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Abstract— In this paper, we propose a novel algorithm that
estimates the pose of the robot end effector using depth vision.
The input to our system is the segmented robot hand point cloud
from a depth sensor. Then a neural network takes a point cloud
as input and outputs the position and orientation of the robot
end effector in the camera frame. The estimated pose can serve
as the input of the controller of the robot to reach a specific
pose in the camera frame. The training process of the neural
network takes the simulated rendered point cloud generated
from different poses of the robot hand mesh. At test time, one
estimation of a single robot hand pose is reduced to 10ms on gpu
and 14ms on cpu, which makes it suitable for close loop robot
control system that requires to estimate hand pose in an online
fashion. We design a robot hand pose estimation experiment to
validate the effectiveness of our algorithm working in the real
situation. The platform we used includes a Kinova Jaco 2 robot
arm and a Kinect v2 depth sensor. We describe all the processes
that use vision to improve the accuracy of pose estimation of
the robot end-effector. We demonstrate the possibility of using
point cloud to directly estimate the robot’s end-effector pose
and incorporate the estimated pose into the controller design
of the robot arm.

I. INTRODUCTION

The development of the perception and control algorithm
for robot arm and gripper has made complex tasks possible,
like grasping novel household objects and folding clothes.
To achieve better performance in the tasks, we need the
grasp pose detection or trajectory generation of the robot
hand itself to be executed accurately with high efficiency.
However, the high accuracy and heavy load is not the
primary design demand for the service robot arm. The service
robots working in the human living environment should
keep the safety of humans as the priority. Thus, they are
usually designed with relatively small stiffness, therefore low
absolute accuracy. To achieve a higher success rate in tasks
for service-robot, we need visual servoing on the service
robot to provide accurate robot pose.

Robot manipulation suffers from all kinds of noise. Inac-
curate data from the low-cost sensor, poorly-calibrated zero
position of the joint encoder, and the gap between worn
physical machinery and the robot model provided by the
manufacturer lower the performance of robot manipulator,
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Fig. 1: (a) shows the repeatability of the robot arm, which is caused
by mechanical imperfecions. (b) shows the misalignment between
the pose of the end effector and the point cloud.

even lead to failure, as shown in Fig. 1. It is not an issue
for the industrial robot with a precise sensor and a highly
rigid arm that works in a controlled environment. However,
in a domestic setting, the positioning error of the robot arm
degrade with safety concerns. The rigidity, weight, and cost
for domestic robots are also lower than the industrial one,
leading to much more noise to deal with.

To tackle this problem, we tried offline calibration to
estimate the erroneous parameters of the robot system.
However, this method is limited to static parameters that do
not vary during robot execution. This process needs to be
repeated after a while as hardware aging and often requires
high expertise. Thus it is difficult to perform for a customer
without any domain knowledge.

Instead of offline calibration, the vision-only close-loop
method bypass most sources of noise [1]. By directly using
a visual signal as feedback, this method avoids coordinate
transformation between camera and robot base. Besides, the
vision system itself should be responsible for proprioceptive
sensing, e.g., accurately capture the pose of robot end effec-
tor. Thus it is unaffected to hand-eye calibration, structure
bending, and zero drift of joint encoder. However, accurate
pose estimate of robot link is a non-trivial task with a cheap
visual sensor [2].

In this paper, we propose a close-loop control model
based on a novel hand pose estimation algorithm that can
position the end-effector accurately in real-time. Instead of
transforming the target pose back to the robot root frame,
both the control signal and target are given only in the
camera frame. As a result, it bypasses the large absolute
measuring error of the depth sensor, because both the target
and feedback are calculated only in the camera frame.

The main contributions of this paper are as follows: First,
we directly estimate the robot hand pose with respect to the

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 10921



depth camera frame. With the 3D point cloud perception neu-
ral network, our algorithm gives each estimation at 100HZ
on gpu, which can be used for the real-time close loop robot
hand control policy. Second, following the estimation pose
of the robot end effector, we design the control policy that
targets at reducing the distance of the target status and the
current status. Both statuses are calculated or estimated on
the camera frame. Third, we validate our algorithm in the
grasping task, and the robot arm can make precise execution
and grasp small objects.

II. RELATED WORK

A. Robot Arm Tracking

There are many methods proposed to solve the robot arm
pose estimation problem. [3], [4] tracked the key point of
the robot arm, using SIFT or learning-based features, and
optimized the pose with the motion model of the robot
arm. The pose is initialized by joint angel distribution or
by solving the PnP problems. Apart from those algorithms
that rely on tracking the arm, [5]–[7] proposed frame-by-
frame pose estimators using depths image as input. Those
estimators use current depth images as the input to the
probabilistic filter or random forest based posed estimator
to output the pose of the articulated robot arm directly.
They can achieve a fast robot hand pose estimation without
knowing the previous pose. Consider the stability of the joint
angle readings, [7], [8] used the probabilistic filter to form a
multi-sensor fusion pipeline. [9]–[11] estimated the relative
relationship between the real point cloud and the point cloud
simulated by the camera intrinsic parameters and the joint
angles. They calculated the distance between those two point
clouds and then calculated its gradient with respect to the
robot joints. This approach directly gave them the motion of
the joint angles that reduced the distance between two point
clouds, or we can regard the approach as the offset of the
joint that used as compensation to the robot measurement
system error.

B. Visual Servoing

According to [12], visual servoing refers to using computer
vision as another system to control the motion of the robot.
There are mainly two kinds of robot settings for visual
servoing methods, one is the eye in hand [1], [13], and
the other is eye to hand [14], [15]. As for the input to
the visual servoing controller, some researchers first estimate
the current pose of the robot [16], and reduce the distance
between the target pose and current pose, others extract the
image features from the image and design the controller
that try to align the image features of current pose and the
estimated image features of target pose.

C. Point Cloud Perception

Point cloud based perception is of increasing interest to
the computer vision and machine learning community. Point-
Net [17] is the pioneer to directly process point clouds with
a deep neural network, followed by many variants [18]–[21].
It extracts features for each point with a shared multi-layer

Fig. 2: Selected positions to estimate the error of checkerboard-
based pose estimation. We random place the end effector attached
with checkerboard in virtual environment. Then we can calculate
the error between estimated pose and ground-truth provided by
simulator. The number in the represents the position-only error in
millimeter.

perceptron (MLP) and outputs with an aggregation function
invariant to permutation. [18]–[20] improve PointNet by
introducing different strategies to sample and group points,
and different modules to extract local region features.

With large-scale 3D datasets, e.g. ShapeNet [22] and Scan-
Net [23], PointNet based approaches achieve great success
on shape classification, semantic segmentation, and instance
segmentation. Besides, there are a few works focusing on
pose estimation [24], [25] and point cloud registration [26],
[27]. [28] is the most relevant to our method. It takes a
segmented point cloud of one object as input and predicts
the 6-DoF object pose (axis-angle) with PointNet. It shows
more robustness against occlusion compared to methods with
RGB information only. Inspired by previous works, we use
PointNet to estimate the pose of the end effector given its
point cloud segment. Since it is difficult to acquire ground
truth poses for supervision, we adopt a sim-to-real strategy
and focus on narrowing the domain gap, which differs our
method from others.

III. ROBOT PLATFORM SETTINGS

In this section, we give the detail description of a typical
robot grasp process, errors from the hardware setting, and
key component of our robot platform.

A typical robot task execution close loop consists of two
parts, perception and control. For the perception part, the
robot uses all its sensors data to estimate its status and
the surrounding environment. Then, the robot calculates the
distance of the target status and the current status, then the
corresponding control policy for the actuators. Finally, the
actuators move the robot to its target status. Take the grasping
task as an example. The Kinect depth sensor takes one depth
image of the objects and find the 6d robot hand pose [x, y, z,
pitch, yaw, roll] where the robot hand can successfully grasp
the object when close its gripper. Then, the 6d hand pose is
transformed from the camera frame to the robot base frame
using the transformation matrix, HC

B . Finally, the robot arm
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Fig. 3: The robot platform of our system. We use Kinova Jaco 2
robot arm and Kinect v2 depth sensors. The camera position is set
to eye-to-hand setting.

controls the end-effector to move to the specific pose with
regard to the base.

In the grasping task, the robot should not only optimize
the grasp poses but also execute the command precisely to
make the grasp success. However, two errors make the task
failed even when the grasp pose detection is correct. First, the
robot itself is limited by repeatability and accuracy. Second,
for the hand-eye calibration of the HC

B , there is a reprojection
error. Moreover, after working for hours, the temperature
of the robot arm joint actuator rises result in the decreased
accuracy of the joint angle position. All those errors together
make grasping tasks fail in the end. Among all these errors,
the hand-eye calibration error is the only error that can be
reduced by offline hand-eye-calibration.

Thus, Many online tracking methods have been proposed
to make a better estimation of the robot hand pose or use the
servoing strategy to control the robot arm move to the target
pose. Those online methods expressed the current status and
target status of the robot in the same measurement system,
for example, the camera. Furthermore, the control policy
is also established on the distance measured between the
current status and the target status, which can eliminate all
the other measurement system errors, like joint actuators
noise or hand-eye calibration errors. For example, most pose
based visual servoing (PBVS) algorithm use the checker-
board to estimate the pose of the target object and the robot
end effecor. However, the camera noise make the estimation
inaccuracy in specific poses. The details are shown in Fig.
2.

The industrial robot arm, like UR5, attached to the fixed
platform stably could provide high absolute accuracy, but
they cannot serve in household as service robot. Industrial
robot arm usually equipped with a considerable control box
that needs the 110V-240V alternating power which is not
possible in household. The service robot arm working in a
human house must be fixed at a mobile platform to increase

the working space, which means the robot is powered by the
battery. Thus, in our experiment platform, we choose to use
the low-power designed robot arm, Kinova Jaco 2.

Common depth sensor like Kinect2 can not capture the
environment well when the object is close to the camera, nor-
mally within 0.3-0.5 meters. Thus, eye-to-hand setting can
get a more complete view than fix the camera with respect
to the robot gripper. Our platform contains two measurement
systems, including joint encoders readings direct from the
robot actuator and visual information from Kinect2 camera.
The robot frame is established on the robot base, and we
can calculate the robot hand pose with respect to the robot
base using the joint encoders readings and the robot link
parameters (D-H table).

The noise of joint encoder reading will vary within the
workspace due to gravity-driven deformation. Reported by
manufacturer, the overall accuracy of the Kinova Jaco 2 arm
is 1.5cm in average. For Kinect2, the average deviations
within 1m is around 2.5mm, and the standard deviation is
smaller than 0.5mm [29]. The camera measurement system
is more accurate than the robot arm for pose estimation pur-
pose. Furthermore, we only care about the relative positional
error instead of absolute positioning error of depth sensor for
close-loop control. Fig. 3 shows the platform that we use.

IV. METHOD

A. Pose Estimation

In this section, we describe the structure of our pose esti-
mation network. The input is a point cloud x ∈ Rn×3. The
network outputs the rotation R ∈ R3×3 and the translation
t ∈ R3. Following [25], we use 6D vectors to represent
rotations rather than quaternion or Euler angles. Concretely,
the 6D continuous representation of one rotation R is r ∈
R6, which is the vectorization of the first two columns of R.
Namely, r = [R11, R12, R13, R21, R22, R23]

T . We can apply
the Gram-Schmidt process to convert a 6D representation r
to the corresponding rotation matrix. We refer readers to [25]
for more details. Thus, the final output of the pose estimation
network is a 9D vector, which consists of a 6D vector for
rotation and a 3D vector for translation.

The network architecture is illustrated in Fig. 4. Our pose
estimation network is based on PointNet [17]. Specifically,
we employ two stacked PointNet layers, similar to PCN [21].
For the first layer, the input point cloud x is processed by a 2-
layer MLP to get point-wise features f1 ∈ Rn×d1 , where d1
is the feature dimension. We apply a point-wise max-pooling
on f1 to get a global feature g1 ∈ Rd1 . The structure of the
second layer is the same as that of the first layer, while
the input is the concatenation of the point-wise features f1

and the global feature g1. The output of the second layer is
another global feature of g2, followed by a 3-layer MLP to
predict the 9D pose vector. Batch normalization and ReLU
are added for each MLP.

To facilitate the training process, we preprocess the input
point cloud. Given an input point cloud, we centralize it
according to its axis-aligned bounding box and normalize it
by setting the longest size of the bounding box to be 1m. The
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Fig. 4: The architecture of pose estimation network. The input of the network is the robot end-effector point cloud and the network output
the pose directly.

preprocessing does not require any ground truth information
and can be done efficiently.

B. Close-loop Controller

We designed a close loop controller that uses the vision-
only measurement system. First, we estimate the point cloud
using the method described in Sec. IV-A. Then, we calculate
the error between the target and the current pose. A Cartesian
velocity controller is designed based on this error.

Here are the details of the controller:
Step 1: Estimate the robot hand pose using the cropped
point cloud.
Step 2: Calculate the Cartesian velocity of the robot hand
using the PD controller:

v(q) = J|+q (H
target
base −Hhand

base ) (1)

Where J|+q = (JTJ)−1JT is the geometrical Jacobian
pseudo-inverse for the robot hand (end-effector) and v(q) is
the joint velocity.
Step 3: Calculate the corresponding velocity v(q) of each
joint based on the Cartesian Velocity using differential
inverse kinematics.

It is necessary to use imprecise hand-eye transformation in
order to command the robot. However, this error caused by
hand-eye calibration error can be eliminated with iterations.
The magnitude of joint velocity will diminish when the hand
gripper is closed to the target pose. Thus, this error will not
influence the final result of close-loop control.

V. EXPERIMENT

A. Dataset Construction

Given the CAD model of the end-effector, we generate a
synthetic dataset to train our pose estimation network. The
model of the robot hand is placed with a random pose, and
a depth image is rendered to acquire the point cloud. To
sample different poses, we represent rotations by pitch, yaw,
and roll. The ranges of pitch, yaw and roll are [0◦, 360◦],
[−45◦, 45◦], [−150◦, 60◦] respectively. For translation, we
sample the distance ranging from 0.6m to 0.8m and rotate it

by an angle ranging from −20◦ to 20◦. There are a total of
200K point clouds for training.

We also built a real-world gripper pose dataset of 540
gripper pose, capturing both the point cloud from Kinect2
sensor and robot configuration. We select 10 different posi-
tions, where each position includes 54 different orientations
that cover most of the manipulation poses.

B. Implementation Details

The pose estimation network is trained by the Adam
optimizer for 100K steps. The learning rate is 0.001, and the
batch size is 32. To narrow the gap between the synthetic
and the real, we employ data augmentation. During training,
2048 points are randomly sampled as input. Besides, up to
50% points may be dropped out to simulate the occlusion
and noise in the real world. In addition, points are jittered
up to 5mm along the radial axis to mimic the sensor noise.

C. Baseline and Evaluation Metric

We compare our approach against the offline-calibration
baseline. For the offline-calibration baseline, the pose of the
end-effector is calculated using forward kinematics based on
a manufacturer-provided robot model. The baseline method
is subjected to arm bending and wearing.

To evaluate the performance of pose estimation, we report
the average distance between the point cloud and the surface
of the end-effector mesh. Given an estimated pose, we first
transform the observed point cloud in the camera frame to the
end-effector frame. Then we compute the distance between
each point to the closest surface of the end-effector. The
average surface distance measures how close the transformed
point cloud is to the end-effector model, which indicates how
good the pose estimation is. Note that the noise of the depth
sensor is around 3mm, which can be considered as the lower
bound of the reported metric.

VI. RESULT

A. Pose Estimation

Table I shows the average surface distance for 540 col-
lected real point clouds. Our pose estimation network out-
performs the offline-calibration baseline by a large margin.
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Fig. 5: Qualitative comparison between our pose estimation and the baseline. Each column illustrates one instance. The first row shows
the input point cloud. We show both the transformed point cloud and the end-effector mesh from three different fixed viewpoints in the
other rows. The 2nd to 4th rows show the results of the baseline, and the 5th to 7th rows show the results of our approach. The color
indicates the surface distance of each point, where a warmer color implies a larger distance.

Fig. 5 demonstrates the qualitative results. It is observed that
our pose estimation can induce point clouds much closer to
the end-effector model.

TABLE I: The average surface distance(mm) for 540 collected real
point clouds.

Ours Baseline
8.8 13.7

Besides, we compare the chamfer distance between the
point cloud transformed by the ground-truth poses calculated
from the 3D marker and the estimated poses. Table II
compares the chamfer distance against the ground truth.

TABLE II: The chamfer distance(cm) between the ground truth and
the estimated pose.

Ours Baseline
1.64 2.33

B. Experiment
We validate the effectiveness of our robot end effector

pose estimation algorithm by grasping the small and complex
object. The grasp pose is generated using the grasp detection
algorithm proposed by [30], then the robot hand move to
the target pose with open loop control and visual servoing,
respectively. We find that for the same detected grasp pose,
an inaccuracy execution of the end effector could result in
failure trial. The details are shown in Fig. 6.

Fig. 6: From left to right, the meshes in upper row images
show the pose of the robot end effector calculated by the robot
forward kinematics and estimated by our pose estimator algorithm,
respectively. From left to right, the lower row images show the result
of robot grasp trial with or without pose estimator, respectively.
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VII. CONCLUSION AND FUTURE WORK

In this paper, we propose the whole scheme for using the
Kinect depth sensor as the additional measurement system to
increase the accuracy of the robot hand pose estimation. Our
method uses the cropped point cloud as the system input
and directly output the estimated pose with respect to the
camera using a deep pose estimator. The processing time for
each point cloud sample satisfy the real-time requirement
and estimate the pose frame-by-frame. Thus, the accuracy of
the robot hand pose estimation has been increased compared
with the robot measurement system.The grasping experiment
shows an increment of the accuracy of robot arm pose
estimation make grasp small object become possible, which
usually failed due to the robot arm can not move to the
desired pose.

As for future work, we think the robot arm articulated
structure provides extra prior information about the pose of
the end effector. Instead of only estimating the pose of the
hand of the robot, combine the estimated poses of all the
links should make a better estimation of the end effector
than only estimating the end effector itself.
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