
Decentralized Safe Reactive Planning under TWTL Specifications

Ryan Peterson, Ali Tevfik Buyukkocak, Derya Aksaray, and Yasin Yazıcıoğlu

Abstract— We investigate a multi-agent planning problem,
where each agent aims to achieve an individual task while
avoiding collisions with others. We assume that each agent’s
task is expressed as a Time-Window Temporal Logic (TWTL)
specification defined over a 3D environment. We propose a
decentralized receding horizon algorithm for online planning
of trajectories. We show that when the environment is suffi-
ciently connected, the resulting agent trajectories are always
safe (collision-free) and lead to the satisfaction of the TWTL
specifications or their finite temporal relaxations. Accordingly,
deadlocks are always avoided and each agent is guaranteed
to safely achieve its task with a finite time-delay in the worst
case. Performance of the proposed algorithm is demonstrated
via numerical simulations and experiments with quadrotors.

I. INTRODUCTION

Collision avoidance is critical for the safe operation of
multi-agent systems. Since the complexity of joint planning
grows exponentially with the number of agents, significant
effort has been devoted to the design of decentralized algo-
rithms that avoid deadlocks and ensure safety. Methods such
as potential fields, control barrier functions, or differential
games have been used for decentralized planning (e.g., [1],
[2], [3]). However, these methods typically do not accom-
modate complex spatio-temporal requirements.

Recently, there has been a significant interest in the analy-
sis and control of dynamical systems under complex spatio-
temporal specifications that can be expressed by temporal
logics. For instance, linear temporal logic (LTL) [4] has been
extensively used in motion planning and control of robots
(e.g., [5], [6], [7]). However, LTL cannot express tasks with
time constraints such as “visit A for 1 time unit within 5 time
units interval, and after this visit B for 3 time units within
10 time units interval, and visiting C must be performed
after visiting both A and B twice”. Such tasks with time
constraints can be expressed via bounded temporal logics
(e.g., [8], [9], [10]).

In this paper, we introduce a decentralized algorithm for
multi-agent systems to satisfy time-window temporal logic
(TWTL) [10] specifications while operating in shared envi-
ronments. In this setting, each agent has an individual TWTL
specification. Agents can communicate with the other agents
in their local neighborhoods to plan collision-free paths in a
receding horizon manner based on the energy functions [11]
computed over their individual product automata. Since it

*This work was supported by Honeywell Aerospace and MnDRIVE.
R. Peterson, A.T. Buyukkocak, and D. Aksaray are with the

Department of Aerospace Engineering and Mechanics, University
of Minnesota, Minneapolis, MN, 55455, pete9936@umn.edu,
buyuk012@umn.edu, daksaray@umn.edu, and Y. Yazıcıoğlu
is with the Department of Electrical and Computer Engineering, University
of Minnesota, Minneapolis, MN, 55455, ayasin@umn.edu,

may be sometimes impossible to find safe paths which satisfy
the exact specifications, we allow for the temporal relaxation
of TWTL specifications and show that, if the environment
is sufficiently connected, the proposed approach ensures the
completion of all TWTL specifications with finite relaxation.

This work is closely related to [5], [12], [13]. In [5],
a multi-agent receding horizon approach is proposed to
generate each agent’s path independently using only local
information. Their method ensured LTL satisfaction using
the idea of energy function defined over a product automaton
[11]. However, our work differs from [5] by 1) considering
tasks with explicit time constraints (TWTL) and allowing
its relaxation when necessary, and 2) guaranteeing collision
avoidance under mild assumptions on graph connectivity. In
[12], collision avoidance was ensured by penalizing transi-
tions in the centralized graph which captures the environment
and TWTL specifications for all agents. However, this cen-
tralized approach is not scalable as the number of agents
increases. Moreover, in [12], if a safe path satisfying the
TWTL cannot be found, the algorithm terminates and does
not allow for relaxations of the TWTLs. Finally, the work
in [13] considered a global task that needs to be achieved
by a multi-agent system and allowed for temporal relaxation
of TWTL specifications. However, collision avoidance was
not incorporated in path planning and practically achieved
by the assumption of quadrotors flying at different altitudes.

II. PRELIMINARIES

A. Time Window Temporal Logic (TWTL)
Syntax and Semantics: The syntax of TWTL is defined as:

φ := s |φi ∧ φj |φi ∨ φj | ¬φi |φi · φj |Hds | [φi][a,b],

where φ is a TWTL formula; s ∈ S is a site label and S is the
set of site labels; ∧, ∨, and ¬ are the Boolean operators for
conjunction, disjunction, and negation, respectively; · is the
concatenation operator such that φi ·φj specifies that first φi
and then immediately φj must be satisfied. The semantics are
defined with respect to finite output words o over S where
o(k) denotes the kth element on o. The hold operator Hds
specifies that a region s ∈ S should be visited for d time
units (i.e., o |= Hds if o(t) = s ∀t ∈ [0, d]), while the within
operator [φ][a,b] bounds the satisfaction of φ within a time
window [a, b]. For instance, consider the TWTL formula:

φ = ¬C [0,5] ·
[
H2A ∧ [H2B][0,6]

][1,10]
, (1)

which means “Do not visit C within the time bound [0,5],
and immediately after this, service A for 2 time units and
service B for two time units within [0,6], both of which must
be performed within [1,10].”

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 6599

Temporal Relaxation: Given a TWTL specification, its tem-
poral relaxation is written by adding slack variables to the
time windows of each hold operator to represent shorter or
longer time windows. The relaxed version of φ in (1) is:

φ(τ) = ¬C [0,(5+τ1)] ·
[
H2A ∧ [H2B][0,(6+τ2)]][1,(10+τ3)] (2)

where τ = (τ1, τ2, τ3) ∈ Z3 is the temporal relaxation
vector. Overall, the temporal relaxation of φ(τ) is quantified
by |τ |TR = maxj(τj) [10].

For any TWTL specification, φ, a finite deterministic
state automaton (dFSA) can be constructed that captures all
temporal relaxations of φ.

Definition 1. (Deterministic Finite State Automaton) [10]
A dFSA that encodes all temporal relaxations of a TWTL
formula is a tuple A∞ = (SA∞ , s0,Σ, δA∞ , FA∞)1: SA∞

is a finite set of states; s0 ∈ SA∞ is the initial state; Σ is
the input alphabet; δA∞ : SA∞×Σ→ SA∞ is the transition
function; FA∞ ⊆ SA∞ is the set of accepting states.

B. Graph Theory

A weighted directed graph is a tuple G = (X,∆, w) where
X is a set of nodes, ∆ ⊂ X ×X is a set of edges between
the nodes, and w : ∆ → R+ denotes the weight function,
which is a mapping from the edge set to the set of positive
real numbers. A node xj ∈ X is said to be an out-neighbor
to another node xi ∈ X if (xi, xj) ∈ ∆, this can also be
denoted by xj ∈ Ni where Ni is the set of out-neighboring
nodes to xi. For brevity, we will use the term “neighbor” to
refer to “out-neighbor” in the rest of the paper. A path p on
a graph G is a sequence of adjacent nodes, i.e, there exists an
edge from any node in p to the next node in the sequence. We
use |p| to denote the path length (the total number of edges
traversed on p). The weighted graph distance between the
nodes, d(xi, xj), is equal to the cumulative weight of edges
traversed along the shortest (minimum cumulative weight)
path from xi to xj . We use N h

i to denote the set of all
nodes that are reachable from xi in at most h-hops (via a
path of length at most h). A graph is strongly connected if
there exists a path from any node xi to any other node xj .
The graph G is said to be k-connected if it remains connected
whenever fewer than k nodes are removed.

III. PROBLEM STATEMENT

A. Agent Model

Dynamics: We assume that an agent moves in a 3D en-
vironment, whose abstraction is initially given as a graph
G = (X,∆, w). In general, several methods (e.g., [14], [15])
can be used to construct such an abstraction; however, the
construction of the abstraction is beyond the scope of this
paper. Given an environment graph, we model the dynamics
of each agent as a deterministic weighted transition system.
Moreover, the agents move synchronously on G meaning
state transitions for any agent happens at the same time.

Definition 2. (Deterministic Weighted Transition System) A
deterministic weighted transition system (dWTS) is a tuple T

1The subscript ∞ is used to indicate all temporal relaxations.

= (X,x0,∆, w,AP, l) where X is a finite set of states; x0 ∈
X is the initial state; ∆ ⊆ X ×X is the set of transitions;
w : ∆ → R+ is the weight function; AP is a finite set of
atomic propositions; l : X → 2AP is the labeling function.

We assume that the transition system T is (strongly)
connected, that is, for each x ∈ X , there exists x′ ∈ X that
can be reached in a finite number of transitions. A path (or
run) of the system is a sequence of states x = x0x1 This
path x generates an output word o = o0o1 . . ., where ot =
l(xt), ∀t ≥ 0. The language corresponding to a transition
system T is the set of all generated output words, denoted by
L(T). The weight of a transition can be defined by the time
and/or fuel cost required to traverse the transition. Without
loss of generality, we will consider normalized weights, i.e.,
w(x, x′) ∈ (0, 1] for all (x, x′) ∈ ∆.

Communication: All agents are assumed to communicate
with the agents within their 2H-hop neighborhood where
H ≥ 1 is the length of planning horizon. When agents
communicate, each shares its progress towards its individual
task (a notion to measure progress will be defined in Sec. IV),
the next H-hop path, and an indicator for planning update.

Specification: Each agent i aims to satisfy a TWTL φi that is
defined over the atomic proposition set AP of the transition
system T . It is assumed that agents do not know about the
other agents’ specifications. In presence of violations, instead
of terminating the mission, it will be allowed to satisfy a
temporally relaxed version of φi, i.e., φi(τ i).

B. Problem Statement

Suppose that there are n identical agents, each of which
has the same transition system T . We address the problem
of planning paths for n agents, each of which is required
to satisfy an individual TWTL specification while avoiding
collisions with each other. In order to enforce collision
avoidance, the collision cases are first identified.
Occupying the same state: If agent i occupies the same state
as another agent j, then there exists t ≥ 0 such that xit = xjt .
Traversing the same transition: Let agents i and j move
according to the transitions denoted as (xit, x

i
t+1) and

(xjt , x
j
t+1), respectively. If (xit, x

i
t+1) = (xjt+1, x

j
t), then the

agents traverse the same transition (i.e., swapping).
Finally, a safe path can be formally defined as:

Definition 3. (Safe path) The path of agent i, xi = xi0x
i
1 . . . ,

is safe if the following statements are true for all t ≥ 0 and
for all j 6= i: 1) xit 6= xjt , and 2) (xit, x

i
t+1) 6= (xjt+1, x

j
t).

In this paper, we aim to solve a multi-agent path planning
problem, which results in agent paths always ensuring col-
lision avoidance and satisfying the TWTL specifications (or
minimally relaxed versions of the original TWTLs).

Problem 1. Let a multi-agent system consist of n identi-
cal agents each of which has a transition system T and
individual TWTL specifications φi. Find safe agent paths
x1, . . . ,xn that satisfy minimally relaxed TWTL specifica-

6600

tions φ1(τ 1), . . . , φn(τn), i.e.,

min
x1,...,xn

n∑
i=1

|τ i|TR

s.t. xit 6= xjt , ∀j 6= i

(xit, x
i
t+1) 6= (xjt+1, x

j
t), ∀j 6= i

oi |= φi(τ
i), ∀i ∈ {1, ..., n}.

(3)

where oi is the output word associated with the state path
xi = xi0x

i
1 . . . over T , and |τ i|TR ∈ Z is the temporal

relaxation of φi.

C. Challenges of a Centralized Solution

The multi-agent problem defined in (3) can be solved
via an automata-theoretic approach. To this end, a product
automaton P can be constructed for each agent given its
transition system T and its automaton A∞. The purpose of
product automaton is to encode all possible satisfactory cases
given the feasible movement on the transition system.

Definition 4. (Product Automaton) Given a transition system
T = (X,x0,∆, w,AP, l) and a finite state automaton A∞ =
(SA∞ , s0,Σ, δ, FA∞) capturing all temporal relaxations of
a TWTL specification, a (weighted) product automaton P =
T × A∞ is a tuple P = (SP , p0,∆P , wp, FP), where
• SP = X × SA∞ is the finite set of states;
• p0 := (x0, s0) ∈ SP is the initial state;
• ∆P ⊆ SP × SP is the set of transitions;
• wp : ∆P → R+ is the weight function defined as:
wp
(
(x, s), (x′, s′)

)
= w

(
(x, x′)

)
;

• FP = X × FA∞ is the set of accepting states.

Let p = (x, s) ∈ SP and p′ = (x′, s′) ∈ SP be states in
product automaton P . A transition from p to p′, i.e., (p, p′) ∈
∆P , implies a transition (x, x′) ∈ ∆ and δ(s, l(x′)) = s′.
The notions of path and acceptance are the same as in dFSA.
A satisfying run of T with respect to φ can be obtained by
computing a path from the initial state to an accepting state
over P and projecting the path onto T .

The centralized solution of (3) requires to construct an
aggregated product automaton Pfull = Tfull × A∞,full
where Tfull is the cartesian product of T for n times,
and A∞,full = A∞,1 × A∞,2 × . . . × A∞,n. Such an
aggregated product automaton captures all possible agent
movements and enable to find safe paths that satisfy the
TWTL specifications (or their temporal relaxations). While
such an approach can result in optimal agent trajectories,
the complexity of constructing Pfull exponentially grows
as the number of agents n increases. Hence, we propose
a decentralized approximate solution to Problem 1 by con-
structing individual product automaton of each agent and
solve a planning problem over individual product automata
by using only local neighborhood information.

IV. RECEDING HORIZON SAFE PATH PLANNING WITH
TWTL SATISFACTION

The proposed decentralized approach is comprised of
two parts. In the offline part, a product automaton Pi is

constructed for each agent i given its transition system T
and automaton A∞,i (representing all temporal relaxations
of TWTL φi). Based on P1, . . . ,Pn, each agent computes its
nominal plan (from its initial product automaton state to an
accepting state in FPi

via a Dijkstra-based algorithm) irre-
spective of other agents’ paths. Note that the path computed
over P is pi = (xit, s

i
t)(x

i
t+1, s

i
t+1) . . . , so the corresponding

path xi on T can always be extracted from pi.
In the online portion, agents move according to the path

pi. Whenever an agent encounters other agents in its local
neighborhood, a negotiation protocol, i.e., priority assign-
ment to the agents, is performed. This protocol is used to
decide which agents are “yielded” to by considering their
respective paths for collision avoidance. Such a priority as-
signment is achieved by the energy function defined over the
product automaton states, which as a measure of “progress”
towards satisfying the given TWTL specification.

Definition 5. (Energy Function) Given a product automaton
P , the energy of each product automaton state p ∈ SP is
defined similar to [11] as

E(p,P) =

{
min
p′∈FP

d
(
p, p′

)
if p 6∈ FP

0 otherwise
(4)

where d
(
p, p′

)
is the weighted graph distance between p and

p′. If there is no such reachable accepting state p′ ∈ FP , the
energy of p is E(p,P) = ∞. Any states in P with infinite
energy, E(p,P) = ∞, are pruned from P to ensure the
satisfiability of the specification.

Each agent i is given an initial priority based on the
energy of its current state, E(pit,Pi). An agent with lower
energy is given priority over the higher energy agents in
its local neighborhood in order to ensure finite relaxation
of all TWTL specifications as discussed in Sec. IV-B. If
agents have equivalent energy then the higher priority agent
is chosen at random between these agents. Note that the
highest priority agent does not consider the other agents
and is never required to do replanning; therefore, we can
guarantee progress toward satisfying its TWTL specification.

For a local horizon path that consists of H-hops, a
minimum communication neighborhood of 2H is required
to detect collisions along the H-length path. We define this
communication neighborhood of 2H as the local neighbor-
hood. For an agent i, we consider the set of its 2H-hop
neighbors as N 2H

i . For each agent i in the environment,
the proposed method requires that all agents in its local
neighborhood, j ∈ N 2H

i , communicate their H-horizon
path information, pj = pjt , p

j
t+1, . . . , p

j
t+H with agent i at

any time instant t. The method also requires sharing of an
indicator that states if the agent’s path has been updated with
respect to its local neighborhood. We denote this “update
flag” as Uflag which is required for a proper path update
protocol discussed below.

A. Algorithm Descriptions
The outline of the proposed method is shown in Fig.

1 for a single agent. Note that the proposed method runs

6601

independently (for each agent) in a distributed manner.

Online Computation

While φi not satisfied:
- find agents in neighborhood
- assign priorities to agents
- compute conflict states and transitions
- generate local horizon path
- append first state to safe path
- check if φi satisfied

Algorithm1

- compute the set of
constraints C

Algorithm2

- generate receding
horizon path
pi = pit . . . p

i
t+H

Algorithm3

Ai,∞: dFSA for φi
Pi: product automaton
E(·,Pi): energy function
pi: nominal plan

Offline Computation

φi: TWTL specification
T : dWTS

Inputs

pSi : safe plan which satisfies oi |= φ(τ i)

Final Output

Fig. 1. Outline of the proposed method.

In the offline part, the product automaton and a nominal
plan (without considering any other agents) are computed.
The online part includes Algorithms 1-3. First, Alg. 1 takes in
the initial information computed offline and executes until an
accepting product automaton state is reached (i.e., satisfying
either the original or the temporally relxaed TWTL formula,
φi) (line 3). In each iteration of the while loop, the set of all
agents within agent i’s local neighborhood, N 2H

i , is found
in line 4. Next, the agent priorities are determined for all
neighboring agents including the agent i itself (line 5). Note
that agent priority depends on the energy associated with the
agent’s current state, E(pit,Pi). Then, the set of agents which
have a higher priority than agent i, i.e., HPi is generated
(line 6). Note that the set HPi will be used by Alg. 2 to
determine the set of conflicting states and transitions. Now,
line 7 in Alg. 1 ensures that all agents in HPi have been
updated based on their local neighborhoods before agent
i’s path can be updated. This step is required to ensure
that the current finite horizon path information obtained in
line 8 from all agents in N 2H

i is correct (line 9) and the
set of conflicting states and transitions, C, can be properly
computed in (line 9). The, the set C is used in line 10 in order
to find a finite horizon safe path starting from the current
state (according to Def. 3). With an updated safe path, the
finite-path information and update flag, which is now set to
true, are shared with the neighboring agents (line 11). Note
that line 12 ensures that the updated path is not executed until
all agents in its local neighborhood have updated their own
paths to account for potential collisions with higher priority
agents. As in conventional receding horizon approaches, only
the next state pi(1) of the generated path is appended to the
safe plan psi (line 13). Lastly, line 14 checks if pi(1) is an
accepting product automaton state, and if so the agent has

satisfied its TWTL specification, φ(τ i), and is assigned with
the lowest priority (line 15). The agent’s path is advanced
one step and the update flag is set back to false (line 16).

Algorithm 1: Online Safe Path Planning for Agent i
Input: Pi, pi Product Automaton and Nominal Plan

1 Note: pit =
(
xit, s

i
t

)
is an element of the finite horizon path

pi = pit, . . . , p
i
t+H ;

2 Initialization: xi0 = pix,0;psi = pi0; Uflag = false;

3 while pit /∈ FP do
4 Find the set of neighboring agents, N 2H

i ;
5 Compute agent priorities (including self);
6 Generate HPi, the set of neighboring agents with higher

priority;
7 Wait until all agents’ Uflag in HPi set to true;
8 Obtain H-hop path pj from agents ∀j ∈ N 2H

i ;
9 C ← algorithm2

(
HPi,Pi,pi,pj |∀j ∈ HPi

)
10 pi, Uflag ← algorithm3(Pi, pit, C)
11 Share path pi and Uflag with neighboring agents, N 2H

i ;
12 Wait until all agents’ Uflag in N 2H

i set to true;
13 psi = psi ,pi(1)

14 if pi(1) ∈ FP then
15 HPi = N 2H

i

16 pit = pi(0) and Uflag = false;

In Alg. 2, we account for two types of conflicts in order to
guarantee a safe update in Alg. 3. The first type of conflict,
CX , enforces that agent i cannot occupy the same state with
an agent of higher priority at the next time step as required
by the first constraint in (3) (lines 4-5). The second type
of conflict, C∆, enforces that no two agents’ traverse the
same transition (i.e., swapping) as the second constraint in
(3) (lines 6-7). If any conflicts, CX or C∆, are found then
they are added to the set of conflicting states and transitions,
C, with the hop h associated with them (line 8). Finally,
lines 9-10 in Alg. 2 ensures that the highest priority agent
cannot transition to higher energy states in the first hop.
This is required in order to guarantee progress toward TWTL
satisfaction discussed in Sec. IV-B-Thm. 2.

Algorithm 2: Find Conflicts for Agent i
Input: HPi,Pi - Set of higher priority agents than agent i in

local neighborhood, product automaton
Input: pi,pj |∀j ∈ HPi - finite horizon paths considered for

conflicts (Recall pi = pit, . . . , p
i
t+H)

Output: C - Set of conflict states and transitions
1 Initialization: CX = ∅, C∆ = ∅, C = (CX , C∆), xi0 = xit,

xj0 = xjt
2 for h = 1 : H do
3 for each agent j in HPi do
4 if xih = xjh then
5 CX,h = xjh

6 if (xit, x
i
t+1) 6= (xjt+1, x

j
t) then

7 C∆,h = (xih−1, x
i
h)

8 C = C ∪ (CX,h, C∆,h)

9 if HPi == ∅ and E(pit,Pi) > 0 then
10 C∆,1 = {(xit, x′) from (pit, p

′) ∈ ∆Pi
|Ei(p′,Pi) ≥

E(pit,Pi)}
11 return C = (CX , C∆)

6602

The objective of Alg. 3 is to generate a local H-hop path
over the agent’s product automaton, Pi. Alg. 3 essentially
performs a depth-first-like search from the current state pit on
Pi to find a conflict-free H-length path that has the minimum
the sum of energies. To this end, the set of H-length safe
paths originating from pit is found in lines 1 and 2 by making
sure that each pit+h = (xih, s

i
h) over an H-length safe path

satisfies xih /∈ CX,h and (xih−1, x
i
h) /∈ C∆,h for all h =

{1, . . . ,H}. Then, the cost of each path is computed as the
sum of energies of each state in the path (line 3). Finally, the
path with lowest cumulative energy is chosen (line 4) and
the update flag is set to true (line 5). This path and update
flag are then returned to line 10 of Alg. 1.

Algorithm 3: Receding Horizon Plan for Agent i

Input: Pi, pit - Product automaton and current state
Input: C - Set of conflict states and transitions
Output: pi, Uflag - Conflict-free path; Update flag

1 Find the set of all H-length paths starting from pit, P
H ;

2 Find safe paths Ps ⊆ PH by removing the paths that contain
conflicts based on C = (CX , C∆);

3 Calculate the cumulative energy Ekpath of each pk ∈ Ps;
4 pi = arg min

pk∈Ps

(Ekpath);

5 Uflag = true
6 return pi, Uflag

B. Theoretical Results

The proposed method guarantees the generation of a
safe path which satisfies the corresponding agent’s TWTL
formula or a finite relaxation of it, φ(τ). The proofs of
Theorems 1 and 2 are omitted due to space limitations and
can be found in [16].

Theorem 1. (Safety) If the environment graph G =
(X,∆, w) is n-connected, then Alg. 1 always produces a
safe path pi which satisfies the properties in Def. 3.

Theorem 2. (Satisfaction of TWTL with Finite Relaxation) If
agent i has an initial product automaton state pi0 such that
E(pi0,Pi) < ∞, then Alg. 1 produces a finite path which
satisfies the given TWTL specification or a relaxed version
of the specification, φ(τ i).

V. RESULTS

The code for our simulations and experiments is derived
from the PyTWTL package (hyness.bu.edu/twtl)
which handles the construction of A∞ corresponding to a
given TWTL φ, and the creation of the product automaton
P given a transition system T . The algorithms presented
in this paper can be found at https://github.com/
pete9936/pyTWTL_ObsAvoid. All simulations were
carried out on a desktop computer with 4 cores running
Ubuntu 16.04, 4.0GHz CPU, and 32GB of RAM.

In simulations, five agents moving in an environment
shown in Fig. 2 are considered, where each agent is given a

different TWTL specification defined over the environment.

φ1 = [H2B][0,(6+τ1
1)] · [H1A][0,(5+τ1

2)],

φ2 = [H2B][0,(5+τ2
1)] · [H1C][0,(4+τ2

2)],

φ3 = [H1D][0,(4+τ3
1)] · [H2F][0,(4+τ3

2)], (5)

φ4 = [H1E][0,(5+τ4
1)] · [H1Base4][0,(3+τ4

2)],

φ5 = [H1G][0,(6+τ5
1)] · [H1Base5][0,(6+τ5

2)],

where τ i1 and τ i2 refer to the temporal relaxations of the
corresponding tasks of agent i. All five TWTL specifications
are examples of servicing some regions in sequence and they
are kept relatively simple for illustration purposes. Note that
the proposed approach can also be used for more complex
tasks due to the rich expressiveness of the TWTL language.

Fig. 2. The 6 x 6 x 3 discretized environment shared by 5 agents.
Initial positions are given by the green nodes. Obstacles are shown
in red, and seven regions of interest (A, B, C, D, E, F, G) are shown
in magenta. Agents can stay put or move to any neighboring cell
(non-obstacle) in one time step.

For each agent, the temporal relaxations of the nominal
and collision-free paths are highlighted in Tab. I. For the
given scenario, Tab. I shows that only Agent 1 needs positive
temporal relaxation. This is due to Agent 1 waiting Agent
2 to satisfy the “service B for 2 time units” part of its
formula since Agent 2 has higher priority (lower energy)
than Agent 1 as illustrated in Fig. 3. Notice that while
Agent 1 is waiting between t ∈ [2, 4], its energy is not
decreasing (no progress towards task satisfaction) in Fig. 3.
Also, negative relaxation in Tab. I implies that the formulae
are satisfied within a shorter time window than the time
window originally allotted.

TABLE I
TEMPORAL RELAXATION (τ) OF PATHS.

Nominal paths Safe paths
x1 x2 x3 x4 x5 x1

S x2
S x3

S x4
S x5

S

τ1 −1 -1 -1 -1 -1 +1 -1 -1 -1 -1
τ2 -1 -1 0 0 -1 -1 -1 0 0 -1

For the 6 × 6 × 3 environment shown in Fig. 2, each
respective agent has a transition system T of (102; 1594)
states and transitions and a product automaton Pi of about
(200; 3200) states and transitions. The offline part of our
approach (generating T , P1...5, Ei..., and the nominal paths
p1, . . . ,p5) takes 3.90 seconds. Generating the collision-free

6603

paths (the online portion of our algorithm) with a horizon
length H = 3 takes 1.17 seconds. However, the metric of
greater concern is the average time for an individual agent’s
receding horizon update which is approximately 0.0275
seconds, fast enough for real-time execution.

Fig. 3. The agent energy values at each state along the paths
are shown as well as the collective energy of the system. These
energy values correspond to each state along the path which leads
to satisfaction of each agents’ TWTL formula shown in (5).

We define the iteration time as the time consumed by a
single agent to update its receding horizon path. Table II
shows the total online run-time (i.e., the sum of all iteration
times of all agents) and the average iteration time for varying
lengths of horizon. As seen from Tab. II, the average iteration
time (and the total run time) significantly grows when the
horizon, H , increases. Note that the safe paths generated
based on the TWTL formulae (5) trying to be satisfied
in Fig. 2 were identical for all values of H , meaning
that extended path information from neighboring agents did
not affect the outcome of this scenario. However, in more
constrained environments such as a narrow corridor with
many agents, increasing the horizon will potentially influence
the outcome as longer paths will include more information
from the neighbors.

TABLE II
HOW RECEDING HORIZON LENGTH IMPACTS EXECUTION TIME

H = 2 H = 3 H = 4

Total Online Run-time (s) 0.15 1.17 68.1
Avg. Iteration time (s) 0.0037 0.0275 1.621

The proposed method is also verified experimentally on a
team of five Crazyflies 2.0. All experiments are conducted
in a testing environment of 3m × 3m × 1.5m motion-
capture space identical to the simulation environment shown
in Fig. 2, using a VICON camera system with 8 cameras.
We use the Crazyswarm package [17] to perform the low-
level control algorithms, communication, and interface of
the VICON system with the Crazyflies. Note that in the
experiments a “downwash zone” below each quadrotor was
considered, since entering these regions would lead to loss
of flight. This restriction was not formally considered in
the presented method since this is both an environment and
agent-dependent constraint. A video of the experiment can
be found at https://youtu.be/qQADyO1pYr8.

VI. CONCLUSIONS AND FUTURE WORK

We present an automaton-theoretic approach for gener-
ating collision-free paths for a multi-agent system such
that each agent satisfies an individual task encoded as a
TWTL specification in finite time. The proposed approach
guarantees both collision avoidance among agents (and static
obstacles) and the satisfaction of the individual TWTL
specifications (with a finite relaxation) given some mild
assumptions on the environment.

As a future direction, we plan to extend the proposed
algorithm to achieve safe planning in more cluttered envi-
ronments with weaker connectivity properties. Furthermore,
we are interested in extending this approach to safely serve
cooperative tasks that require the coordination of multiple
agents (e.g., [18], [19]).

REFERENCES

[1] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for
collisions-free multirobot systems,” IEEE Transactions on Robotics,
vol. 33, no. 3, pp. 661–674, 2017.

[2] C. E. Luis and A. P. Schoellig, “Trajectory generation for multiagent
point-to-point transitions via distributed model predictive control,”
IEEE Robotics and Aut. Letters, vol. 4, no. 2, pp. 375–382, 2019.

[3] T. Mylvaganam, M. Sassano, and A. Astolfi, “A differential game
approach to multi-agent collision avoidance,” IEEE Transactions on
Automatic Control, vol. 62, no. 8, pp. 4229–4235, 2017.

[4] C. Baier, J.-P. Katoen et al., Principles of Model Checking. MIT
press Cambridge, 2008, vol. 26202649.

[5] D. Aksaray, K. Leahy, and C. Belta, “Distributed multi-agent persistent
surveillance under temporal logic constraints,” IFAC-PapersOnLine,
vol. 48, no. 22, pp. 174–179, 2015.

[6] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp. 343–352, 2009.

[7] E. M. Wolff, U. Topcu, and R. M. Murray, “Optimization-based
trajectory generation with linear temporal logic specifications,” in
IEEE Int. Conf. on Robotics and Automation, 2014, pp. 5319–5325.

[8] R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-Time Systems, vol. 2, no. 4, pp. 255–299, 1990. [Online].
Available: http://dx.doi.org/10.1007/BF01995674

[9] I. Tkachev and A. Abate, “Formula-free Finite Abstractions for Linear
Temporal Verification of Stochastic Hybrid Systems,” in Int. Conf. on
Hybrid Systems: Computation and Control, 2013.

[10] C.-I. Vasile, D. Aksaray, and C. Belta, “Time window temporal logic,”
Theoretical Computer Science, vol. 691, pp. 27–54, 2017.

[11] X. Ding, M. Lazar, and C. Belta, “LTL receding horizon control for
finite deterministic systems,” Automatica, vol. 50, no. 2, 2014.

[12] C.-I. Vasile and C. Belta, “An Automata-Theoretic Approach to the
Vehicle Routing Problem,” in Proceedings of the Robotics: Science
and Systems (RSS), Berkeley, California, USA, July 2014.

[13] D. Aksaray, C.-I. Vasile, and C. Belta, “Dynamic routing of energy-
aware vehicles with temporal logic constraints,” in Int. Conference on
Robotics and Automation (ICRA). IEEE, 2016, pp. 3141–3146.

[14] G. J. Pappas, “Bisimilar linear systems,” Automatica, vol. 39, no. 12,
pp. 2035–2047, 2003.

[15] A. Nikou, D. Boskos, J. Tumova, and D. V. Dimarogonas, “On
the timed temporal logic planning of coupled multi-agent systems,”
Automatica, vol. 97, pp. 339–345, 2018.

[16] R. Peterson, A. T. Buyukkocak, D. Aksaray, and Y. Yazicioglu,
“Decentralized safe reactive planning under TWTL specifications,”
arXiv preprint arXiv:2007.12278, 2020.

[17] J. A. Preiss, W. Honig, G. S. Sukhatme, and N. Ayanian, “Crazyswarm:
A large nano-quadcopter swarm,” in Int. Conference on Robotics and
Automation (ICRA). IEEE, 2017, pp. 3299–3304.

[18] R. Bhat, Y. Yazıcıoğlu, and D. Aksaray, “Distributed path planning for
executing cooperative tasks with time windows,” IFAC-PapersOnLine,
vol. 52, no. 20, pp. 187–192, 2019.

[19] S. Seyedi, Y. Yazıcıoğlu, and D. Aksaray, “Persistent surveillance
with energy-constrained uavs and mobile charging stations,” IFAC-
PapersOnLine, vol. 52, no. 20, pp. 193–198, 2019.

6604

