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Abstract— In this paper, we study the localization problem
under non-Gaussian noise. In particular, we consider systems
that can be represented by a state transition and a measurement
component. The state transition indicates how the system
evolves given a control variable. The measurement component
compares, for a given state, the received and predicted mea-
surements. Here we consider a radio based range sensor which
is the primary source of non-Gaussian noise in the system. We
solve the problem using a MHE (Maximum Horizon Estimator)
with a correntropy similarity metric. Given a time window,
the MHE seeks the best set of states that explains the system
for the received measurements. Moreover, the main advantage
of a MHE is that it allows the re-estimation of past states.
Additionally, the correntropy is a similarity metric that, given
the amount of error in the estimation, behaves as L2, L1 or
L0 norms and has been successfully used in many applications
under non-Gaussian noise. We evaluate our proposed method
using both simulated and real data. The results show that
correntropy is able to work well in comparison with other
methods in presence of impulsive noise.

I. INTRODUCTION

Recent advances in robotics are leading to applications
that are becoming part of daily life. These include hospitality
automated services [1], search and rescue operations [2], and
many others. State estimation has an important role in this
progress as we can expect noise and unreliable data from
sensors, which requires robust methods for state estimation.
Here, we focus on the robot localization problem under
non-Gaussian noise. We study the problem where a robot
needs to localize itself using a periodic range measure-
ment. Furthermore, we consider that the range measurements
contain outliers, thus creating an unexpected non-Gaussian
distribution.

We study the localization problem under a Maximum
Horizon Estimator (MHE) method using the correntropy
similarity metric. Given a time window, the MHE is a batch
optimization formulation that aims to estimate the best set of
states that explain the system dynamics and measurements.
Compared to other state estimators, the main advantage
of MHEs are their capability of re-estimating past states
and dealing with under and over-constrained systems[3].
The correntropy is a robust similarity metric that has been
successfully applied in realistic applications [4], [5], [6].

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001. The
work was also been supported by grants from CNPq No. 205154/2018-2
and FAPEMIG.

1 Department of Computer Science – Universidade Federal de Minas
Gerais, Belo Horizonte, Brazil. E-mails: {elerson, mmvieira}@dcc.ufmg.br

2 Department of Computer Science – University of Southern California,
Los Angeles, USA. Email: gaurav@usc.edu

Generally, the correntropy is defined by a kernel and behaves
as an L2 norm when the estimated error is small, and L1 and
L0 norms as the error increases. Here, we propose to combine
the MHE and the correntropy similarity metric, thus creating
a state estimator robust to non-Gaussian distributed errors.

State estimation is well studied in the literature. In this
sense, the Kalman filter [7] is optimal under the assumption
of linear systems and Gaussian distributed noise. However,
this assumption does not hold for many real applications.
To deal with the non-linearity, we find formulations such
as the extended Kalman filter (EKF) [8] and the unscented
Kalman filter (UKF) [9]), which use different alternatives
to propagate mean and covariance. Meanwhile, we also find
KF methods developed considering noise robust methods. In
general, we find methods that use different error distributions,
such as a t-student [10], or robust statistical methods, such
M-estimators methods[11].

From another point of view, we find state estimators based
on batch optimization. In [12], the authors have proposed
Confusion, a framework for batch estimation implemented
over the ceres solver [13]. The proposed system intends to be
easy to implement new models, while the framework deals
with complex tasks such as state marginalization and the
state optimization algorithms. While in [14], the authors
have proposed the libRSF, which also gives a framework
for state estimation under an MHE implemented over the
ceres solver. The libRSF also provides the implementation of
some known robust methods from literature. Going towards
the direction of a batch estimation, we also find two-state
implicit filter (TSIF) [3], which can be seen as MHE of two
states while preserving some characteristics of Kalman filters
and allowing a previous state to be re-estimated.

The main contributions of this work are the following.
We present a state estimation algorithm based on a MHE and
correntropy similarity metric. The objective of this algorithm
is to provide a robust estimation for the localization problem
under non-Gaussian noise. We develop a variable kernel
strategy targeting an adaptive and parameter-free algorithm.
We compare our proposed strategy with the state of the art of
robust state estimation methods. Last, we provide the code
and the simulated and real datasets created in the evaluation
of our proposed algorithm.

The remainder of this paper is organized as follows. First,
we present a related work II. Next, we present an overview
of the correntropy metric III, followed by our proposed state
estimation methodology IV and we evaluate our algorithm
with simulation and real experiment datasets in Section V.
Finally, we finish this work with a conclusion in Section VI.
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II. RELATED WORK

Robust state estimation is still a topic of interest in
many areas. In robotics specifically, we find a collection of
approaches targeting these topics, which include the Kalman
Filters, particle filters and optimization methods. Here, we
briefly review some of these works.

The Kalman filter [7] is one of the most known algorithms
for state estimation in robotics. Given some conditions, as
linearity and Gaussian distributed noise, this filter is optimal.
To deal with non linearity, we find a handful of Kalman
filter variants, such as the EKF [8], UKF [9]. In general,
these filters propagate the mean and covariance of the states
estimates employing different techniques, such linearization
and sigma point sampling.

Meanwhile, considering Kalman filters under non-
Gaussian noise, we find approaches that model these filters
with heavy tail distributions, such the t-student[10], and
the ones that use robust statistics methods, such the M-
estimators [11]. In overview, the M-estimators are robust
regression methods that are used as a substitute for least-
square formulation. The robustness from these methods come
from considering different weights depending on the size
of the error. The most known M-estimators is the rubber-
estimator, which creates a weight that behaves as a quadratic
function with small errors and as a linear one for big
errors. Other formulations, such as the dynamic covariance
scaling (DCS) [15] and the Dynamic covariance estimation
(DCE) [16] fall in this class of M-estimators. The disadvan-
tage of these estimators ranges from difficult parametrization
to robustness only to small numbers of outliers. Here, we use
the correntropy similarity metric to achieve robustness.

In a recent approach, [17] has proposed a robust Kalman
filter based on a reject-detect formulation. In this work,
each measurement is associated with an indicator variable
modeled with a beta-Bernoulli distribution. In the solution, at
each step of the Kalman filter algorithm, the measurements
are automatically classified as inliers and outliers using a
variational Bayesian inference estimator. This same strategy
was also successfully applied in [18], where the authors
propose an Error-State Kalman filter.

Meanwhile, the particle filters [19] represent some of the
most robust estimators. In this sense, using multiple particles,
each representing a state, these filters are able to handle noise
with complex error distributions. The main disadvantage of
the particle filters are their high computational cost. While
from the perspective of batch optimization methods, these
filters are not able to re-estimate past states, thus outliers
are fully considered under the filter distribution. In [20] the
authors use a particle filter to estimate the localization of
a robot under line-of-sight and non-line-of-sight between
receiving and transmitting devices. In this work, the authors
estimate the distribution of the error using Expectation Max-
imization, modeling the expected error in an online manner.

From another point of view, we find the state estimator
methods that are built upon optimization methods. We find
these methods under different names, such as graph opti-

mization [21], [14], maximum horizon estimation [12] and
batch optimization (MHE) [3]. In this work we use the term
MHE considering a batch optimization that occurs in a time
window of a given size.

In [3], the authors proposed the two-state implicit filter
(TSIF). This filter was introduced as having the properties
of being able to be applied in over and under constrained
systems. The over-constrained systems occur when we have
more than one variable explaining the evolution of a system,
one example of such a situation is the angular velocities
that can come from an IMU and from the odometer. The
under-constrained occurs when the system is not sufficient
to explain a given state evolution. An example of a situation
is the direction of a planar robot that does not measure its
angular velocity, but its orientation can be estimated using
pairs of consecutive states. In Kalman filters and particle
filters, these can not be treated directly, while in batch
optimization methods under and over constrained systems
can be associated with residuals and optimized to their best
local states.

Under a pose graph estimation, [21] considers optimiza-
tion where a subset of measurements outliers, thus requir-
ing a robust method for solving the problem. The authors
propose a solution of convex relaxation formulation that
is solved by semidefinite programming method. However,
different from a MHE, which considers a window of time,
the solution proposed aims to solve all the poses of the graph,
leading to a formulation that does not scale for big problems.
Furthermore, the solution proposed degrades with graphs low
connectivity, a situation that is expected in the localization
problem studied in this work.

III. CORRENTROPY

Correntropy is a measure of similarity between two ran-
dom variables X and Y, which is defined as [5]:

V (X,Y )σ = E[κσ(X − Y )] =

∫
κσ(x, y)FXY (x, y) (1)

Where κσ(., .) is a kernel function with width parameter
σ > 0 which follows the Mercer’s theorem and FXY (xi, yi)
is the joint distribution function of the variables (X,Y ). In
this work, we use the Gaussian kernel, which is a common
choice for the correntropy and is defined as:

κσ(x, y) = exp

(
−(x− y)2

σ2

)
(2)

Considering a set of random measurements {xi, yi}Ni
drawn from a distribution F (X,Y ). A discrete correntropy
metric V (X,Y ) is defined as:

V (X,Y )σ =
1

N

N∑
i

exp

(
−(xi − yi)2

σ2

)
(3)

The robustness associated with the correntropy can be
associated with its property of behaving as an L2 norm when
the residual between the random variables (X,Y ) is close to
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zero, going to L1 while the residual increases, and eventually
approximating an L0 norm. The correntropy metric also has
other properties such as, symmetry V (X,Y ) = V (Y,X),
being bound 0 ≤ V (X,Y ) ≤ V (0, 0).

IV. METHODOLOGY

Here we consider a discrete time system which states are
represented by xt. Each estate xt represents a robot pose
(i,e. (x, y, θ) for a 2D pose). Given a previous state xt−1

and a control variable ut, the state transition is represented
by a function f(xt−1, ut) and expects a Gaussian noise v ∼
N(0,Σv). For each state xt, we expect a range measurement
yt, which we represent by a function h(xt) with Gaussian
noise w ∼ N(0, σ2

w). This system is represented in the
following equations.

xt = f(xt−1, ut) + v

yt = h(xt) + w
. (4)

Here, we tackle the problem of robust estimation of the
system states. We solve this problem using a Maximum
Horizon Estimator (MHE), which targets to estimate the best
set of states for a given time window. Here we assume that
the primary source of non-Gaussian noise comes from the
measurement function. Thus, we model our measurement
function with a correntropy similarity metric, which is ro-
bust to outliers. Finally, we derive a variable kernel width
estimation, targeting improved noise robustness.

A. The localization problem

The system in equation 4 can be represented as resid-
ual functions in the form rf (xt,xt−1, ut) = Σ

− 1
2

v (xt −
f(xt−1, ut)) and rg(xt,yt) = σ−1

w (yt − h(xt)). From this,
we are able to derive a probabilistic optimization problem
with the objective of finding, for a given time window n,
the set of states (xt, ..,xt−n) that maximizes the given
likelihood:

arg max
xi,...,xn

p(xprior)

n∏
t=i+1

p(xt|xt−1)p(yt|xt) (5)

Here, we consider that p(xt|xt−1;ut) ∼ exp(− 1
2rf (.)2),

p(yt|xt) ∼ exp(− 1
2rg(.)

2). The p(xprior) ∼ N(xprior,P )
is responsible for representing the states that are outside the
time window. If it is the first state, it would represent the
knowledge corresponding to the initial pose.

We can represent Equation 5 in a log-likelihood form,
which gives us a least-squares formulation such as:

arg min
xi,...,xn

1

2
||xi − xprior||2P +

n∑
t=i+1

1

2
||rf (xt,xt−1, ut)||2

+
1

2
||rg(xt,yt)||2

(6)

B. The localization problem under the correntropy similarity
metric

Next, we substitute the least-square of the measurement
by a correntropy similarity metric. The correntropy metric
V (X,Y ) is maximized when X = Y , which is the inverse of
the least-square formulation. Thus, we use a correntropy in-
duced metric CIM(X,Y ) =

√
V (0, 0)− V (X,Y ). We also

introduce a variable center to our kernel formulation [22],
which takes advantage of the MHE formulation to find the
best bias parameter c that introduced in the formulation can
reduce the overall error. Thus we have the following batch
optimization formulated with a correntropy similarity metric:

arg min
c,xi,...,xn

1

2
||xi − xprior||2P +

n∑
t=i+1

1

2
||rf (xt,xt−1, ut)||2

+
[
1− exp(−rc(xt,yt, c)

2

2σ2
t

)
]
(7)

In Equation 7, we define as rc(xt,yt, c) = (yt−h(xt))−
c, thus we remove the normalization factor and we add a ker-
nel bias c to the kernel formulation. The normalization will
be integrated in the kernel width parameter σ2

t . We expect
that 1

2 ||rg(xt,yt)−c||
2 ≈ [1−exp(− rc(xt,yt,c)

2

2σ2
t

)] when the
residual rc(xt,yt, c) is close to zero. Thus, considering a
kernel width σ2

t = σ2
wt , and given that exp(δ) ≈ 1 + δ, for a

small δ, Equation 7 becomes as same as Equation 6, which
was directly derived by the likelihood of the proposed state
estimation problem.

The problem of Equation 7 is solved using a non-linear
least square optimization. In this fashion, given all the states
parameters stacked in

s
x, with its associated Jacobian J(

s
x)

and error e derived from Equation 7. We solve the non-linear
least square minimization min

δ
s
x

||J(
s
x)δ

s
x−e||2. Where, given

a set of iterations, our objective is to find the best increments
δxt which will minimize the Equation 7. Considering a
Quasi-Newton optimization method, and defining a Hessian
matrix H = J(

s
x)TJ(

s
x) and b = J(

s
x)e, the optimal update

is defined as δ
s
x = H−1b. We define the prior xprior by a

marginalization, which can be done using shur complement.
This process can be seen with more details in [12].

C. Variable Kernel Width Estimation

To find the best kernel width parameter for our correntropy
optimization, here we follow a strategy similar to the one
proposed in [4]. In this work, we consider looking for the
parameter σ that minimizes the variance between the current
and optimal gradients of the minimization problem.

In this fashion, for a given state xt at a time t we have
the minimization gradient represented as:

∇J = A + B exp

(−r2
ct(.)

2σ2
t

)
1

σ2
t

(8)

Where, A = rft(.)
∂rft (xt,xt−1,ut)

∂xt
+

rft+1
(.)

∂rft+1
(xt+1,xt,ut+1)

∂xt
and B =

∂rct (xt,yt,c)

∂xt
rct(.)
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Now, considering an optimal state
o
xt, and X̃t = xt−

o
xt.

We are looking for the parameter σ2
t that minimizes (X̃t −

∇J)2, thus we have the following problem:

arg min
σ2
t

X̃
2

t − 2u∇JX̃t + (u∇J)2 (9)

Considering just the part of the formulation that contains
σ2
t , we need to maximize:

F (σ2
t ) = 2u∇JX̃k−1 − (∇J)2 (10)

From the derivative of 10, we get:

∂F (σ2
t )

∂σ2
t

=

(rct(.)
2 − 2σ2

t )

σ5
t

exp

(−r2
ct

2σ2
t

)(
−X̃T

B +∇JTB
) (11)

From Equation 11, when (rct(.)
2 − 2σ2

t ) = 0 and
−X̃T

B+∇JTB = 0, the equation is equal to zero. The first
solution is a trivial case. Thus we want to find the parameter
that solves −X̃T

B +∇JTB = 0.
From Taylor expansion approximation of the function

rct(.), we know that ∂rct (.)

∂xt
X̃ is the optimal range mea-

surement error
o
rct . Thus we substitute X̃

T
B by

o
rctrct(.).

Last, rct(.) =
o
rct + ηt, with η being the noise, which gives

us that
o
rctrct(.) = rct(.)

2 − η2
t −

o
rct(.)ηt.

Finally, given Equation 10, we solve equation 11 for the
parameter σ2 as:

[rct(.)
2 − η2

t −
o
rctηt]−ATB

BTB
= exp

(
−rct(.)2

2σ2
t

)
1

σ2
t
(12)

Which gives us:

σ2
t =

−rct(.)2

2W
(
−rct (.)2

(
[rct (.)

2−η2t−
o
rctηt]−ATB

)
2BTB

) (13)

Here, W represents a Lambert function. To find the
solution of equation 13, we approximate the η2

t by the σ2
w

and we set
o
rctηt to zero. The approximation

o
rctηt follows

from the assumption that the noise free measurement is
independent from the noise [4].

The proposed solution is an approximation for the optimal
parameter of σ2

t , which means that it is susceptible to error.
Furthermore, given χt = (rct(.)

2 − η2
t − ATB), we want

Equation 12 to be positive, solution that occurs when χt >
0. Thus, considering σ2

new = min(σ2
est, σ

2
t ), the minimal

value between the estimated and current parameters, we use
a moving average as follows:

σ2
t =

{
ασ2

t + (1− α) ∗ σ2
new χt > δerr

σ2
t otherwise

(14)

Here, we consider δerr a small constant value, while α ∈
[0, 1] and is the parameter from the moving average.

V. EVALUATION

The proposed methodology was implemented using the
Ceres solver[13] over the framework for state estimation
provided by the libRSF [14]. We evaluate the proposed
method using both simulated and real experiments. Fur-
thermore, we compare the proposed algorithm with robust
state estimation algorithms provided by the libRSF. Here
we compare the algorithms, Sum of Gaussian Mixtures
(SM), DCS, DCE, Gaussian. The code and the data used
to evaluate the algorithms are made avalaible 1. We consider
all experiments a window size of 30 states. Except for the
labyrinth dataset, which, to compare with results from the
literature, we use 200 states. All the results are shown with
90% of confidence.

A. Simulated Experiments

The data for the simulated experiments were generated
using ROS2 and the stage simulator. The environment size
was configured with 30x30 meters. Stage does not provide
radio range measurement sensors. Thus we have simulated
sensors that return the sensor distance with a given noise. The
simulated devices provided range measurements at 10 Hz
frequency. We have created 20 simulations for each error
distribution parameter. In each simulation, the robot executes
a square path. Each experiment has 60 seconds. The error in
the sensor follow the distributions:

1) A Gaussian mixture distribution (1 − αe)N (0, σ2
w) +

(αe)N (0.2, 100∗σ2
w). Here, αe, represents the amount

of each Gaussian distribution in the mixture.
2) A t-Student distribution in the form(

Γ( ν+1
2 )

√
νπΓ( ν2 )

(
1 + x2

ν

)− v+1
2

)
× σw. Here, when

ν → ∞, the proposed distribution approximates to
N (0, σ2

w).
Figures 1 show the result of the experiments considering

three values for the t-Student distribution (ν = 1, ν = 5
ν = 30). The results show that the proposed correntropy
method was the most robust of the tested algorithms when
ν = 1, followed by a mixture of Gaussians. In this situation,
we have the t-Student probability distribution the most distant
from a Gaussian distribution, presenting impulsive noise. For
ν = 5, we see that the proposed method has a higher mean
error compared with DCS, DCDE, and Gaussian. When ν =
30, the distribution approaches a Gaussian distribution, the
Gaussian method presents the best estimate. In overview, we
see that the proposed method is robust to impulsive outliers.

Figure 2 shows the results for the experiment with a
Gaussian Mixture Model. Here we expect that the Gaussian
mixture method to have the best estimate compared with the
other algorithm. The methods compared are not designed to
deal with multi-modal distributions. Thus we see that their
performance degrades as the parameter α of the mixture
increases. Overall, the methods DCS, DCE, and ours, had
similar behavior, increasing the error with the parameter α.

1https://github.com/verlab/2020-iros-elerson-localization-code
2https://www.ros.org/
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Fig. 1: Figure showing the results for the t-Student range sensor noise. Here we use ν = 1, ν = 5, ν = 30
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Fig. 2: Simulated experiment with a Gaussian mixture.

B. Real Experiments

For real experiments, we evaluate our algorithm using two
datasets, one provided by the authors of [14] and the other
created in this work. Next, we show the description and the
evaluation of each dataset.

1) Labyrinth Dataset: The labyrinth dataset was devel-
oped to have a high level of noise caused by the non-
line of sight between the receiver and transmitter devices.
Furthermore, the walls of the labyrinth reflect the signal, thus
increasing the amount of uncertainty in the data. The data are
captured by a robot that moves throughout the environment.

Table I shows the results for the algorithms in the labyrinth
dataset. This table shows the average error, the maximum
error, and the execution time for each algorithm evaluated. In
this table, we can see that our algorithm can achieve the same
level of accuracy as the Gaussian mixture. On the other hand,
the computational cost for our algorithm is more significant.

2) Square Path Dataset: Here we created a UWB dataset
with a non-holonomic robot moving in a square pattern
in a closed environment. In this environment, noise in the
received signal appears when the robot moves close to the
walls. We have used a Kobuki robot mounted with two
Decawaves DW 1000 Ultra-Wideband receiving devices, and

Algorithm Avg (Meters) Max (Meters) Time
DCS 0.1443 1.1605 1m36.033s
DCE 0.1197 0.4519 1m29.912s
Gaussian 0.1211 0.41658 1m04.074s
SM 0.0656 0.369 2m00.522s
Proposed 0.0647 0.2208 3m10.520s

TABLE I: Labyrinth Results

each device was positioned under known distances in the x-
axis of the robot (+-20 cm). We notice that we consider
this displacement in the measurement model. Furthermore,
the environment was configured with 6 anchors. Figure 3,
shows the environment and the robot. Considering that each
sensor is able to receive four measurements at the same
time, with a 10 Hz frequency, we split the data into eight
datasets. For a given time t, all the datasets have the same
odometry with different measurements. The objective here
was to isolate the process noise from the measurement noise.
Thus we can properly evaluate the proposed methodology.
The ground truth for the dataset was captured using an
Optitrack localization system [23].

Figure 4 shows the results for the evaluated algorithms
with a confidence interval of 90%. The proposed algorithm
presented the mean error distance of 0.09 meters, and with
a statistical difference to the other methods. It is important to
note that we could expect the mixture of Gaussian methods
to improve as the number of states were increased. But our
dataset is small. Thus we evaluate it with a small number of
states.

VI. CONCLUSION

In this work, we have studied the integration of a max-
imum horizon estimator (MHE) with the correntropy simi-
larity metric. In the proposed solution, we take advantage
of the MHE structure to add a variable center for the
correntropy. Furthermore, we were able to develop a variable
kernel width, which can tackle the problem of kernel width
estimation. We have evaluated the proposed solution in both
simulation and real experiments. The results show that cor-
rentropy can be integrated into state estimation algorithms,
providing increased robustness to real applications.
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Fig. 3: (a) Environment and (b) Robot, used to create a UWB dataset.
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