
Pedestrian Intention Prediction for Autonomous Driving
Using a Multiple Stakeholder Perspective Model

Kyungdo Kim*1, Yoon Kyung Lee*2, Hyemin Ahn1, Sowon Hahn2 and Songhwai Oh1

Abstract— This paper proposes a multiple stakeholder per-
spective model (MSPM) which predicts the future pedestrian
trajectory observed from vehicle’s point of view. For the
vehicle-pedestrian interaction, the estimation of the pedestrian’s
intention is a key factor. However, even if this interaction is
commonly initiated by both the human (pedestrian) and the
agent (driver), current research focuses on developing a neural
network trained by the data from driver’s perspective only.
In this paper, we suggest a multiple stakeholder perspective
model (MSPM) and apply this model for pedestrian intention
prediction. The model combines the driver (stakeholder 1) and
pedestrian (stakeholder 2) by separating the information based
on the perspective. The dataset from pedestrian’s perspective
have been collected from the virtual reality experiment, and a
network that can reflect perspectives of both pedestrian and
driver is proposed. Our model achieves the best performance
in the existing pedestrian intention dataset, while reducing the
trajectory prediction error by average of 4.48% in the short-
term (0.5s) and middle-term (1.0s) prediction, and 11.14% in
the long-term prediction (1.5s) compared to the previous state-
of-the-art.

I. INTRODUCTION

Global autonomous vehicles market accounted is expected
to reach $615.02 billion by 2026 growing at a compound
annual growth rate of 41.5% during the period [1]. Now
it is inevitable to bring autonomous vehicle in our traffic
system. However, bringing autonomous vehicle to our society
would cause several issues, such as object recognition error
in driving situation since it is controlled by an intelligent
system which handles interactions among vehicles, drivers
and pedestrians. Among these interaction problems, we point
out that existing works do not focus on vehicle-pedestrian
interaction even if it is essential when autonomous cars move
away from the motorway-centered system and go to the city
center where encounter with pedestrians occur frequently.

The ultimate goal of the pedestrian intention estimation
study is to identify future trajectories of pedestrians through
past patterns of their behavior. To fulfill this, [2]–[5] ex-
tracted trajectory information from the scene images using
deep neural networks. However, the drawback of current
existing research is that making a robust and precise behav-
ioral prediction is difficult since the performace of existing
models only depends on the information observed from the
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Fig. 1: An overview of the proposed Multiple Stakeholder Perspective Model
(MSPM) for the pedestrian trajectory prediction. This model considers both
information from the driver’s and the pedestrian’s point of view.

driver’s point of view. For example, the dataset from [2]
also provides the movement information of the pedestrian
only observed from the driver’s perspective. In addition, the
proposed network from [2] only focuses on how the driver
can employ pedestrian’s information based on his or her
perspective.

In a real traffic system, it is rational for a driver to
estimate the observed pedestrian’s behavior based on one’s
memory when he or she was a pedestrian. We claim that
this concept can be applied when training a neural network
model for pedestrian trajectory estimation. To sum up, our
model takes advantage of perspective combination, which
indicates the utilizing information from both driver’s and
pedestrian’s perspectives. This inspiration is based on the
existing studies related to the robotics [6] and neuroscience
[7], [8], which have shown that combining information
from different perspectives can improve the performance
of the path prediction. In this paper, we empirically show
that the performance of existing studies can be improved
by employing pedestrian experiences when training neural
network models. To the best of our knowledge, our model is
the first to use both perspectives.

Our main contributions are as follows: First, we propose
a multiple stakeholder perspective model (MSPM) for the
vehicle-pedestrian interaction problem. By adding a novel
network and data from a pedestrian’s perspective, it is empiri-
cally shown that more reliable prediction is possible. Second,
the proposed model estimates the pedestrian behavior using
data collected in virtual reality system. Finally, our MSPM
provides a cutting edge result in a recent pedestrian intention
estimation dataset.

II. RELATED WORK

A. Pedestrian Intention Prediction

Recent works on action prediction have focused on the
use of past and current scene information [9]. In these
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Fig. 2: The environment setting for the Virtual Reality (VR) experiment.

Fig. 3: Virtual Reality experiment scenario and participant’s crossing be-
havior (In the graph of participant’s crossing behavior, X axis denotes the
timestamp and Y axis denotes the ratio of participants crossing during each
timestamp).

cases, their ultimate goal is to predict the future action
of targets through various neural network architectures. To
predict the intention of pedestrians, [2], [10] suggested a
dataset related to the trajectory of objects and pedestrians
which are observed by the driver, [11] reported that using
the head orientation information can enhance the accuracy
of this prediction. Since only depending on extracted image
features can increase the noise, [4] proposed to modularize
the information in terms of the human body segmentation and
activate each network module separately in order to reduce
the noise effect. Also, [4], [5] proposed 2D skeleton pose
estimation. However, current research remains based on a
driver-centered approach, even if the estimation of pedes-
trian intention is based on interactions between autonomous
vehicles and pedestrians.

B. Virtual Reality

Virtual reality (VR) has been used in psychotherapy,
rehabilitation, and social skill training [12], since researchers
can observe more realistic behavior in VR controlled envi-
ronments where traditional IT methodologies could not offer
[13]. Researchers also used VR for pedestrian safety educa-
tion [14]. A recent approach using virtual reality has been
applied to many fields such as psychology, communication,
professional training and human-robot interaction [12].

III. PEDESTRIAN PERSPECTIVE DATA COLLECTION

We have built a pedestrian crossing scenario, in which
participants interacted with an automated driving agent.

The virtual reality scenario was created with Unity 2017.
Participants wore HTC Vive Pro headphones as shown in
Figure 2.

1) Preparation: Participants were informed of a brief
description of the study. They were asked to check if they
had ever suffered from nausea, illness and anxiety after a
virtual reality experience. Participants have been advised that
they can withdraw the experience at any time when they
experience discomfort.

2) Scenario of Virtual Reality: As shown in Figure 3,
a test consists of (1) a car appearing at the end of the
turn, (2) a car approaching the pedestrian crossing, and (3)
a car stopping or overtaking. Each test is initiated by a
participant standing in the designated area indicated by a
green arrow. Each test includes a “Ready” and a “Start”
phase. The “Ready” phase ended after 3 seconds and the
"Start" phase started with a delay of 20 seconds. Before
starting the experiment, participants had a chance to practice
his/her crossing behavior in VR system for 3 times and we
excluded this exercise from the analysis. Participants were
asked to follow the rules accordingly: (1) cross the crosswalk
safely, (2) avoid being struck by the approaching car, (3)
cross within a time limit. After the participant ended the
entire experiment, We asked basic and post-demographic
questions. The participants were then debriefed and left. A
total of 39 participants (17 females) conducted 54 trials each.

3) Survey: In the post-experience interview, participants
rated the overall experience and the quality of the VR sce-
nario. In particular, we included questions asking "Realism:
how much they felt in the VR scenario", "Similarity: how
much they walked in the VR scenario compared to their
usual walking behavior”, "Vehicle Speed Effect: how much
the speed of a car affected their crossing behavior"

4) Data Extraction and Analysis: After the VR experi-
ment, we extracted the information such as vehicle speed,
distance between the pedestrian and vehicle, angle of head
movement, and the position of the pedestrian for each
timestamp. After analyzing this VR data, we found that the
data can be divided into two groups-group with some people
really care about the movement of the vehicle and move
with caution, Otherwise, there are people who do not care
much about the movement of the vehicle and who move
forward. Therefore, we have divided the collected data into
these two groups. Group 1 with people who crossed the road
with 35 timestamps (7 seconds) and Group 2 with people
who crossed the road with less than 35 timestamps (see
Figure 3). Using Bayes’ statistical processing, we concluded
that this is a reasonable approach to divide our data into these
two groups. We defined each group as "slow-passing group
(Group 1)" and "fast-passing group (Group 2)" and prepared
data for each group.

IV. NETWORK ARCHITECTURE

A. Cognitive Motivation

The architecture of the proposed model has been inspired
by the human cognitive structure. Human cognition can
be treated as an information processing system [15]. In
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Fig. 4: Illustration of the stakeholder 2 network when it is in pretraining procedure. First, we pretrain an ego-experience module inside the stakeholder 2
(pedestrian-perspective) network. After training this network, the network is appended next to the stakeholder 1 (driver-perspective) network in the MSPM
model. Note that the final FCN unit (dashed line) in image information module is deactivated when the stakeholder 2 network is implemented.

particular, human can build the Theory of Mind (ToM)
model, which is a model of the physical and psychological
states of others [16]. This model assumes that a human
has an ability to build a representation of mental states and
assess the unknown intention of others (human or artificial
agent). This concept has been applied in multi-agent systems
[17], and recent works [18] based on the concept of ToM
have shown better performance in human-agent and human-
robot interaction field. In a traffic system, we assume that
pedestrians and the autonomous driving agent can have a
theory of mind for each other. In this case, the autonomous
driver would possess both representations of driver itself,
and of pedestrian interacting with itself [19]. Existing works
[20], [21] have also shown that a driver agent with the
ability to build a mental model of pedestrians can lead to
the better performance when estimating pedestrian’s crossing
intention. Inspired by this, we propose a multiple stakeholder
perspective model (MSPM), which utilizes the information
from both driver’s and pedestrian’s perspective.

B. Multiple stakeholder perspective model (MSPM)

A multiple stakeholder perspective model (MSPM) is de-
signed to reflect all perspectives of stakeholders involved in a
given interaction situation. In particular, in vehicle-pedestrian
situation, we have set up a network of a vehicle (stakeholder
1) and a pedestrian (stakeholder 2) as shown in Figure 4.
These two networks are combined to predict the future pedes-
trian trajectory from driver-perspective information. Previous
works have been conducted to combine data from different
angles to improve the accuracy and robustness [6]. In this
paper, by combining first-person (driver) and third-person
(pedestrian) narrative scene data, we have achieved robust
and competitive results compared to the previous works [2],
[3] which only focus on single-perspective scene data.

The overall structure of MSPM follows the encoder-
decoder scheme. As shown in Figure 4, the stakeholder
1 network and the stakeholder 2 network work as an
encoder to build a feature representation space, and final
LSTM block works as a decoder to predict a pedestrian
trajectory. Future trajectory prediction can be defined as an
optimization process that finds the best future prediction
given past information [2]. In this case, the model receives
the trajectory information Bobs =

{
Bt−w

i , Bt−w+1
i , ..., Bt

i

}
,

where Bt
i is a 2D bounding box around the pedestrian in ith

scene at time t, defined by top-left and bottom-right points
([(x1, y1), (x2, y2)]). Also, the model receive the vehicle
speed information Sobs =

{
St−w
i , St−w+1

i , ..., St
i

}
, and the

image information Iobs =
{
It−w
i , It−w+1

i , ..., Iti
}

where
I ∈ I ⊂ Rni×nj×3 as inputs. Here, St

i , Iti denote the vehicle
speed and image in ith scene at time t, I is a set of images
observed by the driver point of view, and ni, nj is the size
of the image. And the model generates the future trajectory
Bpred by learning distribution p (Bpred|Bobs, Sobs, Iobs),
while Bpred is defined by top-left and bottom-right corner
points in the form of a 2D bounding box.

Before training the entire MSPM model based on the
driver observation data, the stakeholder 2 network is trained
in a supervised way with our VR dataset. In this pretrain-
ing procedure, the ego-experience module composing the
stakeholder 2 network maps the raw VR-based input data
into the high dimensional space Z , which would represent
the vehicle-pedestrian interaction information. When the
stakeholder 2 network is used in a test phase, the output
feature from the image information module in the stakeholder
1 network is projected into the Z and used as an input to
the stakeholder 2 network.

1) Stakeholder 1 (Driver-perspective) network: When de-
signing a driver-perspective network, we have focused on
dividing information and network module so that the entire
network can manage a complex set of driver-perspective data.
Existing works [3] have empirically shown that the catego-
rization of information and its divided processing is effective
when processing a complex dataset. Thus, several recent
studies [2], [3] related to the pedestrian trajectory estimation
also follow this concept, and their model’s performance has
been increased after this modularization. In our model, the
stakeholder 1 network also follows this information and
network modularization. We divided the information and
module into three parts: the speed of the vehicle, the image of
the scene and the annotated trajectory of the observed targets
in the scene. Regarding the reason of dividing the vehicle
speed module, through the survey after the VR experiment
as described in Section III, we have empirically found that
the vehicle speed is the key factor that affects pedestrian’s
crossing behavior as shown in Table I.

7959



Fig. 5: The overall structure of the stakeholder 2 (pedestrian-perspective)
network and pretraining procedure of the ego-experience module. Note that
dashed lines in ego-experience module are activated only when pretraining
process, and are deactivated after the network is implemented in the MSPM.

For network details, the speed information module (the
pink block in Figure 4) receives the vehicle speed infor-
mation (Sobs) as inputs, the image information module (the
blue block in Figure 4) gets the image sequences (Iobs)
as inputs, and the trajectory information module (the green
block in Figure 4) employs the bounding box of pedestrian
(Bobs) as inputs. A stakeholder 1 network is trained based
on a supervised way, where inputs are speed, image, and
trajectory information, and the output is the future pedestrian
trajectory (Bpred). After supervised learning, it is expected
that the output of speed information module will be the
feature vector of the future vehicle speed, the output of the
image information module will be the feature of pedestrian
dynamics, the output of trajectory information module will
be the feature of future pedestrian position, and finally, these
outputs are concatenated and fed into the decoder unit, a
Final LSTM block (the purple block in Figure 4). For each
module, the LSTM Cell is applied to process the sequential
information, and the FCN block is employed to generate
each feature vector. Through this process, the model is able
to generate a pedestrian trajectory prediction in a format of
bounding box.

Furthermore, we have focused on implementing a residual
function (Residual LSTM in Figure 4) [22] and an attention-
based model when processing a sequential information.
Based on these, we expect the model to efficiently learn
the way of giving an attention to the past experiences, so
that it can determine how much past information is related
to the current timestamp. We have empirically shown that
this process gives better results compared to the conventional
RNN model.

2) Stakeholder 2 (Pedestrian-perspective) network: Com-
pared to previous studies, the most important network in our
model is the pedestrian-perspective network. This network is
trained based on the information experienced by pedestrian,
and embedded to enhance the robustness and accuracy in
processing the information observed by a driver. It is ra-

Keywords Survey Questions Criteria Mean Rating
(Standard Deviation)

Realism I found the virtual environment setting
is very similar to that in real life

1: Not very unrealistic.
5: Very realistic.

3.98 (0.80)

Behavior
Similarity

My crossing behavior in the experiment
was similar to how I usually cross in real life

1: Not very similar.
5: Very similar.

4.03 (0.81)

Vehicle Speed
Effect

Vehicle speed affected my crossing behavior
during the experiment

1: Not at all.
5: Very much.

4.05 (0.81)

TABLE I: Survey result after VR experiment for pedestrian crossing
behavior.

tional that employing the data from different perspectives
can increase the robustness and the accuracy of the entire
network, and existing study related to the reinforcement
learning [6] has shown this empirically. In addition, this
can be also supported by the "mirror neuron" theory in
neuroscience, as [8] reported that humans have been shown
to possess viewpoint-invariant representations of objects and
other agents [7], [8].

The ego-experience module consisting the stakeholder 2
network is pretrained in a supervised way to estimate the
future position of pedestrian. For pretraining this module,
we employ the pedestrian-perspective data which have been
obtained from the VR experiment mentioned in Secion III.
The network receives the vehicle speed information spast ={
st−w
i , st−w+1

i , . . . , sti
}

, the distance information between
the vehicle and pedestrian dpast =

{
dt−w
i , dt−w+1

i , . . . , dti
}

,
and the head orientation information of pedestrian opast ={
ot−w
i , ot−w+1

i , . . . , oti
}

as an input. This network is trained
to generate the future position of the pedestrian Ppred by
learning distribution of p (Ppred|spast, dpast, opast). After
training, we argue that the feature vector extracted from the
last layer represents the feature space of the circumstances
of vehicle-pedestrian interaction.

While pretraining, since our dataset gathered from the VR
experiment can be divide into two groups as mentioned in
Section III, which are slow-passing and fast-passing group,
we have built two modules (slow-passing module and fast-
passing module) with memory buffer as seen in Figure 5. Our
network combines the past information extracted from the
memory buffer with current information and exploits them
to generate solid and contextual information. The outputs
from each module are finally converged with the weight
(w1, w2) according to the ratio from the analysis of Gaussian
distribution shown in Figure 3. Through pretraining the
stakeholder 2 network in a supervised way, the output from
this module is a high dimensional feature vector which is
fed to the last fully connected layer to generate the Ppred.

V. EVALUATION & RESULT

A. Pedestrian perspective experiment through Virtual Reality

After the participant ended the entire experiment session
mentioned in Section III, we conducted a survey since
the observed data on pedestrian behavior could give us
information with limited intention. Through this survey, we
were able to obtain a qualitative assessment of the data as
shown in Table I. We wanted to know if the VR scenario was
well designed to immerse them in the environment. Most
participants reported that the VR settings felt realistic, rating
an average score of 3.98 out of 5 (80%). When asked how
similar their crossing behaviors was to what they had shown
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Fig. 6: Example of predicted trajectory using the proposed model (MSPM)
and previous state-of-the-art model (PIE_traj) [2]. Implement reference time
data and predict the path of the pedestrian through different times. Each
color of bounding box means: ground truth (green), MSPM (blue), and
PIEtraj (red). Each interaction situation is: #1. A woman and child are
crossing, #2. A man passing in front of the car.)

Method MSE-0.5s MSE-1s MSE-1.5s C_MSE-1.5s CF_MSE-1.5s
Linear [2] 123 477 1365 950 3983
LSTM [2] 172 330 911 837 3352

B-LSTM [3] 101 296 855 811 3259
PIE_traj [2] 58 200 636 596 2477

MSPM
[Ours] (%)

57.80
(0.344%)

182.77
(8.615%)

565.15
(11.14%)

526.83
(11.60%)

2191.78
(11.51%)

TABLE II: Pedestrian trajectory prediction errors over varying future time
steps. CMSE and CFMSE are the MSEs calculated over the center of the
bounding boxes for the entire predicted sequence and only the last time
step respectively. (%) means improvement percentage compared to previous
state-of-the-art model.

in the VR experiment, participants rated 4.03 out of 5 (81%).
Participants reported that VR scenario seemed a reproduction
of a typical road in a real world that induced them to cross
as if they were in a real crosswalk.

Participants also rated average of 4.05 out of 5 (81%) for
the speed of a car to affect their crossing behaviors. Most
participants in our study also felt the need to adjust their
behaviors and decisions to cross or stop according to their
judgment of vehicle speed. To avoid any cultural biases, we
also included a replication of foreign roads and buildings.

B. Pedestrian Intention Estimation

The prediction performance of the proposed MSPM is as-
sessed using the pedestrian intention estimation (PIE) dataset
[2]. This dataset provides information about the scene image,
the past trajectory and the speed of the vehicle. We use this

dataset because this dataset is the most recent open dataset on
estimation of pedestrian intention. Some of previous studies
to estimate pedestrian intentions [4] used the JAAD dataset
[23], [24]. But as the authors of the PIE dataset who also
deployed the JAAD dataset indicated that the PIE dataset
includes more features than the JAAD dataset and reflects
more diverse environments with annotations [2]. Therefore in
this paper, we evaluate our model through the PIE dataset. Of
course, the VR environment for pretraining the stakeholder
2 network is not exactly the same as the environment of [2]
which we use for comparison experiment. However, we use
both the information from the VR experiment and pedestrian
intention estimation dataset [2] since the elements composing
both dataset is identical. Also, we designed the traffic scene
in our VR experiment to be similar with the one in [2]. This
utilization of two dataset improves the model’s performance
in the pedestrian intention estimation.

As shown in Table II, we evaluated our model with pre-
vious models, which are a linear Kalman filter [2] (denoted
as Linear), a vanilla LSTM model (denoted as LSTM), a
Bayesian LSTM [2], [3] (denoted as B-LSTM), the previous
state-of-the-art model [2] (denoted as PIE_traj). Every model
is trained on 15 frames (0.5s) observation, and predicts the
future trajectory of a pedestrian on 15 frames (0.5s), 30
frames (1.0s) and 45 frames (1.5s).

As a result, our network is showing better results compared
to the PIE_traj network [2], which is the state-of-the-art
network. Our network predicts precise trajectories at different
times, and achieves greater accuracy from the center point
of the trajectory bounding box as shown in Table II. Above
all, as the estimated time goes from 0.5s (short term) to 1.5s
(long term), our network predicts accurately compared to
other networks. In case of predicting pedestrian trajectory,
1 second is considered as long term prediction. Even if
a prudent and conservative driver is driving at a speed of
40km/h in a residential area, the distance covered in 1 second
roughly corresponds to the braking distance. The anticipation
of traffic scenes in a time horizon of at least 1 second would
therefore enable safe driving at such speeds [3]. While short
term prediction can be done by relatively small networks by
learning the information presented, for long term prediction it
is important to consider more variables and situations. From
this point of view, our network displays a more robust and
precise prediction in a test environment.

This is also reflected in the central value of the loss results.
The central value is the point where the person actually
exists in the bounding box. In an autonomous vehicle, it
is important to understand in particular which point to look
inside the information in the bounding box. As the result
showed, our network is good at predicting the average central
position of the timestamp and the last timestamp.

VI. ABLATION STUDY

We also conducted an experiment by removing some part
of the suggested model. For each condition, we remove
the stakeholder 2 network (condition 1), head orientation
information while pretraining the stakeholder 2 network
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Method MSE-0.5s MSE-1s MSE-1.5s C_MSE-1.5s CF_MSE-1.5s
MSPM (Ours) 57.80 182.77 565.15 526.83 2191.78

MSPM - condition 1 59.10 188.53 587.84 549.55 2282.07
MSPM - condition 2 59.50 187.09 580.35 540.27 2231.40
MSPM - condition 3 60.18 191.57 594.40 554.68 2278.58

TABLE III: Pedestrian trajectory prediction errors over removing part of
the MSPM (Condition 1: MSPM without the stakeholder 2 (pedestrian-
perspective) network, Condition 2: MSPM without using head orientation
information when training the stakeholder 2 network, Condition 3: MSPM
with concatenating slow/fast-passing module in the stakeholder 2 network).

(condition 2). Also, we concatenate slow/fast-passing module
in the stakeholder 2 network (condition 3). As shown in
Table III, the loss of the pedestrian trajectory prediction
increased compared to the original MSPM, and in particular,
the margin of the loss value is higher in the long-term
prediction compared to the short-term prediction.

1) Condition 1: By default, our MSPM model can work
only with the stakeholder 1 network without the pedestrian
experience data and the stakeholder 2 network. As shown
in Table II and III, even with the stakeholder 1 network,
our model can show better performance than the previous
model because our model has advantage of reinforcing the
residual structure through data pre-processing and network
architecture. However, there is a limit to the performance
improvement, and the best performance can be achieved after
combining the stakeholder 2 network.

2) Condition 2: After removing head orientation infor-
mation of pedestrian during pretraining of the stakeholder
2 network, the loss increases. This result can show that the
information of head orientation can improve the performance
of predicting the future position of the pedestrian.

3) Condition 3: In addition, after the convergence of two
groups (fast-passing group and slow-passing group) in the
stakeholder 2 network, the loss of future trajectory increased.
This means that the separation of the pedestrian behavior
model and its application across the network is important
for the future estimation of the trajectory.

VII. CONCLUSIONS
In this paper, we have proposed model of combined

network that can reflect the perspective of both the pedestrian
and the driver. Our model has shown cutting-edge results to
predict the future trajectory of pedestrian behavior. Above
all, our model has an advantage in detecting the long-
term (1.5s) future trajectory. This indicates that our model
can provide better information to the autonomous vehicle
system in the event of unexpected pedestrian behavior or
complicated pedestrian-vehicle interactions. In addition, we
found that the head orientation data is crucial for improving
the performance of the pedestrian trajectory estimation. Since
pedestrian dataset can be further improved by accounting
culture factors, we will have future work of this.
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