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Abstract— In this paper, we propose a dependable visual
kidnap recovery (KR) framework that pinpoints a unique pose
in a given 3D map when a device is turned on. For this
framework, we first develop indoor-GeM (i-GeM), which is
an extension of GeM [1] but considerably more robust than
other global descriptors [2]–[4], including GeM itself. Then, we
propose a convolutional neural network (CNN)-based system
called KR-Net, which is based on a coarse-to-fine paradigm as
in [5] and [6]. To our knowledge, KR-Net is the first network
that can pinpoint a wake-up pose with a confidence level
near 100% within a 1.0m translational error boundary. This
dependable success rate is enabled not only by i-GeM, but also
by a combinatorial pooling approach that uses multiple images
around the wake-up spot, whereas previous implementations
[5], [6] were constrained to a single image. Experiments were
conducted in two challenging datasets: a large-scale (12,557m2)
area with frequent featureless or repetitive places and a place
with significant view changes due to a one-year gap between
prior modeling and query acquisition. Given 59 test query sets
(eight images per pose), KR-Net successfully found all wake-
up poses, with average and maximum errors of 0.246m and
0.983m, respectively.

I. INTRODUCTION

Recent advances in visual localization within a given 3D
map have shown significant improvements with the applica-
tion of deep-learning technology [5]–[10]. A pioneering work
was conducted by Kendall et al. [7], [8], commonly known
as PoseNet. However, according to [11], PoseNet shows
lower performance in its accuracy and robustness, compared
to current state-of-the arts approaches. Recent studies [12],
[13] have developed systems that demonstrated enhanced
performance, but the systems still have a weakness with
regard to scalability.

Breakthroughs [5], [6] that simultaneously enhance accu-
racy, robustness, and scalability have demonstrated success-
ful visual localization from a single image. These break-
throughs rely mainly on a coarse-to-fine paradigm that con-
ducts global retrieval [1], [2] to obtain location hypotheses
and local feature matching [9], [10] within those candidates.
However, previous implementations of the coarse-to-fine
paradigm are not suitable for our target task of kidnap
recovery (KR). For the KR task, a critical requirement is
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Fig. 1. One of our test sites, called M-site, where featureless and/or
repetitive places are spread over the entire large map whose size is
12,557m2. Here, images with the same color borders yield the same GeM
scores, although their locations are quite different.

unique pose pinpointing to determine, with high confidence,
where a device (such as a robot or mobile phone) is being
initiated. Considering our purpose of commercialization, the
level of confidence should be near 100%, which is far beyond
the success rates of previous approaches such as the systems
developed in [5] and [6].

In this study, we propose a system called KR-Net, on the
basis of the coarse-to-fine paradigm, which is sufficiently
robust for commercialization. Here, the challenging problem
is acquiring abundant as well as reliable features at the
same time. A trade-off exists between the characteristics of
abundance and reliability, mainly because of the attributes
of objects. Naturally, there exist rich visual features in
objects. However, those features could significantly impair
localization when the objects’ locations are not the same in
the prior map and query images.

To overcome this problem, we exploit structures, which
yield situation-invariant features in a way that fully utilizes
their explicit visual features as well as implicit depth infor-
mation as follows: First, regarding a prior 3D map, we adopt
a structure-oriented map [14], [15] called TeeVR, which is
a photo-realistic modeling of structures. Second, regarding
a global feature for initial hypothesis retrieval, we suggest
indoor-GeM (i-GeM), which is an extension of GeM [1], to
make the best use of indoor structures in two ways: making
them equivariant to feature location in order to distinguish
similar images (as shown in Fig. 1) whose GeM scores are
the same and embedding pixel-wise depth information.

To integrate these structure-oriented strategies into a
monolithic network, we designed a convolutional neural
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Fig. 2. KR-Net consists of a priori modeling (top) and on-line pose estimation (bottom). Pose estimation consists of three modules: coarse prediction
(left), fine estimation (middle), and verification (right). This structure inherits the coarse-to-fine paradigm of HF-Net with additional verification from
InLoc. Here, our key contributions are i-GeM and the combinational pooling as indicated in red.

network (CNN), called KR-Net, that successfully conducts
kidnap recovery in challenging environments. As in pre-
vious implementations [5], [6], KR-Net is also based on
the coarse-to-fine paradigm. However, it is designed to take
multiple images around the initial pose, whereas previous
implementations were constrained to use a single image that
may contain insufficient information. To provide multiple
image information for reliable pose decisions, we insert a
combinatorial pooling between the coarse retrieval and the
fine estimation, so that multiple independent retrievals are
condensed into a single probability distribution over the
entire map. Furthermore, KR-Net inherits the concept of
view-verification and co-visibility from InLoc [5] and HF-
Net [6], respectively, not only for increased accuracy but also
for dependability at the cost of additional computation.

Experiments were conducted on two challenging datasets
constructed at the KU-plaza and the M-site. Here, the KU-
plaza dataset (1,930m2) contains dramatic changes of sign
boards, object locations, and even structural changes due to
large-scale remodeling. By contrast, there are few changes
in the M-site. However, this large map (12,557m2) contains
many featureless and/or repetitive regions over the entire
area.

By these experiments, it was verified that the retrieval
performance of i-GeM is superior to that of NetVLAD
[2] by approximately 20% and 18% (within a 1.0m recall
threshold) in the KU-plaza and the M-Site, respectively. In
addition, KR-Net successfully pinpointed its initial pose: The
success rate was 100% (within the 1.0m recall threshold)
and the average accuracy was 0.246m.

In summary, our contributions are as follows:
• Proposing a new global descriptor, i-GeM, which shows

superior performance compared with other methods
(such as NetVLAD and GeM) for structures in indoor
spaces.

• Proposing a multiple image-based kidnap recovery net-
work with two novelties: combinatorial pooling and
integration of verification and co-visibility.

• Experimental validation of the robustness of KR-Net

(success rate of 100%, even in featureless or repetitive
places or under dramatic view changes), accuracy (av-
erage error of 0.246m), and scalability (tested in areas
up to 12,557m2).

This paper is organized as follows. In Section II, the
proposed method is explained step-wise. Section III discusses
the experimental validation results, and conclusions follow in
Section IV.

II. METHOD

In this section, we propose a structure-oriented pipeline
for the dependable kidnap recovery network called KR-
Net, whose pipelines are shown in Fig. 2. This network
consists of a priori modeling (top in Fig. 2) and on-line pose
estimation (bottom). The pose estimation consists of three
modules: coarse prediction (left), fine estimation (middle),
and verification (right).

This structure inherits the coarse-to-fine paradigm of HF-
Net, in which GeM and Superpoint (SP in Fig. 2) are used for
the coarse prediction and fine estimation, respectively. KR-
Net, however, substitutes GeM with i-GeM (Section II-A),
which makes the best use of indoor structures. In addition,
KR-Net includes combinatorial pooling (Section II-B) within
the coarse prediction, which conveys multiple independent
image data to a condensed single probability distribution.
Given candidate poses from the coarse prediction, virtual
images are captured from TeeVR, and the fine prediction
(Section II-C) is initiated. Then, the verification (Section II-
D), whose concept is adopted from InLoc for accuracy
enhancement at the cost of additional computation, is con-
ducted on all candidate poses from the coarse prediction and
fine estimation.

A. i-GeM

In this section, we explain a new global descriptor, i-GeM,
which makes the best use of explicit visual information as
well as implicit depth information at indoor spaces. i-GeM
is an extension of GeM in two directions, as shown in Fig. 3.
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Fig. 3. Schematic diagram of i-GeM, which is an extension of the gen-
eralized mean pooling [1] in two directions. First, to discriminate different
images with the same GeM scores, region-wise pooling is conducted for the
left (red) and the right (blue) regions. Second, to embed depth information,
a monocular depth prediction network [16] is exploited (bottom), in which
depth is decoded by GeM. Finally, a total of four GeM features (two from
visual and two from depth) constitutes i-GeM.
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Fig. 4. Probability distributions over the entire map, from (a) a single
image input and (b) multiple image inputs after a weighted-sum process.

First, to discriminate different images with the same GeM
scores as shown in Fig. 1, region-wise pooling is conducted.
In selecting the region, we focus on the fact that target images
are horizontally flipped. Thus, we conduct GeM pooling from
the left half and the right half twice so that the descriptor
is equivariant to feature location. This scheme is easily
implemented as the last layer of the backbone networks
(VGG [17], ResNet [18]), directly corresponding to the input
image in its location.

Second, to embed implicit depth information, a monocular
depth prediction network [16] is exploited as in the bottom
part of Fig. 3. Given the pixel-wise depth information, we
conduct the same region-wise GeM pooling for two pur-
poses: making the descriptors equivariant to feature location,
and conserving features not from objects but from structures
as GeM does.

Finally, the proposed i-GeM is constructed by combining
four GeM features: two from the left and right images and
the remaining two from the depth images.

Algorithm 1: Combinatorial Pooling

Psim ← fTq ∗ fdb,
Smap ← map(Psim,

map Idb)
Sxy ← max(Smap, axis = 0)
Arrang ← argmax(Smap, axis = 0)
Ŝxy ← maxpool(Sxy)
Tpeak ← (Sxy = Ŝxy)and(Sxy > λ×max(Sxy))
Tcluster=[ ]
for idx in Tpeak do

C ← (Sxy[idx] = Ŝxy)and(Ŝxy > λ×max(Sxy))
Tcluster.append(C)

end
return Tcluster, Arrang

B. Combinatorial Pooling

In this subsection, we explain the combinatorial pooling,
which conveys multiple independent visual data to a con-
densed probability distribution over the entire map.

First, given two global descriptors from a query (fq) and a
database image (fdb), a similarity value (Psim) is calculated
as the inner product (Psim = fTq ∗ fdb). Then, we project
these similarities into the grid-map. Considering orientation,
we conserve best matched orientation information by select-
ing the largest Psim among the similarities from the each
database position.

Then, we construct clusters whose values are higher than
a certain threshold (λ = 0.85). Candidate poses within each
cluster are indicated by blue crosses in Fig. 4. As shown
in Fig. 4(a), the probability map contains many clusters
because of insufficient information considering the large size
of the map. However, if we use multiple independent images
and conduct a weighted-sum process, only a few candidate
groups appear, from which we can pinpoint an initial pose
as shown in Fig. 4(b).

C. Fine Prediction

Given clusters of pose candidates, we conduct fine predic-
tion for two purposes: unifying local features within a cluster
into a single pose, and updating the single pose for higher
precision.

For this stage, it should be noted that our structure-based
approach has both advantages and disadvantages. The advan-
tage is that only situation-invariant features from structures
are used; the disadvantage is that the number of features is
significantly reduced as shown in Fig. 5. However, because
we use multiple images, we can obtain sufficient features to
accurately estimate the pose.

The fine prediction consists of two steps. First, all local
features, Superpoint [10] in our approach, of multiple poses
in each candidate cluster are aggregated into a set of features.
This can be easily conducted in TeeVR, because this map
provides any-view corresponding images as well as pixel-
wise depth. Second, given a set of features, we apply a 2D–
3D matching using the PnP method [19] to accurately refine
the pose.
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Fig. 5. Characteristics of our structure-oriented approach, where given
many local features (Superpoint) of query images, only reliable features
that overlap those of database images as in (b) are selected to be inliers as
in (c).
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Fig. 6. Intensive verification for whole candidates from the query and all
candidate poses.

Note that the overall scheme described in this subsection
is basically the same as that of HF-Net, the so-called co-
visibility approach.

D. Verification

For high dependability, we further adopt the verification
concept from InLoc [5] at the cost of additional computation.
Its pipeline, as shown in Fig. 6, works as follows.

• 1. Given images from estimated poses, compute sim-
ilarities using i-GeM from a query and the estimated
pose images.

• 2. Select the top K images. Here, K varies with respect
to the relative threshold.

• 3. Conduct a rigorous verification of the K candidates
that compares the similarity in a pixel-by-pixel manner.
Here, we also compute error values utilizing the equiv-
ariant discrimination as discussed in Section II-A but in
a more rigorous pixel-by-pixel manner.

• 4. Select the final pose whose image has the minimum
error value from step 3.

III. EXPERIMENTAL EVALUATION

A. Dataset

Because the open datasets [20]–[22] cannot be converted
to TeeVR format, we built the two datasets of KU-plaza
and M-site. First, the KU-plaza, of size 1,930m2, is a
representative place of significant view changes, because
there was a one-year gap between the 3D modeling and query
acquisition. Some examples of view changes are board-sign
changes (Fig. 7 (a), blue box), illumination changes (Fig. 7
(a), green box), and even structural changes (Fig. 7 (a), red
box).

Second, the M-Site, of size 12,557m2, is a representative
large-scale place (Fig. 7 (b)) with many featureless (Fig. 7
(b), yellow box), and/or repetitive places (Fig. 7 (b), red box
and blue box), as well as object-dominant places (Fig. 7 (b),
green box). This site is suitable for testing the following
characteristics of visual localization:

• Reliability in many featureless spots.
• Ambiguity discrimination among many repetitive spots.
• Scalability in large-scale environments, which also

makes the aforementioned reliability and ambiguity
discrimination far more difficult.

• Individual contributions of objects and structures in
visual localization.

B. Implementation Details

3D Map Modeling
For a prior 3D map generation, a structure-oriented photo-

realistic modeling, namely TeeVR [14], is adopted. It con-
sists of two modules: data acquisition and modeling.

First, a scanning robot (as shown in Fig. 8) [23] equipped
with two LiDARs (Velodyne VLP-16) and a 360◦ camera
(Ladybug5 Plus) roams around the space at 2 km/h record-
ing images at 10 fps. At this speed, it takes 20 minutes
and 6 hours to cover the full area of the KU-plaza and
the M-site, respectively. Second, accurate pose estimation
[24] is conducted using pointcloud data, which is followed
by automatic structure generation [25] and structure-oriented
image inpainting [15].

Here, this modeling strategy is not only suitable in our
structure-oriented approach but also useful for other visual
localization schemes. For example, the dense colored point-
cloud data and key frame images of InLoc [5] is easily
selected after the pose estimation step of TeeVR’s pipeline,
whereas those data were laboriously acquired in [5]. In
addition, because the scanning robot acquires images at 10
fps, a sufficient number of images for SfM in [6] are easily
provided.

Furthermore, TeeVR can provide pixel-wise depth
information that can be used for i-GeM’s depth training,
and its compact storage (146.0 MB and 431.3 MB for
the KU-plaza and the M-site, respectively) increases the
feasibility of on-device implementation.
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(a) (b)

Fig. 7. Datasets were generated in two target sites. (a) The first site is KU-plaza (1,930m2) where the prior map (left square) is significantly different from
the query (right rectangle): A new corridor is found in the query (red), light conditions are different (green), and a few board signs were changed (blue).
(b) The second site is the M-site (12,557m2), which includes many featureless (yellow) and/or repetitive places (red and blue) as well as object-dominant
places (green) spread over the entire space.

TABLE I
IMAGE RETRIEVAL FEATURE EVALUATION

KU-Plaza M-Site

Top 1 Top 5 Top 10 Top 1 Top 5 Top 10

1.0m 3.0m 5.0m 1.0m 3.0m 5.0m 1.0m 3.0m 5.0m 1.0m 3.0m 5.0m 1.0m 3.0m 5.0m 1.0m 3.0m 5.0m

NetVlad [2] 0.000 0.051 0.103 0.026 0.077 0.205 0.026 0.128 0.333 0.180 0.341 0.388 0.350 0.519 0.566 0.430 0.610 0.659

GeM [1] 0.051 0.231 0.487 0.179 0.410 0.615 0.282 0.513 0.667 0.197 0.381 0.407 0.386 0.508 0.525 0.441 0.561 0.585

GeM+Eq 0.128 0.359 0.538 0.282 0.487 0.615 0.333 0.564 0.667 0.309 0.483 0.513 0.487 0.585 0.606 0.576 0.648 0.669

i-GeM 0.205 0.538 0.590 0.333 0.564 0.641 0.385 0.615 0.769 0.364 0.532 0.547 0.572 0.665 0.680 0.625 0.718 0.746

Fig. 8. Sensor system for data acquisition. Sensor measurements, acquired
by a spherical camera, two 3D LiDARs, and an inertial sensor are employed
to generate realistic 3D modeling [14].

Database Generation
From TeeVR itself or its raw data after pose estimation,

we constructed three sets of databases for InLoc [5], HF-Net
[6], and KR-Net.

First, we generated an InLoc dataset of 36 perspective
RGB-D images for each 360◦ image. In this generation,
sampling strides for yaw and pitch angles were set to 30◦ and

± 30◦, respectively. As a result, we built a total of 2,100 and
27,000 RGB-D image sets for the KU-plaza and the M-site,
respectively.

Second, we built an SfM model of the KU-plaza with
COLMAP [26], [27] using 1,300 images with known camera
poses, and followed a model construction process as HF-
Net instructed for a test of HF-Net. In the case of the
M-site, it is difficult to build an SfM model of the place
because it is a large-scale indoor space with many self-
similar features (such as repetitive patterns), although we
used known camera poses. Thus, we tested only in the KU-
plaza for the comparison of HF-Net.

Finally, for the validation of KR-Net, we captured virtual
images from the TeeVR map. Because the map provides an
image from any point of view given a pre-specified field
of view (FoV), we extracted images for every 50 cm in
36 yaw directions. Here, the FoV was set to be the same
as that of the camera (Realsense) used in query image
generation. As a result, a total of 130,000 and 240,000
image databases were constructed for the KU-plaza and the
M-site, respectively.
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TABLE II
POSE ESTIMATION RESULTS USING SINGLE IMAGE

Top 1

0.3m 0.5m 1.0m 3.0m 5.0m

K
U

-P
la

za InLoc [5] 0.0769 0.2821 0.4103 0.5385 0.5897

HF-Net [6] 0.1026 0.1538 0.3333 0.8462 0.9231

KR-Net 0.2051 0.5128 0.6923 0.7692 0.7692

M
-S

ite InLoc [5] 0.4068 0.5678 0.6864 0.7564 0.7606

KR-Net 0.4703 0.5890 0.6610 0.7225 0.7309

Query Sets Acquisition
Query image sets were acquired so that multiple images

around a spot were obtained. In the KU-plaza, we took four
images using a smartphone (Samsung Galaxy Note 5) for
every 90◦ at 10 places. In the M-site, however, we acquired
eight images using a Realsense at a resolution of 45◦ because
the camera’s FoV (Realsense) was narrower than that of the
smartphone. In 59 arbitrarily selected places (indicated by
the red spot in Fig. 7), a total of 472 images were acquired,
of which the ground truth was identified by a manual one-
to-one matching in a way that fully overlaps two images:
TeeVR and the query.

C. Feature Evaluation

For the evaluation of i-GeM, evaluations including an
ablation study were conducted for two datasets in a way
that identifies the accuracy of retrieval given a single image
as the recall threshold changes.

Table I shows the results of NetVLAD [2], GeM [1],
GeM with equivariant-descriptor (GeM+Eq), and i-GeM
(GeM+Eq+Depth). Here, Top 1, Top 5, and Top 10 indicate
how many top hypotheses were included in evaluating the
success rate (%) as recall distance changes (1.0 m, 3.0 m,
and 5.0 m).

For the KU-plaza dataset, it was shown that GeM (the
second row) yields superior performance compared with
NetVLAD (the first row) against significant view changes. In
addition, it was shown that only depth information in i-GeM
(the fourth row) significantly improves retrieval performance,
whereas the equivariant discrimination contributes little. By
contrast, both the equivariant discrimination and the depth
information similarly contribute in the M-site, because there
are many repetitive places over the entire area. Overall, it
was shown that i-GeM is superior in describing explicit or
implicit features of structures compared with NetVLAD, and
that i-GeM is a suitable choice in the sense of robustness.

D. Comparison

Because of the difference in the number of image inputs
between the current state-of-the art techniques (InLoC [5]
and HF-Net [6]) and KR-Net, a fair comparison cannot be
conducted. As an alternative, comparisons were conducted
using a single image for two datasets as shown in Table II.

TABLE III
POSE ESTIMATION RESULTS USING MULTIPLE IMAGES

Top 1

0.1m 0.3m 0.5m 1.0m avg. error
(m)

success rate 0.288 0.763 0.881 1.000 0.246

In the results for KU-plaza, KR-Net shows superior per-
formance for recall thresholds of 0.3m, 0.5m, and 1.0m. In
contrast, HF-Net shows the best results at 3.0m and 5.0m.
However, the results of HF-Net cannot be trusted because
the SfM map for HF-Net was successfully generated only
for a relatively small indoor place (965m2), which, in return,
provides favorable situation for the 3.0m and 5.0m criteria.
Thus, overall, it can be said that KR-Net shows superior
results under significant view changes even when using a
single image.

In the results for the M-site, we were unable to gener-
ate the SfM model for HF-Net for the reason mentioned
in Section III-B (Database Generation). Thus, comparisons
were conducted only for InLoc and KR-Net; it can be shown
that KR-Net exhibits better precision within a tight threshold
(∼ 0.5m), whereas InLoc exhibits better recall within a wide
threshold (∼ 5.0m). Considering that InLoc utilizes features
both from objects and structures (whereas KR-Net uses
only those from structures) and those from objects whose
locations were not changed, KR-Net’s baseline performance
with a single image can be said to be competitive to that of
InLoc.

E. Kidnap Recovery Evaluation

The objective of KR-Net, a dependable KR with multiple
images, was tested for 59 sample sets in the M-site. Table III
shows recall rates at different distances w.r.t. the ground
truth for all the query sets. Because all the wake-up poses
are successfully found within the 1.0m bound, and the
average error is 0.246m, we conclude that our structure-
based approach with multiple images yields highly reliable
results and fits well into our commercialization plan.

IV. CONCLUSIONS

In this paper, we propose a highly dependable KR-Net
that successfully works in two challenging datasets: one
(KU-plaza) with significant view changes, and the other
(M-site) with many featureless and/or repetitive places over
the entire large map. To our knowledge, this is the first
system that pinpoints an initial pose with a success rate near
100%, which is far beyond that of the current state-of-the-art
techniques.

These significant improvements were enabled by two main
contributions. One is a structure-oriented global descriptor
(i-GeM) that provides reliable information, and the other is
a CNN network (KR-Net) that can make the best use of
abundant information from multiple images.
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In the future, we plan to conduct more rigorous testing in
various places with a goal of commercialization. Meanwhile,
we will add information regarding some objects that may not
be moved, such as furniture or heavy statues. In addition, we
will optimize the overall algorithm so that it can run online
in a device, not in a cloud as is done now.
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