothesis tracking revisited.” Proceed-
ings of the IEEE International Conference on Computer Vision. 2015.

[6] Bolme, David S., et al. “Visual object tracking using adaptive corre-
lation filters.” 2010 IEEE computer society conference on computer
vision and pattern recognition. IEEE, 2010.

[7] Henriques, João F., et al. “High-speed tracking with kernelized cor-
relation filters.” IEEE transactions on pattern analysis and machine
intelligence 37.3 (2014): 583-596.

[8] Bolme, David S., et al. “Visual object tracking using adaptive corre-
lation filters.” 2010 IEEE computer society conference on computer
vision and pattern recognition. IEEE, 2010.

[9] Kiani Galoogahi, Hamed, Terence Sim, and Simon Lucey. “Multi-
channel correlation filters.” Proceedings of the IEEE international
conference on computer vision. 2013.

[10] Kiani Galoogahi, Hamed, Terence Sim, and Simon Lucey. “Correlation
filters with limited boundaries.” Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2015.

[11] Danelljan, Martin, et al. “Eco: Efficient convolution operators for
tracking.” Proceedings of the IEEE conference on computer vision
and pattern recognition. 2017.

[12] Valmadre, Jack, et al. “End-to-end representation learning for corre-

10871

lation filter based tracking.” Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2017.

[13] Howard, Andrew G., et al. “Mobilenets: Efficient convolutional
neural networks for mobile vision applications.” arXiv preprint
arXiv:1704.04861 (2017).

[14] Mehta, Sachin, et al. “Espnet: Efficient spatial pyramid of dilated
convolutions for semantic segmentation.” Proceedings of the european
conference on computer vision (ECCV). 2018.

[15] Rastegari, Mohammad, et al. “Xnor-net: Imagenet classification us-
ing binary convolutional neural networks.” European conference on
computer vision. Springer, Cham, 2016.

[16] He, Yihui, Xiangyu Zhang, and Jian Sun. “Channel pruning for
accelerating very deep neural networks.” Proceedings of the IEEE
International Conference on Computer Vision. 2017.

[17] Yu, Fisher, and Vladlen Koltun. “Multi-scale context aggregation by
dilated convolutions.” arXiv preprint arXiv:1511.07122 (2015).

[18] Rangesh, Akshay, and Mohan Manubhai Trivedi. “No blind spots:
Full-surround multi-object tracking for autonomous vehicles using
cameras and lidars.” IEEE Transactions on Intelligent Vehicles 4.4
(2019): 588-599.

[19] Asvadi, Alireza, Paulo Peixoto, and Urbano Nunes. “Detection and
tracking of moving objects using 2.5 d motion grids.” 2015 IEEE
18th International Conference on Intelligent Transportation Systems.
IEEE, 2015.

[20] Choi, Jaebum, et al. “Multi-target tracking using a 3d-lidar sensor
for autonomous vehicles.” 16th International IEEE Conference on
Intelligent Transportation Systems (ITSC 2013). IEEE, 2013.

[21] Song, Shiyang, Zhiyu Xiang, and Jilin Liu. “Object tracking with
3D LIDAR via multi-task sparse learning.” 2015 IEEE International
Conference on Mechatronics and Automation (ICMA). IEEE, 2015.

[22] Bai, Min, et al. ”Deep multi-sensor lane detection.” 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018.

[23] Casas, Sergio, Wenjie Luo, and Raquel Urtasun. “Intentnet: Learning
to predict intention from raw sensor data.” Conference on Robot
Learning. 2018.

[24] Wu, Bichen, et al. “Squeezeseg: Convolutional neural nets with
recurrent crf for real-time road-object segmentation from 3d lidar
point cloud.” 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018.

[25] Bertinetto, Luca, et al. “Fully-convolutional siamese networks for
object tracking.” European conference on computer vision. Springer,
Cham, 2016.

[26] Zagoruyko, Sergey, and Nikos Komodakis. “Learning to compare
image patches via convolutional neural networks.” Proceedings of the
IEEE conference on computer vision and pattern recognition. 2015.

[27] Li, Bo, et al. “High performance visual tracking with siamese region
proposal network.” Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2018.

[28] He, Kaiming, et al. “Deep residual learning for image recognition.”
Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016.

[29] Hartley, Richard, and Andrew Zisserman. Multiple view geometry in
computer vision. Cambridge university press, 2003.

[30] Dhall, Ankit, et al. “LiDAR-camera calibration using 3D-3D point
correspondences.” arXiv preprint arXiv:1705.09785 (2017).

[31] Wojke, Nicolai, and Alex Bewley. “Deep cosine metric learning for
person re-identification.” 2018 IEEE winter conference on applications
of computer vision (WACV). IEEE, 2018.

[32] Wojke, Nicolai, Alex Bewley, and Dietrich Paulus. “Simple online
and realtime tracking with a deep association metric.” 2017 IEEE
international conference on image processing (ICIP). IEEE, 2017.

10872

