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Abstract— Effective human-robot collaboration requires in-
formed anticipation. The robot must anticipate the human’s actions,
but also react quickly and intuitively when its predictions are wrong.
The robot must plan its actions to account for the human’s own plan,
with the knowledge that the human’s behavior will change based
on what the robot actually does. This cyclical game of predicting a
human’s future actions and generating a corresponding motion plan
is extremely difficult to model using standard techniques. In this
work, we describe a novel Model Predictive Control (MPC)-based
framework for finding optimal trajectories in a collaborative, multi-
agent setting, in which we simultaneously plan for the robot while
predicting the actions of its external collaborators. We use human-
robot handovers to demonstrate that with a strong model of the
collaborator, our framework produces fluid, reactive human-robot
interactions in novel, cluttered environments. Our method efficiently
generates coordinated trajectories, and achieves a high success rate
in handover, even in the presence of significant sensor noise.

I. INTRODUCTION

Human behavior is determined by a mixture of intent, world
prediction, anticipation, physical limitations, and more. When
planning in the presence of people, robotic decision processes
often encapsulate these diverse desiderata under the lid of a black
box dynamics function. When the robot and human’s goals are
independent [1]–[3], this model has been very successful.

However, cooperating to achieve shared goals is more difficult.
Take the human-robot hand-over task shown in Fig. 1 as an
example, where a robot must receive some object from a human
collaborator. Humans will act based on what they imagine the
robot will do [4], and, conversely, the robot should choose actions
based on its best estimate of the human’s intention. Predicting
human intention while planning is not new, this has been explored
in anticipatory planning [5], and prior work has modeled human
kinematics and dynamics in order to achieve collaborative
manipulation tasks [6]–[8].

However, humans often do not act according to plan. Any robot
planner that tries to predict their intentions must be highly reactive.
We propose a Model Predictive Control (MPC) approach, which
models both human and robot as separate, fully-actuated actors in
a combined trajectory optimization problem. Our MPC approach
allows the robot to determine the most effective form of collab-
oration while still being able to react to changing circumstances
and noisy sensor data. We specifically apply our approach to the
problem of human-robot handover [9]–[12]. The core problem is
that the human and robot must coordinate on where and how the
handover is to take place [9]. In effect, we must balance between
the two cost functions for human and robot, avoiding obstacles
while finding the most logical location for both to reach.
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Fig. 1: Coordinating a fluid human-robot handover requires an estimate of the
human’s plan, so that the robot can be in position to make the handover at
the correct time. Our algorithm can achieve smooth and natural human-robot
collaborative motions in a variety of scenarios, even in the presence of obstacles
and sensor uncertainty.

This combined human-robot system is both partially observable
and under-actuated since the robot has no real control over the
human and cannot directly observe factors influencing their
decisions. Therefore, at a minimum, our planner must be reactive
[13] to unforeseen human behavior. We follow a real-time
Model-Predictive Control (MPC) paradigm and re-optimize with
each new observation. Computation speed is also crucial. We
employ a modern motion optimization strategy, which leverages
fast Gauss-Newton solvers [14]–[16], and assume relevant aspects
of the human and robot are fully actuated.

Additionally, to ensure spatial consistency of the resulting
reactive behavior through re-optimization, we introduce a
novel class of explicit sparse reward terms, i.e., negative costs,
around the target. Within a certain radius, the robot is explicitly
rewarded for approaching the target, thus extending the target’s
influence beyond a terminal potential to each intermediate time
step. The system is therefore able to compromise between goal
accumulation and trajectory smoothness.

We evaluate our technique in both simulated ablation studies
as well as real-world handovers between a human participant and
a Franka robot using a real-time perception system. We show that,
especially in the presence of obstacles, our technique enables the
robot to anticipate the human’s actions leading to well-coordinated,
quick, and smooth handover behavior while timing the handover
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better than the alternatives, both quantitatively and qualitatively.

II. RELATED WORK

Modeling human behavior is crucial for successful human-robot
collaborative manipulation and has been explored in a variety of
contexts [3], [6], [11], [17]. In addition, many recent methods for
human-robot handover use perception and some manner of human
modeling to achieve reactivity [7], [11], [18]. However, these
models are usually uni-directional, with information flowing from
prediction to planner but not vice versa. For example, Ziebart et al.
[1] used predicted goal-oriented pedestrian behavior to augment
navigation planners to minimize interaction. Similarly, Mainprice
et al. [2] modeled human reaching behaviors to reduce interaction
or collision events while working along-side humans. Maeda et
al. [11] use probabilistic motion primitives to model both humans
and robots in a variety of collaborative tasks, including handover.
Zhou et al. [17] used a recurrent neural net to model human
activity for collaboration in the operating room.

In reality, however, the human will respond to qualities of the
robot’s motion, e.g., speed and shape, trying to estimate and adapt
to its motion. Humans and robots can collaborate more effectively
if the robot’s motions appear legible to humans [4] and allow the
humans to understand the robot’s goals [19]. One way to achieve
legibility is to use human demonstration data to teach the robot [11].
Another approach focuses on jointly modeling the human-robot
system as some sort of hybrid planning problem, [3], [6], [20],
and try to structure the problem to ensure effective collaboration.

Human-robot handovers are a particularly well-studied area for
human-robot collaboration, with applications both to industry [7],
[21] and to in-home assistance [10]. Much prior work analyzes the
formulation of the human handover and how to structure the action
naturally [9], [10]. This can be particularly well represented as
a hybrid planning problem [6], [20]. Toussaint et al. [6] proposed
a method for offline planning based on Task and Motion Planning.
This allows for longer-horizon planning across grasps as compared
to our method, but is inherently less reactive. Other work used a
dyadic model for collaboration between a human and a robot [20].

Our method applies more specifically to the approach phase of
the handover. Related ideas include exploiting a database of human
demonstrations to produce natural and fluid plans [22]. Likewise,
Maeda et al. [11] use imitation learning to mimic human behavior
and Medina et al. [12] use a human-inspired dynamics controller
to model the entire action: approach, grasp, retract. These methods
are well-suited for controlled interaction settings, but generalizing
them to handle the diversity of speed and environmental variations
encountered in the real world is challenging. Peternel et al. [7]
also model the human during collaborative manipulation, but their
goal is to minimize risk of injury, whereas our goal is to achieve
fluid collaboration in the presence of obstacles.

Our work relies on motion optimization approaches that
are both fast and expressive [14]–[16]. Motion planning as
an optimization problem was first presented in [23], and
accelerated in a quick progression of work [24]–[26]. These
early optimizers addressed primarily the subproblem of smooth
collision avoidance. The work of [15], [27], [28], extended the
paradigm showing that generic second-order Gauss-Newton
optimizers out-of-the-box could solve a more general class

of constrained motion optimization problem. Soon thereafter,
Mukadam et al. [14] demonstrated that standard factor graph tools
could drastically simplify the modeling. We build on these ideas
here, using a factor graph to model the problem and fast modern
optimizers to solve the continuous optimization loop in real time.

While our setting is fundamentally partially observable, we do
not address the Partially Observable Markov Decision Process
(POMDP) problem directly, other than to use standard, reactive
maximum a posteriori (MAP) approximation techniques [13]
to motivate the importance of continuous re-optimization. Using
maximum-likelihood observations and active replanning has
proven useful before, even for very complex multi-stage tasks [29].
Other approaches use Monte Carlo sampling to explore possible
outcomes for various actions [3], [30], [31]. Some POMDP work
has even actively modeled uncertainty over human intention [3],
[32], particularly in the context of autonomous vehicles [3].

III. THEORETICAL FRAMEWORK

In games, agents try to optimize individual objectives [33],
but collaborative tasks require cooperation. When collaborating,
agents collectively optimize a single system objective. In this sec-
tion, we formalize the collaborative system. We derive predictive
models for each external, i.e., uncontrolled, agent and an optimal
control objective for the controlled agent, i.e.the robot. We then
show that if the models of the external agents’ behavior are suffi-
ciently predictive, the controlled agent can achieve a stable collab-
orative equilibrium by choosing actions according to its objective.

We consider a system constituting N + 1 total agents. Let
the 0th agent denote the controlled agent and agents 1,...,N be
external, uncontrolled, but collaborating agents.

A. Collaborative interaction model

Denote the ith agent’s trajectory by ξi = (q0
i ,q

1
i ,··· ,q

T+1
i ).

Let ςti=(qt−1
i ,qti,q

t+1
i ) denote the trajectory’s tth second-order

clique,1 a triple of consecutive positions used to represent position
and the corresponding finite-difference approximations of velocity,
and acceleration at each time step [28].

We define the joint collaborative system trajectory as
ξ= (ξ0,ξ1,···,ξN) and denote its constituent 2nd-order cliques
by ςt=(ςt0,ς

t
1,...,ς

t
N).

Denoting the space of all collaborative system trajectories by Ξ,
we define the system’s collaborative interaction model (or simply
its collaboration model)M={C,G,H} as

min
ξ
C(ξ) s.t. G(ξ)≤0, H(ξ)=0 (1)

where C : Ξ→ R is the collaborative cost, G : Ξ→ Rk are k
inequality constraint functions, and H : Ξ→ Rl are l equality
constraint functions. For compactness, we use ΞM⊂Ξ to denote
the feasible set of trajectories that satisfy the constraints G and
H. We can then write the collaborative interaction model as
ξ∗ = argminξ∈ΞMC(ξ). The model for a given collaborative
system can change incrementally over time as the environment,
the agents’ goals, or the agents themselves change. We assume
that the optimizer is able to track solutions over time within a

1Here we use superscripts just for notational convenience of time indexing, not
to be confused with the component indexing of tensor notation.
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continuous optimization loop, such as Model Predictive Control
(MPC). Note that both the costs / constraints and the set of
available trajectories ΞM usually change from cycle to cycle
updated with the latest estimates of the world and agent states.

In our experiments, we export a kth-order Markov structure in
the system [28] enabling us to write the collaborative interaction
model of Equation 1 in clique notation as

min
ξ

T∑
t=1

ct(ς
t) s.t. gt(ς

t)≤0, ht(ς
t)=0 ∀t. (2)

Often, more complex task spaces are defined on these cliques
by transforming them through differentiable task maps where
objective terms may reside. It is common to represent the task
spaces, i.e., the co-domains of the task maps, with maximal
coordinates, which are an explicit representation of the task space
constrained to match the output of the task map. Following this
paradigm, we define our optimization costs and constraints in
maximal coordinates on the relevant task space. We also use
soft constraints implemented as unconstrained penalties in our
experiments as in [34]. In this section, though, we use the more
compact notation given above for succinctness and generality.

The key intuition behind our model is that although we cannot
explicitly control theN external collaborating agents, we assume
we can sufficiently predict their behavior and treat prediction
errors as system disturbances. We make this assumption concrete
below and explore it experimentally in Sec. IV-B.

When the collaborative interaction model has a unique global
minimum, that minimizer acts as an equilibrium point and
becomes predictable by the agents in a way we can exploit in our
model (explored below in Section III-C). We, therefore, call the
global minimum the system’s collaborative equilibrium and say
the system is well-defined if it has a unique global minimum. In
this work, we assume both that the global minimum is well defined
and that an optimizer will be able to track the global minimum over
time. In practice, these assumptions amount to the agents mutually
knowing the higher-level collaboration plan either in advance or
by sufficiently communicating it to each other unambiguously
on the fly. For complex tasks, there may be many local minima or
even regions of equally good global minima, representing different
equilibria. In these cases, the system would require additional
estimation machinery to maintain predictive distributions across
external agent behavior, which we do not address here.

We start by defining explicitly the agents’ individual predictive
collaborative behavior models implicit in the above collaborative
interaction model. Let ΞM[ξi] denote the feasible set of system
trajectories where the ith agent’s trajectory is fixed at ξi. We
define the ith agent’s predictive collaborative cost to be

ci(ξi)= min
ξ\i∈ΞM[ξi]

C(ξi,ξ
\i), (3)

where with a slight abuse of notation, we use C(ξi,ξ
\i) to denote

the collaborative cost evaluated at the joint system trajectory
defined by agent i’s trajectory ξi and the remaining system
trajectories ξ\i of all other agents j 6= i. This cost encodes the
agent’s action criteria under an assumption that all other agents
are predicted as having optimal collaborative responses under the
system’s collaboration model. Note that these predictive models

are assumed to know agent i’s intent (the trajectory ξi). While this
assumption is generally wrong, as the robot cannot truly know
an external agent’s intent, we will see below that it is valid at the
system’s collaborative equilibrium where equilibrium behavior
becomes mutually predictable (see Section III-C).

Each agent then has its own individual collaborative behavior
model of the form

ξ∗i =argmin
ξi∈ΞiM

ci(ξi), (4)

where ΞiM is the set of all trajectories ξi for the ith agent for
which ΞM[ξi] is nonempty, i.e., ΞiM ={ξi | ΞM[ξi] 6=∅}

B. Stability of the predictive controller
We adopt definitions of stability from control theory and say

that an assignment of behavior generation algorithms to the agents
are collectively, or asymptotically, stable around the equilibrium
if the joint system evolves stably, or stably asymptotically, around
the system trajectory. Under this notion of stability, we can make
following statement.

Lemma III.1. Suppose we have a collaborative system and
a corresponding collaboration modelM. If we can say that a
MPC algorithm over M rejects ε-disturbances and that each
agent’s collaborative behavior model is ε-predictive of the agent’s
next action, including the controlled agent’s execution under the
environment’s stochasticity, then controlling the controlled agent
with the MPC algorithm will create system behavior that is stable
around the collaborative equilibrium ofM.

In other words, if our collaboration model is sufficiently predic-
tive for the external agents and we control our controllable agent us-
ing the collaborative behavior model derived from it, the combined
system behavior is stable around the collaborative equilibrium.

Note that in this stability statement, the metric ε-predictive
is undefined. This is because the statement will hold as long as
the definition of ε-predictive is consistent with the definition of
ε-disturbances, i.e., the range of system deviations that can be
handled by MPC. While we cannot explicitly control the external
agents, if we can predict their behavior sufficiently well, then we
may treat deviations as system disturbances. With this, we do not
need to assume that the external agents generate behavior with the
same collaborative system model, as the collaborative behavior
models induced by the system are sufficiently predictive.

C. Mutual predictability of the collaborative equilibrium
Each collaborative behavior model implicitly uses a conditional

model to predict the behavior of external agents. Specifically,
under agent i’s collaborative behavior model, the cost ci(ξi)
optimizes over each external agent j 6=i given agent i’s trajectory
ξi, thus modeling the response the other agents would have
if they were given knowledge of ξi. The model assumes that
all responding agents know the agent i’s intent, which is in
general not true. However, equilibrium behavior has a mutual
predictability property which enables all agents behavior to be
predictable, thereby validating the conditional model specifically
at the collaborative equilibrium.

Equilibrium predictions of other agent’s behavior are both
reflexive and transitive, creating a stationarity property of
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the predictions. For instance, let ξMj (ξi) be the implicit
prediction made by agent i of how agent j will respond to
agent i’s intended trajectory ξi. Let ξ∗ = {ξ∗i }Ni=1 denote the
collaborative equilibrium of systemM. Then for all i,j we have
ξMj (ξ∗i ) = ξ∗j . Therefore, ξMi (ξMj (ξ∗i )) = ξ∗i (reflexive) and
ξMk (ξMj (ξ∗i ))=ξ∗k=ξMk (ξ∗i ) (transitive).

In other words, each agent predicts an equilibrium response
under equilibrium behavior. Even though the agent uses a
conditional predictive model which assumes external agents know
the agent’s intent, specifically at the collaborative equilibrium,
the agent’s intended behavior becomes predictable as part of the
equilibrium behavior validating the use of the conditional model.

IV. HUMAN-ROBOT
HANDOVER USING FINITE-HORIZON OPTIMIZATION

In this section, we formulate the handover task as an application
of our general framework where the collaborative model optimizes
for the human and robot successfully reaching each other to
perform the handover. We detail the objective terms used in our
models (Sections IV-A, IV-B, IV-C) and discuss implementing
spatially consistent behavior using finite-time-horizon MPC (see
Section IV-D).

In this section, we consider the robot to be the controlled agent
(agent 0) and the human to be the uncontrolled external agent
(agent 1), and denote their trajectories as ξR = {qR

i }Ti=0 (robot)
and ξA ={qA

i }Ti=0 (external agent, i.e.human), respectively. We
focus here on defining the unconstrained objective, making the
common assumption that many constraints can be naturally
modeled as soft constraints using fixed penalties (see, for instance,
[34]). This is a reasonable approximation, especially since
stochasticity makes the optimization inherently approximate.

The collaboration objective can be decomposed into three
terms, a robot specific term, an external agent (human) specific
term, and an interaction term.

C(ξ)=λRc
R(ξR)+λAc

A(ξA)+λIc
I(ξR,ξA) (5)

We detail these three terms in the following sections.

A. Modeling the robot

First, we define the cost modeling the robot trajectory,

cR(ξR)=

T∑
i=0

cR(qR
i ,q̇

R
i ,q̈

R
i ), (6)

where T is the total number of time steps and qR, q̇R, q̈R are the
position, velocity, and acceleration of the joints of the robot in con-
figuration space. In what follows, we will also use xR

i =φ(qR
i )=

[RR
i ,t

R
i ] to represent the 6-DOF pose of the end effector in the

world frame, after applying the forward kinematics function φ(·).
Equation 6 can be split into the sum of individual cost functions,

which we define in the following sections.
Obstacle avoidance and joint constraints. To prevent hitting
the joint limits and to avoid obstacles, we include three cost
functions cjoint(q

R
i ), cjoint(q̇

R
i ), and cobs(q

R
i ).

Let J denote the indices of the joints, θR
j denote the angle of jth

joint, and (θR
j, min,θ

R
j, max) denote the corresponding joint limitation,

z

x

Fig. 2: The ideal orientation for the end effector. The z-axis points toward the
human’s wrist, which we are able to track with the Microsoft Azure Kinect, and
the x-axis is as vertical as possible.

we employ a hinge-loss-based cost [35] for the joint limit:

cjoint(q
R
i ) =

∑
j∈J
∥∥c(θR

j )
∥∥2
, (7)

where c(θR
j ) is defined as

c(θR
j ) =


−θR

j +θR
j, min−εj, if θR

j <θ
R
j, min+εj

θR
j −θR

j, max+εj, if θR
j >θ

R
j, max−εj

0, otherwise
(8)

Here εj is the joint limit error tolerance for joint j.
We also impose a cost

cjoint(q̇
R
i ) =

∑
j∈J

∥∥∥c(θ̇R
j )
∥∥∥2

, (9)

where c(θ̇i) is formulated similarly to Equation 8 using θ̇ in place
of θ.

These cost functions assume that the environment is static, i.e.,
the camera and the obstacles are unchanging. Within the context
of MPC, however, we are able to update these cost functions as the
environment changes and we redefine our optimization problem.
We compute a signed distance field representing a discretization of
the environment. Then, as in [23], we use a sphere-based “skeleton”
that covers the robot’s entire volume and surface area. The spheres
allow for a sparse and efficient representation of the robot’s volume.
Our total obstacle cost is then the sum of the cost at each sphere:

cobs(q
R
i )=

∑
s∈spheres

‖c(s)‖2, (10)

where

c(s) =

{
−ds+sradius, if ds≤sradius

0, if ds>sradius
. (11)

Here ds is the value of the signed distance function at the sphere
s’s center.
Velocity and acceleration constraints. We include independent
constraints for configuration-space velocity and acceleration
constraints, c(q̇R) and c(q̈R), that each constrain these values to
be zero. The velocity penalty ensures that the robot slows after
after reaching its goal, while the acceleration penalty ensures the
robot moves fluidly without overshooting its target.
End effector constraints. We also constrain the robot’s end
effector orientation to match an optimal value and add this to
our overall cost function. In the 2D case, this optimal value is
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straightforward: the robot should always be oriented towards the
human. The optimal 3D orientation is more complex.

Let G denote the coordinate frame of the gripper where the
z-axis zG points directly out from the gripper and the x-axis xG
points down perpendicular to the gripper. When the gripper is
perfectly flat, xG points straight down to the ground. We wish to
align zG with v, the ray from the end effector to the human’s hand.
We also want the end effector to be approximately flat. We show
this ideal configuration in Figure 2. Assuming the world frame
has zW up, we want to find xG that when expressed in the world
coordinates, has the lowest z coordinate, i.e., in the world frame,

0=zG·xG=
v

‖v‖
·[xxG,yxG,zxG], (12)

where [xxG, yxG, zxG] correspond to the world frame
coordinates of [1, 0, 0]G in the gripper frame. We also
know xxG =1−

√
y2
xG,z

2
xG.

If the gripper does not point straight up, we can first solve
for zxG , then take the derivative with respect to yxG and set it
to zero in order to find the xG that points most-down. Then,
yG=zG×xG and we can use these three axes to construct our
desired rotation matrix R̂.

With R̂, we use the same cost function from [36] to constrain
the robot to face this direction.

c(RR
i )=log(R̂

−1
RR
i )∨

where log(·) is the logarithmic map and ∨ is the operator that
takes a skew-symmetric matrix to a vector.

As a simplifying assumption to improve planning efficiency,
we only compute R̂ once at each planning cycle using current
observation of both the robot and agent. Since we run many
iterations closed-loop, the robot will continue to face towards the
human’s position.

B. Modeling the human

We use a reduced, but similar, set of cost functions for the
external agent, i.e., the human, cA(ξA)=

∑T
i=0c

A(qA
i ,q̇

A
i ,q̈

A
i ). We

model the human hand as a floating sphere and the parameters λA
are determined through a set of 29 recorded reach-to-point tasks.
In the task of handover where the robot and human are similar
heights, we propose that a floating sphere is a sufficient model
for the human. For other collaborative tasks, such as handover
at significantly different heights, the human’s morphology and
the kinematic feasibility of the task would be important.

Our model for optimal human reaching is a parametrized
quadratic cost function that is nearly symmetrical to the robot.
We model the human as a sphere representing their hand location,
so we omit the constraint of joint limits. We also assume that
a cooperative human will rotate their hand to meet the robot
comfortably, and so we omitted the rotational constraint as well.
To evaluate our model, we recorded a set of 29 reach-to-point
tasks around an obstacle using the Microsoft Azure Kinect DK
and its included body tracking SDK. Between trials, we randomly
changed the target position, the human’s starting pose, and the
camera height. See Figure 3 for an example of our setup.

(a) (b)

Fig. 3: (a) A reach-to-point task around an obstacle. We recorded 29 trials of a
reach-to-point task, with varying target points, camera poses, and starting positions.
(b) The predicted and measured human’s trajectory for one trial. Here, the person
chose to take a wider path around the obstacle than necessary.

For each trial, we calculated our prediction error with

Loss=

T∑
t=0

1

T−(t+1)

T∑
i=t+1

‖tpredicted−tmeasured‖2 (13)

where T is the total number of time steps it takes the human
to reach the target and x is the position of the hand. This loss
represents the average distance between the corresponding real and
predicted hand poses, which we then average over all MPC steps.
We used 26 of our trials to tune our human model and performed a
grid search over 6,561 parameter configurations to minimize error.
We then evaluated the parameters on the remaining 3 datasets. Our
average loss on the training set 7.54cm and our average loss on
the evaluation set is 9.63cm and a standard deviation of 2.41cm.

C. Modeling the robot-agent collaboration

At the end of the trajectory, the robot and the uncontrolled agent
should meet. To enforce this, we encourage their end effector
positions to be as close to each other as possible,

cI(ξR,ξA)=
∥∥tR
T−tA

T

∥∥2
(14)

where tR
T denotes the position of the robot’s end-effector at the

final time step and tA
T denotes the position of the human’s hand

at that final time step (see the notation around forward kinematics
in Section IV-A).

The interaction term defines interaction only at the end of the
trajectory (the behavior is finished once the interaction occurs).
In general, it is unclear when (time-wise) this interaction should
occur, so choosing a single T is challenging, even more-so when
re-optimizing the system and rejecting system perturbations within
an MPC loop. The next section designs a sparse reward motivated
by reinforcement learning settings to eliminate this problem,
enabling spatially consistent behavior using a time-parameterized
trajectory model.

D. Time Independence through Sparse Rewards

When two agents collaborate without explicit time
synchronization, their interaction and behavior is often a
function of combined state and not tied to a specific clock. For
example, when handing over an object, both participants time their
behaviors based on the observed state of the other, continually
readjusting and aiming primarily to just meet in the middle. The
behavior is state-dependent and not explicitly timed.
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(a) Without reward term (b) With reward term

Fig. 4: Comparison motion generation for a reach-to-point task around an obstacle
both with and without the proposed sparse reward term. The dots represent
subsequent positions. With each MPC step, the agent starts closer to its goal.
Our reward terms encourages the agent to speed up as a function of their relative
distance to the goal arrive at the goal in less time than the planning horizon.

We account for deviations from the planner’s output by
continually re-optimizing with a fixed-time horizon at each
successive time step. However, as the two agents approach each
other, this fixed horizon becomes restrictive. Suppose the horizon is
three seconds in the future. Placing the interaction term perpetually
at the fixed time horizon means that the model will always want to
interact exactly three seconds in the future, independent of where
it finds itself, leading to an exponential slowdown in its behavior.

We counteract the slowdown by adding an additional
distance-based reward term weighted by λreward to the robot-agent
collaboration cost defined in Eq. 14 at every point on the trajectory.

c(ξR,ξA)=c(tR
T ,t

A
T )+λreward

T∑
i=0

r(tR
i ,t

A
i ), (15)

where the reward r(tR
i ,t

A
i ) at step i is defined as

r(tR
i ,t

A
i )=1−e

−‖tR
i−tA

i‖2
2σ2 . (16)

This reward term can also apply to a single agent moving toward
a fixed target, where

∥∥∥tAgent
i −pTarget

∥∥∥ would replace
∥∥tR
i −tA

i

∥∥.
The reward is motivated by the types of sparse rewards used

in reinforcement learning [37]. We are rewarding the agents for
converging, and, since our goal is to minimize cost, we phrase
reward as negative cost. Such a reward can be modeled as an
upside down radial basis function over the distance between the
robot’s end-effector and the interacting agent, i.e., one when the
two are far apart and decreasing to zero as they draw closer.

This rewards the robot for getting within touching distance of
the interacting agent (and visa-versa), but does not penalize the
pair for having to be far from each other earlier in the trajectory
due to competing smoothness criteria. Since we have a fixed
finite-horizon, without loss of generalization, we can shift each of
these reward terms up by a constant so its minimum value is zero
as given in the equation. The effect can be seen in Fig. 4, which
shows how this results in a more temporally-consistent trajectory.
Specifically, in the absence of perturbations, the trajectory traced
out by MPC’s replan-execute loop is more consistent with the
original trajectory initially planned at the first time step.

For safety reasons, the uncontrolled agent may stop before
reaching the robot. The reward term as formulated in Eq. 16 would
cause the robot to slow-down exponentially because the human
policy predicts that the human will keep moving. To prevent
this, we would ideally have a phase estimator that can determine

when the human has stopped and switch to rewarding the robot
for reaching the human’s current position. As an approximation
in our implementation, the human and robot are both rewarded
for reaching each others’ starting points, as determined at the
beginning of each MPC step.

With this shift upward, our formulation of the reward (as
cost) becomes identical to the Welsch robust estimator [38].
Although the reward is not a nonlinear least squares term, it can
be minimized using a form of iteratively re-weighted least-squares
[39] using weights given by the Radial Basis Function (RBF)
w(r)=e

−r2

2σ2 where r=‖tR
i −tA

i ‖ in this case. An implementation
would replace these Welsch robust estimator objective terms with
weighted least squares terms of the form wr2 =w‖tR

i −tA
i ‖2, and

re-evaluating the weight w after each subproblem has converged.
These reward terms reward the system for reaching the

interaction point early. As above, associated with reaching
the interaction point should be a velocity penalty bringing the
system to a stop. Whereas before, it sufficed to add just a single
velocity penalty to the terminal potential (stop at the end) we now
must also add intermediate velocity penalties preparing for the
possibility of stopping early.

V. IMPLEMENTATION DETAILS

Similar to [14], we used GTSAM as a fast optimizer to
minimize the cost at each MPC-step. We used the real-time body
tracking SDK on the Microsoft Azure Kinect DK to obtain human
pose estimates, and we are able to run our algorithm to perform
a human handover in real time on a Franka Emika Panda arm.

On a workstation with an 3.4ghz Intel© CoreTM i7 and 32GB
of RAM running Ubuntu 18.04, we obtained poses at a rate of
30hz. We use DART [40] to calibrate the robot configuration into
the Azure frame, so we can obtain both human and robot starting
positions at each MPC step.

We run both our optimizer and DART on the same workstation
running Ubuntu 16.04 and equipped with an 3.7ghz Intel©

CoreTM and 32GB of RAM. We obtain DART’s positional
estimates at 10hz, and we are able to run our optimizer with
Levenberg-Marquardt between 7hz and 8hz.

When the Franka is within a minimum threshold–we used
10cm–it engages the gripper and tries to grasp the object. If it
misses and closes all the way, the gripper re-opens and the planner
resumes trying to engage in the handover until it succeeds. We
found the robot to miss the handover when the human moves too
quickly for the body tracker to maintain a stable estimate.

VI. EXPERIMENTS

We ran a set of experiments exploring: (1) How do our method’s
generated trajectories compare to those produced by baseline
methods? (2) How robust is our algorithm to noisy sensors? and
(3) Can our proposed method be used in a real world setting?

Our algorithm predicts the motion and dynamics of the
uncontrolled agent and reacts accordingly. In order to evaluate
each component, we benchmarked our algorithm against two
different baselines:

Robot only: A planner that only accounts for the Euclidean
position of the uncontrolled agent. At each time step, the robot
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TABLE I: Algorithmic benchmarks (↑ denotes higher is better and ↓ denotes lower
is better): our algorithm is best able to approximate the timing of the uncontrolled
agent. The attractor-based algorithm produces trajectories with significantly greater
acceleration and jerk than both the robot-only and our algorithm. The robot-only
algorithm outperforms ours by a small margin in reducing acceleration and jerk,
but at the cost of producing much longer trajectories.

Metric Robot only Attractor Ours

Handover Time (Normalized) ↓ 1.33± 0.27 1.30± 0.26 1.20± 0.26
Trajectory Length Error ↓ 0.35± 0.27 0.37± 0.29 0.27± 0.22
Acceleration (cm/s2) ↓ 4.33± 1.96 7.83± 3.96 4.72± 1.37
Jerk µ (cm/s3) ↓ 6.25± 2.99 10.06± 5.55 6.36± 1.88

optimizes a trajectory around any obstacles to match its end
effector position with the other agent’s end effector position.

Attractor: A planner that applies an attractor-based policy to
both end effectors. This policy assumes the two arms will move
toward each other at each time step. When obstacles are present,
they act as repellent forces, opposing the attracting force. We
implemented this method by using our same algorithm with a
very short time horizon, i.e., T=5, which is the shortest trajectory
supported by our low-level controller.

See our video submission for an example of the simulated
environment. The robot and uncontrolled agent start on opposite
sides of a non-convex obstacle, the position and shape of which
we randomized for each trial. To evaluate the algorithms without
bias, we independently planned the uncontrolled trajectory to go
from a randomized location on the opposing side of the obstacle
to a randomized point in the robot’s reachable space, while also
avoiding the obstacles. We accomplish this by minimizing our
same velocity, obstacle-avoidance, and acceleration costs for
the hand, while also adding a cost term with high λ to constrain
the hand to our randomly chosen start and end positions, as in
[14]. We augmented the plans with noise drawn from a uniform
distribution to de-bias the uncontrolled motion from the planner.

We then replayed the uncontrolled trajectory for each robot
policy. At the end of the uncontrolled trajectory, the agent pauses
and waits for the robot. We modeled the agent as a ball with a 10cm
radius and as such, we considered a trial to be successful if the
robot was able to plan a trajectory where its end effector was within
10cm of the agent in under twice the uncontrolled trajectory length.

We ran 300 trials. Qualitatively, we observed that the
randomized obstacle and randomized uncontrolled trajectory led
to many ill-formed handovers, such as ones where the uncontrolled
trajectory goes through the obstacles. The robot-only algorithm
best handled these ill-formed trajectories because it is able to
ignore whether the human is in an incorrect configuration. It
succeeded in 62% of the trials. Our algorithm succeeded in 57% of
the trials and the attractor policy succeeded in 43% of the trials. It
is important to note that our framework assumes that uncontrolled
agents are co-operative and reactive. To fairly compare the three
policies, we used identical trajectories for the uncontrolled agent,
but this precluded the possibility of the uncontrolled agent’s policy
being reactive to the robot and therefore violates our cooperative
assumption. With a cooperative partner, we expect our policy to
outperform the robot-only policy in success rate.

We evaluated the algorithms on the set of trials on which
they mutually succeeded and adopted four different metrics,

TABLE II: Robustness metrics: we evaluate our robustness to measurement noise
by determining, for a given amount of measurement noise, the percentage of
handovers that can be completed within twice the time of the uncontrolled trajectory

Noise σ (cm) 2 5 7 10 15

% Successful 100 100 98 86 66

i.e., Success rate, trajectory length error, acceleration, and
jerk, for evaluation. We define the trajectory length error as
|1−Tsuccess/Tuncontrolled| where Tsuccess is the time it takes to finish
a successful action and Tuncontrolled is the length of the uncontrolled
trajectory. Quantitative results are in Table I.

Both qualitatively and quantitatively, we saw that the attractor
algorithm leads the robot to jerk heavily when the agent’s path
around the obstacle is non-obvious. Meanwhile, the robot-only
planner tends to wait to move until the path around the obstacle
is unobstructed, leading it to take longer to reach the agent. Our
algorithm is able to smoothly predict the agents path. We also
saw our algorithm produces lower trajectory length error than the
others–meaning our algorithm is better able to match the length
of the uncontrolled trajectory. See our video for a demonstration.

We also evaluated our algorithm’s robustness to measurement
noise. In our real-robot experiments, we observed that our planner
failed when the calibration and/or body tracker were misaligned.
To measure this, we planned a randomized uncontrolled trajectory
in the same fashion as before. However, we also introduced
Gaussian noise with increasing σ into the robot’s perception of
the trajectory. We ran 50 trials and measured how often the robot
could intersect the agent at its actual location within twice the un-
controlled trajectory length. Results with varying σ are in Table II.

As shown in Figure 1, we are able to run our algorithm on a
real robot using the setup described in Section V. See our video
for more examples.

VII. CONCLUSION AND FUTURE WORK

We proposed an MPC approach for multi-agent collaboration
problems that simultaneously optimizes motion plans for a robot
and an (uncontrolled) human in order to enable coordination on
cooperative tasks, with an application to human-robot handovers
in obstacle-rich environments. We presented a novel theoretical
framework and demonstrated its effectiveness through both simu-
lated and real-robot experiments. This framework assumes access
to a model for the human collaborator, and future work might learn
such a model from data, for example, via Inverse Optimal Con-
trol [41], which has been successfully applied to motion prediction
in the past [42]. In addition, our approach cannot generate longer-
term plans across manipulations, as in [6]; in the future, we will
develop approaches which maintain reactivity but allow for switch-
ing between discrete modes, such as when the human is waiting for
the robot at the end of a handover, possibly via the Robust Logical-
Dynamical Systems formalism [43]. We also intend to apply our
formal system to other coordination problems explored in the liter-
ature, such as motion in a crowd [3] and camera control [44], [45].
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