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Abstract— Recognizing and understanding conversational
groups, or F-formations, is a critical task for situated agents
designed to interact with humans. F-formations contain com-
plex structures and dynamics, yet are used intuitively by people
in everyday face-to-face conversations. Prior research exploring
ways of identifying F-formations has largely relied on heuristic
algorithms that may not capture the rich dynamic behaviors
employed by humans. We introduce REFORM (REcognize F-
FORmations with Machine learning), a data-driven approach
for detecting F-formations given human and agent positions and
orientations. REFORM decomposes the scene into all possible
pairs and then reconstructs F-formations with a voting-based
scheme. We evaluated our approach across three datasets: the
SALSA dataset, a newly collected human-only dataset, and
a new set of acted human-robot scenarios, and found that
REFORM yielded improved accuracy over a state-of-the-art F-
formation detection algorithm. We also introduce symmetry and
tightness as quantitative measures to characterize F-formations.

Supplementary video: https://youtu.be/Fp7ETdkKvdA
Dataset available at: github.com/cu-ironlab/Babble

I. INTRODUCTION

Recent advances in AI, including developments in machine
learning, natural language processing, computer vision, and
dialogue systems, are fuelling the development of new so-
cially interactive robots. These agents are rapidly increasing
in popularity as researchers find new ways to integrate them
into everyday life. For example, robots can assist humans
in a variety of customer service tasks, such as welcoming,
guiding, taking orders, and delivering items in shopping
centers, hospitals, restaurants, hotels, and so on [1]–[7].

Despite these promising advances, several challenges re-
main in developing robots that are able to socially interact
with humans in a natural manner. Robots that are designed
to interact with groups must take into account who is part of
a conversation, who might be trying to join, and who might
be leaving the group [8].

In this paper, we specifically focus on how robots might
detect the spatial configurations of conversational groups.
Prior research in the social sciences has explored several
nuances regarding the structure and dynamics of social
groups to understand how people organize and regulate
group interactions. [9]–[12]. Kendon operationalized the
spatial configurations often formed in multi-party conversa-
tional groups as Facing Formations or F-formations: “An
F-formation arises whenever two or more people sustain
a spatial and orientational relationship in which the space
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between them is one to which they have equal, direct, and
exclusive access” [11]. Since then, researchers have applied
the concept of F-formations to other domains. For example,
in human-computer interaction, F-formations have been used
to inform how content can be shared across devices, while
research in human-robot interaction has explored how F-
formations can be used to guide robot behavior [13], [14].

To date, detecting F-formations remains a challenging
and open-ended problem. Most state-of-the-art algorithms
are not robust because they rely on hard-coded parameters
whose values are derived by experimentation and may not
be generalizable. Existing algorithms use parameters such
as stride, the expected distance between an individual and
the centroid of the F-formation. For example, the Graph-
Cuts for F-formations (GCFF) algorithm [15], a state-of-the-
art approach for detecting F-formations, uses stride = 0.7
meters for the Cocktail Party dataset [16], but uses stride =
0.5 meters for the CoffeeBreak dataset [15].

We address these limitations and present three novel
contributions. First, we introduce REFORM (REcognize F-
FORmations with Machine learning), a new, data-driven
method for reasoning about F-formations that does not rely
on tuning parameters. REFORM consists of three phases: de-
construction, classification, and reconstruction. Unlike many
data-driven methods, our approach does not require a large
training dataset (in this work we show how REFORM’s
deconstruction phase can render 61,200 data points for
training from a set of 400 annotated frames), which makes
REFORM a viable approach for detecting F-formations.

Second, we provide to the research community a new
dataset for exploring F-formations, called Babble, in which
participants played an improvisational word game in collo-
cated groups. After training the REFORM algorithm on a
single dataset, we provide the performance data of REFORM
across three F-formation datasets: Babble, SALSA—an open
existing dataset for multi-model interaction, and a HRI Proof-
of-Concept Dataset that consists of new data we collected
from scripted interactions between a robot and researchers.
We discuss these datasets in the Datasets section (Sec. IV).

Third, we introduce Symmetry and Tightness as two
new metrics for characterizing F-formations. Currently, F-
formations are typically only described by the number of
people in a group. However, group size alone may be
insufficient for understanding important differences in F-
formations. Conversational groups can be affected by phys-
ical objects (e.g., a table), limited space (e.g., a crowded
bar), or context (e.g., presenter and audience), which can
impact the shape and pattern of the resulting F-formation.
Characterizing F-formations solely by the number of people
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may result in many F-formations appearing similar on the
surface even when they differ in underlying structure and
dynamics. Symmetry and Tightness provide new metrics
for understanding F-formations and their variations. We
discuss Symmetry and Tightness in detail in the F-Formation
Characteristics section (Sec. VI).

II. RELATED WORK

In recent years, researchers have developed several algo-
rithms aimed at detecting F-formations, such as the GCFF
algorithm [15], GRUPO [17], and GroupTogether [13]. Most
of these algorithms use optimization techniques to identify
the transactional segment, the space in front of people where
the interactions in the world take place, and the o-space, a
joint interaction space between people who are engaged in
a group conversation [18]. Prior approaches commonly rely
on using head orientations as a way to find transactional
segments under the assumption that human head orientation
correlates with attentional focus [15], [19]. However, head
orientation data may be noisy and unreliable as people often
move their heads while in conversational groups, for instance
while looking at an active speaker, nodding to provide back-
channel communication, or making gaze aversions to manage
the conversational floor.

Due to variations in human head movements while en-
gaged in conversations, other research has explored body
orientations as a potentially more reliable method for detect-
ing F-formations. Vazquez et al. [17] developed a method to
estimate lower body orientation for F-formation detection.
Marquardt et al. [13] developed another F-formation detec-
tion algorithm using data from a pair of Kinect depth cameras
mounted on the ceiling. In this approach, the depth data is
filtered and normalized using heuristic thresholds such that
human head and body poses appear as two distinct ellipses.
The F-formation is then classified based on the proximity
and direction of these ellipses. Finally, Luber et al. [20] used
people’s direction of motion to detect transactional segments
which provides useful data for moving groups, but is of
limited value for static groups.

Prior approaches to estimating the o-space of an F-
formation are based on Hough-voting strategies. For exam-
ple, Cristani et al. developed Hough Voting for F-formations
(HVFF) which first approximates the transactional segments
using a Gaussian probability density function and then each
function votes for an o-space center to find the local maxima
[19]. Setti et al. further improved this approach by using a
multi-scale extension of Hough-voting [21]. Other methods
for detecting the o-space include Dominant Sets [22] or
Interacting Group Discovery [23].

While promising, many of these previous approaches for
detecting F-formations are limited due to a reliance on
threshold values determined heuristically using trial-and-
error methods and tuned for specific datasets. For example,
the GCFF algorithm [15] uses a different threshold for stride
across various datasets to boost the accuracy of the algorithm.
Moreover, using a single variable such as the transactional
segment (which is a function of stride and the position or

orientation of a person) may result in low accuracy. The
presence or absence of an F-formation depends on many
factors including the distance between people, the velocity
of people (e.g., standing still vs. walking), and the ease at
which a person can look at others. Considering only one
of these factors can cause algorithms to incorrectly detect
F-formations (i.e., false positives or false negatives). For ex-
ample, two people may be in close proximity to one another
(distance) and looking at each other (head orientation) while
in a conversational group or in passing; the latter does not
constitute an F-formation.

As an alternative, our work uses a data-driven approach.
We extend recent work examining machine learning mod-
els that can learn how to detect F-formations from data,
rather than using hard-coded parameters. Mead et al. [24]
demonstrated an early data-driven method for detecting F-
formations of a fixed size. One limitation of this approach
was that new models needed to be trained to detect F-
formations of varying sizes. Gedik et al. [25] detected F-
formations using “Group-based meta-classifier learning us-
ing local neighborhood training” (GAMUT), a data-driven
approach that leverages information gathered from wearable
devices attached to participants. Swofford et al. [26] used
data-driven approach with continuous likelihood for people
interacting together to reason about the F-formations. Below,
we describe our approach with REFORM that can be used
across different datasets, including new datasets, and only
requires the positions and orientations of group members.

III. REFORM

REFORM (REcognize F-FORmations with Machine
learning) is a data-driven approach based on an extension
of our previous prototype for F-formation detection [27].
REFORM is first trained on a labeled dataset consisting of
annotated frames, wherein each frame contains the positions
and orientations of the people in the frame. Typically, such
datasets are produced via manual human annotation because
issues including camera perspective, uneven illumination,
movement, and occlusions continue to pose challenges for
automated approaches towards generating ground-truth la-
bels. As manual annotation is a laborious process, one
benefit of REFORM is that REFORM training requires a
relatively small number of annotated frames due to our
unique data deconstruction approach, described in detail
below. After training, REFORM can detect F-formations
(of any size) within any single frame by considering the
position and orientation of individuals. REFORM outputs
all possible F-formations in real time and can iteratively
identify F-formations in any number of frames. REFORM
consists of three steps: (1) Data Deconstruction, (2) Pairwise
Classification, and (3) Reconstruction.

A. Dataset Deconstruction

Our first step is to deconstruct the training data to increase
the number of data points in our training dataset, enabling
REFORM to be trained on a relatively small number of an-
notated frames. This is an important step as obtaining large,
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labeled F-formation datasets remains challenging due to the
laborious and inefficient nature of manual data annotation. To
make the most of our annotated data, we deconstruct each
frame of n individuals and break these into pairs of two
to create n(n − 1)/2 pairwise data points. Each data point
contains information about the head and body position and
orientation of two individuals. Deconstructing our data into
pairwise data points yields a greater variety of formations
(both F-formations and non-F-formations) than looking at
each frame as a whole.

B. Pairwise Classification

In the second step, REFORM identifies F-formations using
feature-based classification. Specifically, we have selected
two features to describe F-formations: Distance and Effort
Angle. Distance is commonly used in F-formation detection
and is defined as the Euclidean distance between two indi-
viduals. This is an intuitive measure because people com-
monly converse with others in close proximity. In addition
to distance, we introduce a new metric of Effort Angle.
Effort Angle (EA) defines how much body rotation would
be required for two people to face each other with their
bodies directly pointed at one another. EA range is between
0–2π where 0 indicates that two people are directly facing
each other and 2π indicates that they are facing in opposite
directions. EA is commutative (EA12 = EA21).

Training: Although we explain the training phase here,
we emphasize that training only happened once on a single
dataset and that the trained classifiers are then used in
the classification phase across several datasets. To train
REFORM’s classifiers, we used 60% of the SALSA dataset
[28] (explained in detail in the Sec. IV), roughly equal to
400 frames. Each of the 400 frames contained 18 people. We
deconstructed the training set to extract all of the possible
pairwise combinations from each frame (18 × 17/2 = 153
pairs), resulting in 61,200 total pairwise datapoints. We
encoded each datapoint with Distance, Effort Angle, and
a classification label (in an F-formation or not). Next, we
applied three classification methods to the pairwise data:
Weighted KNN, Bagged Trees, and Logistic Regression.

We selected these classifiers to sample performance across
several types of models as they each belong to a different cat-
egory of classifier. Weighted KNN is a K-nearest Neighbor
classifier, Bagged Trees is an ensemble method, and Logistic
Regression is type of Regression classifier. In REFORM,
classifiers are exchangeable, allowing us to experiment with
different classifiers and select the best performing classifica-
tion method.

Classification: To classify new data, we calculate the Dis-
tance and Effort Angle features for each pairwise data point.
Then, we feed each data point to one of three classifiers
(Weighted KNN, Bagged Trees, and Logistic Regression).
The resulting predictions are used to create a Relation Matrix
(MR). For n people in a frame, MR is a n × n symmetric
matrix and for each pair of two people Pi and Pj , the
elements MRij

and MRji
are equal to the predicted label

and the diagonal entries are all 1.

C. Reconstruction

The final step is to reconstruct the pairwise data into sets
of F-formations. Because classifiers are not without error,
we expect to see some inconsistencies across the pairwise
predictions. For example, in a frame with three individuals
P1, P2, and P3, pairwise classifications might indicate that
P1 and P2, and P2 and P3 are in F-formations but P1 and
P3 are not in an F-formation.

To resolve this issue, we implemented Greedy Reconstruc-
tion (Algorithm 1), which aggregates pairwise F-formations
only when the majority of the predictions indicate that a
larger F-formation exists across the pairs. Let the row i in
MR indicate predictions about whether a person Pi is in an
F-formation with respect to others (i.e., all of the other people
in the scene who could possibly be in an F-formation with
Pi). We refer to the set of classifier predictions (beliefs) in
row i as Bi. The Greedy Reconstruction algorithm finds Pi

and Pj that have the maximum number of elements in their
belief intersection (Bi ∩ Bj). Then, Bi ∪ Bj constitutes
an F-formation and Bi and Bj are deleted from MR. This
process repeats until there is no B left in MR. For example,
take B1=P1,P2,P3, B2 = P1,P3,P4, and B3=P1,P2,P3. It is
more likely that B2 has been incorrectly identified as an F-
formation compared to B1 and B3. In other words, it is more
likely that the classifier made one mistake rather than two.

GreedyReconstruction (MR):
Ψ = {} // The F-formation set
while Size(MR) ≥ 2 do

for ∀Pi∀Pj in MR do
Agreementij ← Size(Bi ∩Bj)
if Pi 6∈ (Bi ∩Bj) ∨ Pj 6∈ (Bi ∩Bj) then

Agreementij ← Agreementij ∪ Pi ∪ Pj

end
Ψ←Max(Agreement)

end
MR ←MR − (Pimax ∪ Pjmax)

end
return Ψ

Algorithm 1: Reconstruction Algorithm

IV. DATASETS

In this section, we describe the datasets we used to
train and evaluate REFORM. We explain why we chose
these datasets and describe their properties (e.g., number of
frames, number of F-formations, etc.). We also describe the
annotation process for the new datasets that we collected,
namely the Babble and the HRI Proof-of-Concept datasets.

A. SALSA Dataset

SALSA [28] is an existing dataset consisting of a 60-
minutes recording of social interactions between 18 individ-
uals. In addition to the recording, SALSA contains position,
pose, and F-formation annotations for every 3 seconds of
data using a dedicated multi-view scene annotation tool to
annotate the position, head orientation, and body orientation
of each individual.
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Fig. 1. Examples of the reflective markers used to track participants, different F-formations captured by the RGB cameras, and head and body positions
and orientations captured by the Vicon cameras used to construct the Babble dataset.

Among all publicly available F-formation datasets, such
as the Cocktail Party dataset [16], CoffeeBreak dataset [19],
MatchNMingle dataset [29], etc., we chose the SALSA
dataset because it has a relatively large number of annotated
frames and a large number of people in each frame. It
includes up to 18 people per frame, contains frames with
multiple F-formations, and frames with large conversational
groups (with F-formations of up to 6 people). Among the
annotated frames, we randomly divided the dataset into a
training set (~60%, corresponding to roughly 400 frames)
and a testing set (~40%, 245 frames). The training set was
the only training data REFORM received, including when
tested on other datasets.

One limitation of the SALSA dataset (and human anno-
tated datasets in general) is that there are some inconsis-
tencies and errors in the annotations (the SALSA data in
particular has inconsistencies in the position and orientation
annotations). To detect F-formations, it is important to have
accurate values for the positions and orientations of people
in all annotated frames. To address this issue and evaluate
the generalizability of our approach, we also collected the
Babble dataset (described below).

B. Babble Dataset

One challenge of using a data-driven approach is that the
trained model may correspond too closely to the limited set
of data points on which it was trained on (i.e., “overfitting
the data”) and therefore performs well on the training set
but poorly on new datasets. To evaluate the generalizability
of our approach and provide a dataset with precise feature
measurements, we collected a new dataset that we term
the Babble dataset. The Babble dataset consists of a 35-
minute recording of conversational interactions between 7
individuals with precisely recorded head and body positions
and orientations via a motion-tracking system and labeled
F-formations from two annotators (a total of 3481 frames).

While the Babble dataset has a similar duration of anno-
tated data to SALSA, the number of participants is fewer
(7 for Babble vs 18 for SALSA). However, Babble has a
larger range of F-formations (groups of 2–7 people) than
SALSA (2–6). In addition, the Babble dataset annotations
take place at a higher frequency (SALSA annotations occur
every 3 seconds vs every 0.5s in Babble) and the Babble
data includes accurate head and body orientation annotations
(recorded to within 1mm). This also sets Babble apart from
the Cocktail Party [16] and CoffeeBreak datasets [19], which

also contain inconsistencies in the annotations and less accu-
rate head and body orientations. To our knowledge, Babble is
the first dataset to provide absolute head and body orientation
and labeled F-formations for all individuals in a frame. This
dataset is publicly available on our git repository1.

To collect the Babble dataset, we recruited 7 students (3
female, 3 male, 1 non-binary) from our University campus
by word of mouth under a protocol approved by our local
IRB. We conducted a 1-hour experiment in our lab in which
participants played a social game called the Improv Word
Game. First, we outfitted participants with reflective markers
and asked each participant to briefly stand inside of our
5m× 5m× 3m game area in order to calibrate our motion
tracking cameras. Then, we introduced participants to the
Word Improv Game and played one practice round to ensure
participants understood how to play. Finally, participants
played the game until there was a winner (~35 minutes).

Word Improv Game: This activity had participants play
a game with a deck of cards, where each card had a
random word on it, a moderator, and a moderator. The game
comprises a deck of cards with a random word on each card,
a moderator, and two or more players. The moderator and
players stand in a circle. The moderator picks the first card in
the deck, reads the word aloud, and chooses a player for the
turn. The chosen player must talk about the given word for
roughly 30 seconds without pausing. Players can talk about
anything that is associated with the word. When 30 seconds
are up, the players “shuffle” by randomly switching places
with one another so that the arrangement of players in the
circle differs from the previous round. Then, the moderator
chooses a new word and a player for the next turn. If a player
is unable to talk about a word for 30 seconds, or strays off-
subject, the player loses and is out of the game. When a
player is out, they must leave the circle and the remaining
players shuffle. The winner is the player that is left after all
other players are out.

To track participants’ position and orientation throughout
the game, we outfitted each participant with 6 IR reflective
markers. Three markers were attached to participants’ backs
to track the position and orientation of their torsos and three
markers were attached to a baseball cap to track the position
and orientation of participants’ heads. To track the markers,
we used 6 Vicon motion capture cameras that captured
participants’ head and body orientations at 100 frames per

1github.com/cu-ironlab/Babble
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Fig. 2. The setup used for the HRI Proof-of-Concept Dataset wherein two researchers are in an F-formation with a robot (left); examples of the 3 different
F-formations: no interaction (no F-formation), a group conversation between two humans (F-formation of size 2), and a group conversation between two
humans and a robot (F-formation of size 3) (right).

second with a precision of 1 mm. Additionally, we mounted
3 RGB cameras on the walls of the room to capture images
of the participants at 30 frames per second. The setup can
be seen in Fig. 1.

In total, we recorded 3481 frames, with 3 RGB images
(used for F-formation annotations) and head and body ori-
entation data via motion capture for each frame. To generate
the Babble dataset, we combined static RGB images taken at
0.5 second intervals with the tracking information (position
and orientation) captured by the Vicon cameras. Then, two
members of the research team manually annotated each of
the frames. The annotators separately categorized the frames
by specifying the F-formation memberships (e.g., {2,3,5},
{1,4} for two F-formations involving participants 2, 3, and
5 in the first, and participants 1 and 4 in the second). If no
participants were in an F-formation, the annotation is empty.
Frames in which players were shuffling typically did not
contain any F-formations as players were walking around
randomly. Transitions, such as a player leaving the game,
were typically characterized by F-formations because the
remaining players either preserved the existing formation
or adjusted their positions to form a new F-formation.
We compared the annotations for F-formation memberships
across the two annotators; the inter-rater reliability (Cohen’s
kappa) was κ = 0.82.

C. HRI Proof-of-Concept Dataset

In addition to the new Babble dataset, we also collected
data for another dataset due to our underlying motivation of
improving F-formation detection for social robots. To eval-
uate REFORM’s performance in human-robot interactions,
we collected a small dataset that we will refer to as the
HRI Proof-of-Concept Dataset. This dataset consists of a 5-
minute recording of scripted interactions between the “Direc-
tions Robot” [30] and a member of our research team and a
colleague. It also includes frame-by-frame annotations for F-
formations along with the humans’ positions and orientations
automatically provided by a Kinect depth sensor (a total of
3091 frames). While this is a small dataset, it includes data
about F-formations consisting of both humans and a robot
(unlike SALSA or Babble).

Directions Robot: The Directions Robot is a small hu-
manoid that functions as a directional guide by providing
walking instructions to buildings, offices, and other public
areas. It supports naturalistic conversation and can respond
to questions (e.g., “where is John’s office?”) using natural
language and gestural output [30]. We chose the Directions
Robot because it supports conversational interactions be-
tween one or more individuals and because it is already in
use at Microsoft Research to guide visitors.

To collect the HRI Proof-of-Concept Dataset, we enacted
3 different scenarios as shown in Figure 2: (1) a group
conversation with two humans and the robot, (2) a group con-
versation between two humans (robot excluded), and (3) no
interactions between humans and robot. In the first scenario,
the researchers and robot were engaged in conversation and
the researchers asked the robot questions about a room in the
building. The researchers and robot formed an F-formation
of size 3. In the second scenario, the two researchers stood in
front of the robot and engaged in a short conversation with
each other. Both the robot and the researchers are in the scene
but only the two researchers formed an F-formation. In the
third scenario, researchers walked past each other multiple
times in front of the robot. The interaction did not constitute
any F-formation.

To track the researchers, we attached a Kinect and a wide-
angle RGB camera atop the Directions Robot. We then used
skeleton tracking to calculate the researchers’ positions and
orientations with respect to the robot.

We recorded a total of 3091 frames during this session.
To generate the dataset, we randomly selected 100 frames
and two members of the research team separately annotated
each with the F-formation membership.

V. EVALUATION

We evaluated REFORM on the three datasets described
above (SALSA, Babble, and HRI Proof-of-Concept Dataset).
For all of the results below, we emphasize that the REFORM
classifiers were only trained once (as discussed in the Train-
ing section) using only the training set derived from 60% of
the SALSA data.

First, we evaluated REFORM’s performance on the
SALSA dataset across our three classifiers (Weighted KNN,
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TABLE I
REFORM’S PERFORMANCE ON TRAINING AND TESTING DATA (~60% AND ~40% OF THE SALSA DATASET, RESPECTIVELY) COMPARED TO A

MAJORITY BASELINE CLASSIFICATION AND THE GCFF ALGORITHM.

Pairwise Accuracy Precision Train Precision Test Recall Train Recall Test F1 Train F1 Test
Majority Baseline 85.3 100 100 0 0 0 0

Graph-Cuts N/A 66.2 63.8 64.2 64.2 65.2 64.2
Weighted KNN 92.1 86.5 78.1 99.9 82.7 92.7 80.3

Bagged Tree 93.3 86.3 78.3 99.4 84.3 92.4 81.2
Logistic Regression 92.2 73.9 71.3 78.9 78.6 76.3 74.8

Bagged Tree, and Logistic Regression) and compared our
approach to the existing state-of-the-art GCFF algorithm
[15]. We tuned the parameters (MDL = 30000 and stride =
0.7) as specified by the GCFF open-source code to ensure
a fair comparison. All three classifiers outperformed the
GCFF algorithm by as much as 20% in precision, recall,
and F1 score. While further parameter tuning could poten-
tially improve GCFF’s performance, it is worth noting that
REFORM achieved high performance without the need to
tune any parameters. The Bagged Tree classifier had the best
overall performance, however, Logistic Regression exhibited
the least degree of overfitting. The precision, recall, and F1
scores for T = 2/3 (i.e., predictions with a 2/3 match to
ground truth are considered correct as described by Setti et
al. [15]) are shown in Table I.

Our second evaluation compared REFORM to the GCFF
algorithm on our novel Babble dataset. Again, we emphasize
that REFORM was trained only on the SALSA dataset
and then tested on the Babble dataset (i.e., the classifiers
were not re-trained on the new data). As before, we set
GCFF’s parameters to the specified values (MDL = 30000
and stride = 0.7). Again, all three classifiers outperformed
the GCFF algorithm in precision, recall, and F1 score.
The Bagged Tree classifier had the highest scores for all
three measures and performed comparatively well on this
dataset relative to the SALSA dataset (e.g., the classifier’s
Precision score was only 2.7% lower than on the SALSA
dataset). Precision, Recall, and F1 measures are summarized
in Table II. The results of the Bagged Tree classifier provide
compelling evidence that REFORM is generalizable to a
greater degree than previous approaches.

Last, we tested our classifiers on our HRI Proof-of-
Concept Dataset and compared their performance to the
GCFF algorithm. All three classifiers performed equally well
on Precision (75.7), Recall (100), and F1 score (86.2), and
once again outperformed the GCFF algorithm (Precision:
51.5, Recall: 63.6, F1: 56.9). While these results are promis-

TABLE II
REFORM’S PERFORMANCE ON THE BABBLE DATASET COMPARED TO

THE GCFF ALGORITHM.

Precision Recall F1
Graph-Cuts 65.0 75.0 69.6

Weighted KNN 74.3 87.5 80.4
Bagged Tree 75.6 90 82.1

Logistic Regression 65.6 80.0 72.1

ing, we note that this dataset is small and represents acted
out, rather than purely natural human-robot interactions. It
also only contains two humans and one robot, resulting
in a handful of different F-formations to be classified. We
speculate that if we increase the number of people who
interact with the robot in our dataset and collect data using
natural interactions, the accuracy of these classifiers will
change.

VI. F-FORMATION CHARACTERIZATION

While we believe these initial results show that REFORM
holds promise in a providing a new, data-driven method for
generalizable F-formation detection, we are also interested in
understanding how novel features may be useful in detecting
and characterizing F-formations. F-formations are typically
described by the number of people in a group. The size of a
group, however, may be insufficient for detecting important
differences in F-formations. For example, F-formations can
be constrained by physical objects (e.g., a table), limited by
available space (e.g., a crowded bar), or altered by context
(e.g., presenter and audience), all of which can impact the
shape and pattern of the formation. As described above,
our REFORM method currently utilizes Distance and Effort
Angle as features for classifying F-formations. In this section,
we discuss two new ways to characterize F-formations that
arose from our analysis of REFORM’s performance that may
help future work better distinguish between F-formations of
different structures and dynamics.

In evaluating REFORM, we observed two interesting pat-
terns in the formation of conversational groups with respect
to F-formation size, Distance, and Effort Angle. First, we
observed that F-formations that are unconstrained tend to
be symmetric and circular in shape, wherein each person
has a similar Distance and Effort Angle compared to their
neighbor. We call this Symmetry, a measure to describe the
degree to which the angles between people in an F-formation
are congruent. Second, we found that the average distance
from the center of an F-formation to the individuals in the
group appears to grow relative to its size (the total number
of people in the F-formation). We call this Tightness, the
average Euclidean distance between group members and the
center of the conversational group.

Symmetry: To describe Symmetry, we denote the angle
between adjacent people i and j in a F-formation as θi,j .
In a perfectly symmetric F-formation of size N, all of the
angles in θi,j would be equal, with θi,j = 360/N . We refer to
perfect Symmetry as θPerfect. The Symmetry of F-formation
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Fig. 3. Left: Symmetry measures the angles between individuals in a F-formation; Center: We found Symmetry to be fairly consistent across F-formations
size except for groups of 3; Right: We found Tightness varied across F-formation size.

Sf is defined as the accumulated errors between pairs of
adjacent people with θPerfect. For example, if there are four
individuals in an F-formation, there would be four adjacent
angles θ1,2, θ2,3, θ3,4, and θ4,1, and θPerfect = 90. The
formal definition of Symmetry is as follows:

Tf =

N∑
i=1

|θPerfect − θi,j | (1)

We manually inspected 100 frames in the Babble dataset
and found no differences in Symmetry for F-formations
of size 4, 5, 6, and 7. However, we did find significant
differences in Symmetry when comparing F-formations of
size 3 to larger F-formations as determined by a one-way
ANOVA using formation size as a fixed effect, F (4, 94) =
47.67 , p < .0001. A post-hoc test using Tukey’s HSD
revealed that the degree of Symmetry was significantly lower
for f3 (M = 234) compared to f4 (M = 87), f5 (M =
44), f6 (M = 42), and f7 (M = 44), with p < 0.001. We
speculate that this effect may in part be due to the gameplay
of the Word Improv Game, where an F-formation of size 3
includes two opponents and one moderator. In our study, the
two remaining opponents often faced each other (presumably
due to the competitive nature of the task), which could
lead them to exclude the moderator from the F-formation.
Symmetry is not defined for a vis-a-vis arrangement as
people are positioned in a straight line and maintain perfect
symmetry, S(f2) = 0. While there are some discrepancies
in our results, we found that most of our unconstrained
conversational groups (F-formations with more than three
individuals) had a tendency to form F-formations with a high
degree of Symmetry.

We observed similar patterns in Symmetry in the SALSA
dataset. We inspected 500 frames and conducted a one-way
ANOVA using formation size as a fixed effect, F (4, 1639) =
171.2 , p < .0001. We found no differences in Symmetry
for F-formations of size 4, 5, 6, and 7, but found significant
differences when comparing size 3 to larger F-formations. A
post-hoc test using Tukey’s HSD showed that the degree of
Symmetry was significantly lower for f3 (M = 50) compared
to f4 (M = 36), f5 (M = 32), f6 (M = 32), and f7 (M = 26),
with p < 0.001.

Tightness: The Tightness of an F-formation (Tf ) is the
Euclidean distance between the group members and the
center of the conversational group. Tightness is similar to
Setti’s F-formation radius Rk [21], but differs in that Tf does
not use any predefined heuristic values (such as s = 95cm,
where s refers to the personal range that humans maintain
between themselves).

As with Symmetry, we explored Tightness by manually
inspecting 100 frames in the Babble and SALSA datasets.
We conducted a one-way ANOVA using the size of an F-
formation as a fixed effect and found that F-formation size
had a significant effect on Tightness, F (5, 94) = 258, p <
.0001. For the Babble dataset, a post-hoc test using Tukey’s
HSD revealed that all F-formations had significantly different
Tightness: f2 (M = .78), f3 (M = .80), f4 (M = .83), f5 (M
= .87), f6 (M = .90), f7 (M = .95), all p < .0001, except
for F-formation size 2 and 3 for which p = 0.0173. For the
SALSA dataset, all F-formations had significantly different
Tightness except for F-formation size 5 and 6: f2 (M =0.44),
f3 (M = 0.54), f4 (M = 0.61), f7 (M = 0.93), all p < .0001,
and f5 (M = 0.66), f6 (M = 0.67). Our results show that
as the size of an F-formation increases, Tightness decreases
(i.e., people move further away from the F-formation center).

We recognize that there are factors other than size that may
influence the Symmetry and Tightness of an F-formation. In
fact, these measures may help reveal important contextual
differences in F-formations, such as differences in conversa-
tional groups with members of varying heights (e.g., adults
and children), differences in the level of intimacy of the
group members (e.g., close friends, colleagues), and level
of noise in the environment (e.g., people tend to stand closer
together in loud places). We intend to explore these factors
in future research.

VII. CONCLUSION

F-formation detection is important for the advancement of
social robots. To support natural human-robot interaction,
social robots need to be able to detect F-formations and
recognize the differences in the shape and pattern of F-
formations. This work contributes REFORM, a new data-
driven approach for detecting F-formations that outperforms
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the state-of-the-art GCFF algorithm on existing and new
datasets. Our approach appears to be generalizable and
holds promise for detecting F-formations in the wild. We
also present a new dataset for future research into social
interactions that contains precise human orientation and po-
sitional information with annotated F-formations. Finally, we
describe two new metrics for characterizing F-formations of
different shapes and patterns: Symmetry and Tightness, which
may help reveal important contextual differences across F-
formations. Robots that can recognize these contextual dif-
ferences will be able to enact more sophisticated interaction
policies for smoother and more enjoyable user interaction.
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