
Maintaining stable grasps during highly dynamic robot trajectories

Giandomenico Martucci1,3, Joao Bimbo2, Domenico Prattichizzo1,3, Monica Malvezzi1,3

Abstract—One of the key advantages of robots is the high
speeds at which they can operate. In industrial settings, in-
creased velocities can lead to higher throughputs and improved
efficiency. Some manipulation tasks might require the robot to
perform highly dynamic operations such as shaking, or swinging
while grasping an object. These fast movements may produce
high accelerations and thus give rise to inertial forces that
can cause a grasped object to slip. In this paper a method
is proposed to determine the inertial forces that arise on a
grasped object during a trajectory, find the instances at which
the object might slip, and avoid these slippages by changing the
trajectory, namely the orientation of the object. To exemplify
the usage of this approach, two grasping tasks are realised:
a prehensile and a non-prehensile grasp, and strategies to
successfully perform these tasks without changing the overall
duration of the trajectory are defined and evaluated.

Index Terms—robot grasping, dynamics, contact modelling

I. INTRODUCTION

A. Motivation

The ability to grasp and manipulate objects is one of the
indispensable skills required by modern robots. As robot
manipulators become more pervasive in our lives, it is also
expected that they are able to carry out a wide range of
different tasks of increasing complexity. This flexibility in
operation is likely to require generic robot hands or grippers,
instead of tools that are tailored for a single task. Other
than their precision, a key advantage of using robots is their
ability to achieve high speeds. In industrial settings, higher
speeds significantly increase the throughput of a production
line. High speeds, generally involve high accelerations which
introduce dynamical effects that cannot be neglected. Further-
more, complex tasks, such as shaking a bottle or flipping a
pancake, are inherently dynamic, generating forces that may
cause the object to slip away from the grasp.

In this paper, a framework that accounts for the inertial
forces that arise on a grasped object during highly dynamic
robot tasks, like the one in Fig. 1, is introduced. The objective
is to evaluate if a trajectory can be completed or if slippage
will occur, and modify the robot trajectory to prevent slippage
while attempting to maintain the overall duration of the task.

1ADVR, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa,
Italy. giandomenicomartucci@gmail.com

2Department of Mechanical Engineering and Materials Science,
Yale University, 9 Hillhouse Avenue, 06511 New Haven, USA
{joao.bimbo}@yale.edu

3Università degli Studi di Siena, Dipartimento di Ingegneria
dell’Informazione e Scienze Matematiche, Via Roma 56, 53100 Siena,
Italy. {prattichizzo,malvezzi}@dii.unisi.it

Fig. 1: As the robot accelerates, inertial forces arise that
drive the resultant force (in red) to exit the friction cone
(in yellow), causing the object to slip. By slightly modifying
the trajectory, object slippage can be prevented.

B. Related Work

Robot grasping and manipulation has been one of the most
fertile topics within the robotics community [1]. Most of the
earlier work focused on hardware design, contact mechanics,
and kinematic analysis [2]. Grasp planning and analysis have
been, for the most part, based on quasi-static equilibrium
equations to assess grasp stability [3]–[5]. The slippage of a
grasped object can be predicted and prevented online, through
the accurate measurement of tangential forces and using a
dynamic friction model [6] or machine learning methods [7].
Woodruff et al. presented a framework to sequence and
control a hybrid system containing a number of dynamic
manipulation primitives for non-prehensile tasks. A recent
review by Ruggiero et al. summarises the latest developments
in dynamic manipulation for non-prehensile tasks [8].

When robot trajectory is generated and optimized, con-
sidering the dynamics is always paramount. Most trajectory
generation and optimization algorithms aim at reducing the
time to complete a task, the joint effort, or dynamical effects
such as jerk [9], [10]. To the best of our knowledge, the
problem of considering the slippage of a grasped object
during the execution of a trajectory has not been previously
featured in the literature in an explicit and structured way.
Wang et al. [11] combine trajectory planning and grasp
synthesis together, to find a collision-free trajectory to a good
grasp. Mavrakis et al. [12] consider the object dynamics
before grasping, in order to choose the grasp that will
minimize the robot joint effort for the motions after the object
is grasped.

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 9198

C. Structure

In the next section the preliminary notations and assump-
tions adopted in the rest of the paper are introduced, including
a summary of spatial vectors, dynamics and grasp evaluation.
The proposed approach for trajectory optimization is detailed
in Section III. It follows a (chrono)logical order to explain
each of the components of the framework. Two example
tasks are presented in Section IV, and the capabilities of
the proposed method to find a trajectory that successfully
completes the task are evaluated. The final chapter discusses
the results and anticipates some future developments of our
method.

II. THEORETICAL FRAMEWORK

A. Preliminaries

The algebra of spatial vectors is used in this paper as
mathematical framework, as it presents significant advantages
for describing and calculating rigid-body dynamics. A guide
to spatial vectors by Roy Featherstone [13]–[15] provides a
detailed overview of this notation, and will give the unfamil-
iar reader a better understanding of this paper. Nevertheless,
this section summarizes the main elements of spatial vectors
employed in this paper.

Let us assume a stiff object that can be treated as a
rigid body, denoted with symbol B. Let W be a fixed
Cartesian frame with its coordinate system Oxyz defined
by the Euclidean basis C = {i, j, k}; assume B is a local
frame with the origin placed in the center of mass of the
body. Thereafter, we will use B to refer to either the body
or the frame, as convenient. To express the body-fixed frame
orientation, the quaternion notation is adopted in this paper,
since it is compact, allows easy computations and avoids
some of the issues related with Euler angles [16], [17]; for
positions, Euclidean coordinates are used. Furthermore, for a
given time instant t ∈ R+, the pose p(t) of B wrt the frame
W is defined as

p(t) =
[
qw(t) qx(t) qy(t) qz(t) x(t) y(t) z(t)

]T
(1)

such that q = [qw, qx, qy, qz]
T , q ∈ H , where H denotes

the set of unit quaternions, qw ∈ R and (qx, qy, qz) ∈ R3

constitute the real and imaginary part of quaternion, respec-
tively [18]; cm = (x, y, z) is a 3D Euclidean vector denoting
the position of the origin of B.

Once the orientation and position of the body frame are
set, the spatial inertia is then defined as I

I =

[
Icm +m cm × cm×T m cm×

m cm×T m1

]
(2)

where m, cm, Icm denote the mass, the vector locating the
center of mass and the rotational inertia with respect to cm,
respectively.

Let M6 and F6 be the motion and force vector space,
respectively; let P be a body-fixed point coincident with the
origin O at the current instant, the Plücker coordinates [19]

for spatial velocity are denoted with symbols v, and for
spatial force with f , defining them as in (3), (4) 1.

v =
[
ωx ωy ωz vOx vOy vOz

]T
(3)

f =
[
nOx nOy nOz fx fy fz

]T
(4)

Throughout this paper, the couples (rotational part of the
spatial force) are indicated with symbol τ . Defining the
Plücker coordinate system for Bv and Bf vectors, the
Plücker coordinate transform (5) and (6) from W to B are

BXW =

[
R 0
0 R

] [
1 0
−c× 1

]
(5)

BX∗W =

[
R 0
0 R

] [
1 −c×
0 1

]
(6)

for motion and force vector respectively, such that
Bv = BXW

Wv
Bf = BX∗W

Wf

where R is the rotation matrix and c× is the skew-symmetric
matrix of the vector c, which locates the origin of frame B
wrt the frame W 2.

The symbol s(t) represents the state of the system, com-
posed of pose p, spatial velocity v and spatial acceleration
a, and we define a trajectory {S} as the set of states over
time. As such:

s(t) =

p(t)v(t)
a(t)

{S} =

[
s(1), s(2), ... , s(tstop)

]
B. Inverse Dynamics

When an object is accelerating or rotating, inertial forces
appear to act on the object. This effect can be seen in Fig.
1, where the robot is holding an object as it accelerates to
the left. In the non-inertial frame of the robot end-effector, a
force seemingly appears to push the object to the right.

The evaluation of the interaction forces acting between the
robot and the grasped object generated by inertial effects, for
a given motion, is done through the calculation of the Inverse
Dynamics. In spatial vector algebra this is obtained through
the formula

f = Ia+ v ×∗ Iv, (7)

where the spatial acceleration is obtained as

a = v̇ =

[
ω̇

c̈− ω × ċ

]
,

and v×∗ is the spatial cross product for forces, which can
be represented by the 6× 6 matrix[

ω
vO

]
×∗ =

[
ω× vO×
0 ω×

]
.

1Note that in the literature, the vectors may be denoted using the symbols
v̂ and f̂ , respectively.

2The vector c corresponds to the vector cm if the origin of body frame
B coincides with the body center of mass

9199

Fig. 2: Grasp Spatial Force Space. Left: Cone Spatial Force
Space (CSFS) for one finger; Middle: Cones and resulting
Grasp Spatial Force Space (GSFS) for a two finger grasp;
Right: GSFS augmented with actuator limits

If the object B is being moved by a robot, the spatial
velocity and acceleration can also be obtained directly from
the joint angles of the robot θ, using the Jacobian J that
maps joint velocities to the spatial velocity of body B as

v = Jθ̇,

a = Jθ̈ + J̇ θ̇.

C. Grasp Spatial Force Space

A commonly used tool in grasp planning, synthesis, and
analysis is the Grasp Wrench Space [5], defined by Ferrari
and Canny as a metric for grasp quality [3]. This space
is defined as the forces that a grasp can resist given a set
of contacts and a friction coefficient. Geometrically, this
corresponds to a 6D polytope built as the Convex Hull [20]
of the Minkowski sum of the friction cones for each contact.

In this paper, the algorithm is extended to be used with
spatial vectors, defined similarly to [21], and indicated as
Grasp Spatial Force Space (GSFS). The evaluation starts by
calculating the cone spanning the spatial forces f i that the
ith finger can generate (and therefore resist), when touching
the body B at contact point cpi. This cone is defined as
the Cone Spatial Force Space (CSFS) In this paper, a soft-
finger contact model is employed [2], [22] (that can generate
moment about the contact normal), and the center of mass
of body is assumed to be located in the origin of body local
frame.

CSFSi = { f i|f i =

(
τ̄Oi

f̄ i

)
, τ̄Oi = cpi × f̄ i ,∥∥f̄ i − f̄ni

∥∥ ≤ −µ∥∥f̄ni

∥∥ , ‖τ̄ni‖ ≤ µr

∥∥f̄ni

∥∥ } (8)

where f̄ i are the linear coordinates of f i, f̄ni and τ̄ni

are the force and torque normal to the surface at contact
point cpi, whereas µ and µr are the linear and torsional
friction coefficients. In practice, the cone is approximated to
a pyramid to speed up calculations [23]. An example using
6 edges is depicted in Fig. 2 (left).

The Grasp Spatial Force Space, spanning the set of forces
that a grasp can resist is then constructed using the convex
hull of the Minkowski sum of all CSFS:

GSFS = Conv({f |f =

k∑
i=1

f i , f i ∈ CSFSi}) (9)

and an example is shown in Fig. 2 (middle). In order to
represent this 6-dimensional polytope as a three-dimensional
polyhedron, the GSFS was intersected with the polytope with
torque τ̄ = 0. An important parameter to consider when
building the CSFS is the height at which to truncate it. In
grasp synthesis it is common to give an arbitrary value (e.g.
a unit vector). Other approaches are possible, such as using
the actuator limits [24]. For the application presented in this
paper, the normal force that the finger is exerting as the
height of the cone is used. In reality, this may not be entirely
accurate, since one must consider also the forces that a finger
can resist on its own. Hence, the union of the computed GSFS
with another set of CSFS, constructed for each finger and
bounded by actuation limits, shown in Fig. 2 (right), may
be a better approximation of the forces that the grasp can
resist. The experienced disturbance forces can be assumed to
be smaller than the grasp force, in this case the polytope in
Fig. 2 (middle) can be used in the calculations.

III. METHODS

This section describes the procedure that enables the
modification of a trajectory such that the inertial forces due
to object dynamics can be resisted. While this approach is
generalizable for a number of different problems, for the
sake of brevity here a particular application where a serial
robot is grasping an object and needs to move it quickly
through a number of via-points while maintaining a stable
grasp is presented. The developed procedure is based on the
following assumptions: 1) a serial robot with a gripper as
an end-effector is used; 2) the task of generating a smooth
trajectory given a set of via-points is performed by an existing
motion planner; 3) the original trajectory is maintained as
closely as possible and only in the object orientation is
changed; 4) the grasp contact points and forces are given
as an input and do not change throughout the task.

The Motion Planner generates joint trajectories that track
a desired set of Cartesian via-points p. This plan takes into
account robot kinematics and joint limits, and outputs a set of
joint positions θ, velocities θ̇, and accelerations θ̈. The joint
trajectory is then transformed into its corresponding cartesian
trajectory using Forward Kinematics (FK).

The Inverse Dynamics (ID) module transforms these vec-
tors into their spatial representation according to the equa-
tions in Section II-B, computing the inertial forces f that
arise during the trajectory.

The GSFS polytope is calculated for the given grasp, as
described in Section II-C.

The spatial forces f at every point of the trajectory are then
tested by the Force Evaluator to check if they are contained
inside the GSFS polytope [25]. When a force is not within the
GSFS, we modify this point p(t = ts) through optimization.

The Optimizer takes in the spatial force f(ts) that is
outside the GSFS, and the pose p(ts). It then modifies the
orientation q(ts) to reorient the object such that the GSFS is
able to resist f(ts). For this purpose a local search is used,
based on the Levenberg-Marquardt (LM) algorithm that tries
to minimize the cost function in (10). This function takes into

9200

Motion Planner

Compute joint-space tra-
jectory given:

• via-points,

• kinematics,

• limits

GSFS

Compute Grasp Spatial
Force Space given contacts

Forward Kinematics

p = FK(θ)

v = Jθ̇

a = Jθ̈ + J̇ θ̇

Force Evaluator

Check if there is a force f
outside the GSFS?

Inverse Dynamics

Calculate inertial forces
given motion s

Optimizer

Find a new pose that
places the force inside the
GSFS

[
θ θ̇ θ̈

]

s =
[
p v a

]

Updated via-points

GSFS

{p,f , GSFS}

f

Fig. 3: Trajectory optimization procedure: The loop between
planner and optimizer is iterated until all forces are within
the Grasp Spatial Force Space

account the distance between the force and the surface of the
GSFS. A penalty is added in order to keep the new rotation
as close as possible to the previous point f(ts−1) in the
trajectory. In order to reduce the number of calculations, the
spatial vector f(ts) is rotated instead of the GSFS polytope
to find the inverse rotation. We chose the LM local solver to
find solutions inside the GSFS which are as close as possible
to the original orientation q(ts).

q′(ts) = argmin
q

exp(d(f ′, GSFS) + k1|α|), (10)

where f ′ = q′fq′
∗ is the the spatial force f rotated

by quaternion q′. The function d(f ′, GSFS) denotes the
distance between f ′ and the GSFS polytope, with the con-
dition that if the force is inside the polytope, the distance
becomes negative. This calculation was done using the Multi-
Parametric Toolbox 3.0 [26]. k1 is a gain that regulates α,
which is the angular distance between q′(ts) and the previous
point in the trajectory q(ts−1). This penalty is enforced to
prevent large angular distances between subsequent points,
which would generate high angular velocities and accelera-
tions, and in turn increase inertial forces.

Once a trajectory point is optimized and the force is
within the GSFS polytope, the via-points are updated and
sent back to the motion planner to generate a new trajectory.
As mentioned, this change in one trajectory point will modify
the inertial forces both before and after that point, and so the
whole process of planning, finding the Inverse Dynamics, and
checking the forces needs to be repeated. In the case that a
solution cannot be found, then several options are possible,

such as increasing the grasp forces, or slowing down the
trajectory in that region. A diagram summarizing this system
is shown in Fig. 3.

IV. RESULTS

To validate the proposed approach two tasks were defined,
consisting of a grasp and a trajectory to be followed. In
both trajectories, the inertial forces that arise due to the
high accelerations rule out the successful completion of
the task. The experiments were carried out using Franka
Emika 7 DOF Panda manipulator robot3, with a gripper. The
robot was controlled using ROS4 and its MoveIt planning
framework. All other calculations and analyses are done in
MATLAB R2019b5. The object in both tasks was a 3D-
printed 5×5×5cm orange cube, weighing 37g. The spatial
velocities are represented in the fixed global frame W , while
the spatial forces are expressed in the local object frame B.

A. Task 1: Non-prehensile transport

The first task consisted of the robot gripping a flat wood
surface on top of which a small cube was placed. The robot
moved its end-effector down, then up, and then quickly
accelerated laterally, while maintaining the surface in a flat
orientation. This sequence of motions is shown in the upper
row of Fig. 4. In the fourth frame of this sequence, the orange
cube slides off from the surface due to the inertial forces
caused by the sudden acceleration, which cannot be resisted
by the friction between the wood and plastic surfaces.

Figures 5a and 5b show the motion and the forces during
this task in dotted lines. Since the object does not change its
orientation, the angular velocities are all zero, and thus also
the moments. As for the forces, it can be observed that at
t = 1.05s the normal force (z) is reduced to around −0.279N
as a result of the vertical deceleration, while the tangential
force (x) increases to −0.105N due to the lateral acceleration.
This is the point at which the object starts sliding away from
the surface, and slips off.

Applying the method presented in this paper, this slippage
can be predicted and prevented. First, calculating the Inverse
Dynamics and the GSFS with an estimated friction coefficient
µ = 0.35, the slippage points can be determined. Fig. 6a
shows the spatial forces as a solid line, with the lighter
areas corresponding to the regions where the grasp would
remain stable if the other components were to remain the
same. This area is obtained from the intersection of the GSFS
with the line along the dimension of that component. At time
t = 1.05s, the lines are no longer inside this safe region, since
the magnitude of the tangential force fx = −0.105N is above
the maximum that the friction could resist (|fx| ≤ 0.096N).
On the other hand, the blue region shows that this lateral
force would be resisted if fz ≤ −0.317N. As for the spatial
moments and fy , no modification to these could make this
grasp stable.

3https://www.franka.de
4https://www.ros.org
5https://www.mathworks.com/products/matlab.html

9201

Fig. 4: Task 1 – The object is placed on a surface and quickly moved laterally. Top row: Initial trajectory; Bottom row:
Optimized trajectory

(a) Spatial velocities (b) Spatial forces

Fig. 5: Spatial velocities and forces for task 1

(a) Initial trajectory

(b) After optimization

Fig. 6: Inertial forces and safety regions for task 1

Feeding this slippage point {p,f}(t = 1.05) and the
GSFS into the optimizer, a new orientation can be obtained
that keeps the force within the safe, non-slipping region. The
result of this optimization is shown in the second row of
Fig. 4. It can be seen that the trajectory was modified such

that, around the third frame (t = 0.85s), the robot tilts the
surface just enough to be able to resist this lateral force
(α ≈ 8◦). This new trajectory is again passed through the
planner, ID, and FK, and the result is plotted as solid lines
in Fig. 5a and 5b. While the linear part of the motion remains
almost indistinguishable from the previous, there is an added
angular velocity, which in turn generates some moment. As
for the linear forces, they are very similar to the forces in the
initial trajectory but, at the point where it previously slipped,
the forces are now fx = −0.086N and fz = −0.279N.
Checking these forces against the GSFS, the forces in this
new trajectory are now all inside the stable region, as plotted
in Fig.6b. In fact, as previously seen in the bottom row of
Fig. 4, when the optimized trajectory is executed, the cube
stays on top of the wooden surface.

B. Task 2: Highly dynamic grasp
In the second task the robot started by moving forwards

and down (vO = [0.33, 0,−0.42]T m/s) and then suddenly
changed direction, swinging up (vO = [0, 0, 0.42]T m/s). The
robot gripper’s fingers were covered in plastic tape to add
compliance and reduce friction, allowing the very light object
to slip. This prevented having to use a heavier object which
might compromise safety. The sequence of pictures in the
first row of Fig. 7 shows how the object slips away when
this sudden change of direction happens (frame 4).

The procedure is similar to the one in the previous task,
where the slippage point is detected, this time at t = 0.9s.
Since the friction is reduced in this case (µ = 0.15), the
optimization required a large rotation in order to maintain
the object within the GSFS, practically aligning the finger
with the inertial force vector (α = 85◦).

Unlike the previous task, this trajectory presented an
additional problem: after optimizing this point of high ac-
celeration, as the robot returns up while rotating back, there
is an additional force that is generated by this rotation, which
again would cause the object to slip at t = 1.44s. For
this reason the algorithm required two steps to optimize the
whole trajectory. Figures 8a and 8b show the initial and final
optimized trajectory. In Fig. 9 the forces and safe regions
for all three trajectories are plotted. It can be noticed that the
forces are slightly outside the stable region in 9b at t = 1.44s.

9202

Fig. 7: Task 2 – A grasped object is moved down and quickly swung up. Top row: initial trajectory; Bottom row: optimized
trajectory

(a) Spatial velocities (b) Spatial forces

Fig. 8: Spatial velocities and forces for task 2

The resulting optimized trajectory is shown in the bottom row
of Fig. 7.

V. CONCLUSIONS

A. Discussion

In this paper a framework to allow a robot to move a
grasped object at high velocities while maintaining the sta-
bility of the grasp is presented. Given a trajectory, this method
calculates the inertial forces that the object experiences and
checks them against the forces that the grasp can resist.
If a force along that trajectory cannot be resisted, then an
optimization algorithm modifies the pose of the object at
that point such that this force can be counterbalanced by
the grasp.

For the rigid body calculations spatial vector algebra was
used, which enables compact and fast Inverse Dynamics
computations. The same notation was used to formulate the
forces that the grasp can resist, adapting the Grasp Wrench
Space algorithm to construct a Grasp Spatial Force Space
(GSFS), which is a 6D convex polytope that spans the spatial

(a) Initial trajectory

(b) After first optimization

(c) After final optimization

Fig. 9: Inertial forces and safety regions for task 2

forces that the fingers can resist, given the fingers contact
information (location, force, and friction properties).

Checking whether a force can be resisted by the grasp
then becomes the geometric problem of finding whether the
spatial force vector is contained inside the GSFS. If the
force is predicted to be outside this polytope, an optimization
algorithm modifies the orientation at that trajectory point such
that the force stays inside. This change in the trajectory will,
however, lead to a different set of forces, both before and

9203

after that point, and so the process needs to be repeated until
all the points are inside the GSFS.

To demonstrate the applicability of our method, two differ-
ent grasping tasks were realised, one prehensile and one non-
prehensile, where the initial trajectory would cause the object
to slip away. Then, applying the proposed framework, the
trajectory was modified and the robot successfully completed
both tasks without changing the overall duration of the
trajectory.

In the case where a solution cannot be found, the algorithm
will still modify the trajectory to be closer to the safe,
non-slipping orientation. Then either the grasping can be
increased to cope with larger forces, or the overall speeds
and accelerations of the trajectory can be reduced.

B. Future Work

While this framework is generic in terms of how the
trajectories are generated and how they can be modified,
in this paper only the use case of a serial manipulator was
demonstrated and only the orientation along the trajectory
was modified. Several extensions of this work can be envi-
sioned, for instance applying this method in other types of
tasks such as aerial robots. Additionally, if one allows the
trajectory to be modified also in its position, and not only
in orientation, other features can be included, such as robot
workspace, obstacles in the environment, etc.

In the future customized planning methods, allowing a
more flexible control over how the trajectory is generated,
will be developed. This can yield a more efficient re-planning
of the trajectory when one point is modified, restricting
also the number of trajectory points before and after the
modified point for which the Inverse Dynamics needs to be
re-computed and the force checking needs to be done.

Finally, the computation of the GSFS polytope will be
improved. In this work, the GSFS was assumed not to change
during the trajectory. This is not entirely accurate, since the
changes in the contact between the fingers and the object
throughout the trajectory, both in force and location, may
deform this polytope. As a future improvement, the GSFS
will be dynamically recalculated to cope with these changes.

REFERENCES

[1] A. Bicchi and V. Kumar, “Robotic grasping and contact: a review,” in
Proceedings 2000 ICRA. Millennium Conference. IEEE International
Conference on Robotics and Automation. Symposia Proceedings (Cat.
No.00CH37065), vol. 1, April 2000, pp. 348–353 vol.1.

[2] J. K. Salisbury and B. Roth, “Kinematic and Force Analysis
of Articulated Mechanical Hands,” Journal of Mechanisms,
Transmissions, and Automation in Design, vol. 105, no. 1, pp. 35–41,
03 1983. [Online]. Available: https://doi.org/10.1115/1.3267342

[3] C. Ferrari and J. Canny, “Planning optimal grasps,” in Robotics and
Automation, 1992. Proceedings., 1992 IEEE International Conference
on. IEEE, 1992, pp. 2290–2295.

[4] M. Pozzi, M. Malvezzi, and D. Prattichizzo, “On grasp quality mea-
sures: Grasp robustness and contact force distribution in underactuated
and compliant robotic hands,” IEEE Robotics and Automation Letters,
vol. 2, no. 1, pp. 329–336, Jan 2017.

[5] A. Sahbani, S. El-Khoury, and P. Bidaud, “An overview of 3d ob-
ject grasp synthesis algorithms,” Robotics and Autonomous Systems,
vol. 60, no. 3, pp. 326 – 336, 2012, autonomous Grasping.

[6] X. Song, H. Liu, J. Bimbo, K. Althoefer, and L. D. Seneviratne, “A
novel dynamic slip prediction and compensation approach based on
haptic surface exploration,” in 2012 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, Oct 2012, pp. 4511–4516.

[7] F. Veiga, H. van Hoof, J. Peters, and T. Hermans, “Stabilizing novel
objects by learning to predict tactile slip,” in 2015 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), Sep.
2015, pp. 5065–5072.

[8] F. Ruggiero, V. Lippiello, and B. Siciliano, “Nonprehensile dynamic
manipulation: A survey,” IEEE Robotics and Automation Letters,
vol. 3, no. 3, pp. 1711–1718, July 2018.

[9] Y. Zhao, H. Lin, and M. Tomizuka, “Efficient trajectory optimization
for robot motion planning,” in 2018 15th International Conference on
Control, Automation, Robotics and Vision (ICARCV), Nov 2018, pp.
260–265.

[10] M. G. Ardakani, A. Robertsson, and R. Johansson, “Online minimum-
jerk trajectory generation,” 09 2015, pp. 1086–1091.

[11] L. Wang, Y. Xiang, and D. Fox, “Manipulation trajectory optimization
with online grasp synthesis and selection,” 2019.

[12] N. Mavrakis, R. Stolkin, L. Baronti, M. Kopicki, M. Castellani et al.,
“Analysis of the inertia and dynamics of grasped objects, for choosing
optimal grasps to enable torque-efficient post-grasp manipulations,” in
2016 IEEE-RAS 16th International Conference on Humanoid Robots
(Humanoids). IEEE, 2016, pp. 171–178.

[13] R. Featherstone, “A beginner’s guide to 6-d vectors (part 1),” IEEE
robotics & automation magazine, vol. 17, no. 3, pp. 83–94, 2010.

[14] ——, “A beginner’s guide to 6-d vectors (part 2)[tutorial],” IEEE
robotics & automation magazine, vol. 17, no. 4, pp. 88–99, 2010.

[15] ——, Rigid body dynamics algorithms. Springer, 2014.
[16] J. Funda, R. H. Taylor, and R. P. Paul, “On homogeneous transforms,

quaternions, and computational efficiency,” IEEE Transactions on
Robotics and Automation, vol. 6, no. 3, pp. 382–388, June 1990.

[17] I. Aguilar and D. Sidobre, “On-line trajectory planning of robot
manipulator’s end-effector in cartesian space using quaternions,” 2005.

[18] E. B. Dam, M. Koch, and M. Lillholm, “Quaternions, interpolation
and animation,” Tech. Rep., 1998.

[19] M. Joswig and T. Theobald, Plücker Coordinates and Lines in Space.
Springer, 01 2013, pp. 193–207.

[20] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algo-
rithm for convex hulls,” ACM TRANSACTIONS ON MATHEMATICAL
SOFTWARE, vol. 22, no. 4, pp. 469–483, 1996.

[21] C. Borst, M. Fischer, and G. Hirzinger, “Grasp planning: How to
choose a suitable task wrench space,” in Robotics and Automation,
2004. Proceedings. ICRA’04. 2004 IEEE International Conference on,
vol. 1. IEEE, 2004, pp. 319–325.

[22] D. Prattichizzo and J. C. Trinkle, “Grasping,” in Springer handbook
of robotics. Springer, 2008, pp. 671–700.

[23] Li Han, J. C. Trinkle, and Z. X. Li, “Grasp analysis as linear matrix
inequality problems,” IEEE Transactions on Robotics and Automation,
vol. 16, no. 6, pp. 663–674, Dec 2000.

[24] R. Orsolino, M. Focchi, C. Mastalli, H. Dai, D. G. Caldwell, and
C. Semini, “Application of wrench-based feasibility analysis to the
online trajectory optimization of legged robots,” IEEE Robotics and
Automation Letters, vol. 3, no. 4, pp. 3363–3370, Oct 2018.

[25] J. A. De Loera, “Actually doing it: Polyhedral computation and its
applications,” Manuscript in progress, 2010.

[26] M. Herceg, M. Kvasnica, C. Jones, and M. Morari, “Multi-Parametric
Toolbox 3.0,” in Proc. of the European Control Conference, Zürich,
Switzerland, July 17–19 2013, pp. 502–510, http://control.ee.ethz.ch/
∼mpt.

9204

