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Abstract— Robust and safe feedback motion planning and
navigation is a critical task for autonomous mobile robotic
systems considering the highly dynamic and uncertain nature
scenarios of modern applications. For these reasons motion
planning and navigation algorithms that have deep roots in
feedback control theory has been at the center stage of this
domain recently. However, the vast majority of such policies
still rely on the idea that a motion planner first generates
a set of open-loop possibly time-dependent trajectories, and
then a set of feedback control policies track these trajecto-
ries in closed-loop while providing some error bounds and
guarantees around these trajectories. In contrast to trajectory-
based approaches, some researchers developed feedback motion
planning strategies based on connected obstacle-free regions,
where the task of the local control policies is to drive the robot(s)
in between these particular connected regions. In this paper,
we propose a feedback motion planning algorithm based on
sparse random neighborhood graphs and constrained nonlinear
Model Predictive Control (MPC). The algorithm first generates
a sparse neighborhood graph as a set of connected simple
rectangular regions. After that, during navigation, an MPC
based online feedback control policy funnels the robot with
nonlinear dynamics from one rectangle to the other in the
network, ensuring no constraint violation on state and input
variables occurs with guaranteed stability. In this framework,
we can drive the robot to any goal location provided that the
connected region network covers both the initial condition and
the goal position. We demonstrate the effectiveness and validity
of the algorithm on simulation studies.

I. INTRODUCTION

Obstacle avoidance motion planning is a fundamental
problem in autonomous mobile robot applications. With the
implementation of motion planning algorithms human factor
is eliminated from the process, and the application areas
of autonomous robots spread from undersea applications to
space explorations. The core aim of robotic motion planning
is to obtain a series of actions and configurations to navigate
the robot from an initial state to a goal state while obeying
the rules of the environment and taking into account the
limitations of the sensors and actuators.

Generally, motion planning algorithms first generate a
set of open loop piecewise-smooth trajectories/paths and
then follow these trajectories with feedback control policies.
Several studies utilized the model predictive control (MPC)
framework to carry out the second phase. MPC powered mo-
tion planning and control methods are used on autonomous
ground vehicles [1]–[3], aerial vehicles [4], [5], underwater
vehicles [6] and spacecrafts [7]. However, the majority of
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Fig. 1. Block diagram of the algorithm. MPC-Graph generates a reference
signal, r, to reach from current state, q(t), to the goal location, qgoal
considering the obstacles, goal and map limits. Model Predictive Control
computes the optimal input, u(t), to get r(t) in accordance with the
constraints on q(t), C.

these applications use time-dependent reference trajectories,
which may cause deficiencies in the accuracy, stability,
optimality, and computational efficiency. To overcome some
of these issues, several researchers proposed a variety of
solutions [2], [3], [8], [9].

Instead of trajectory-based motion planning approaches,
some researchers developed a trajectory free feedback motion
planning concept that relies on dividing the workspace (or
configuration space) into a set of connected sparse regions.
Inside each region, the task of the motion planner is to navi-
gate the robot to a different neighboring area. In that manner,
each primary task is sequentially executed to fulfill the main
task [10], i.e., convergence to the goal configuration.

On the other hand, feedback control of dynamical sys-
tems subject to some hard and soft constraints on state-
space variables and inputs are emerging problems in control
system applications. Yet few of the feedback motion planning
algorithms directly enforce and address these constraints.
In the context of robotic motion planning and control,
some constraints need special attention, such as collision-
free navigation, speed-limits, and actuator saturation. One of
the most popular feedback control strategy that can enforce
such constraints while also ensuring other critical system
properties such as stability is the constrained MPC. It is a
powerful tool in the sense that it estimates the future behavior
of the system and generates the optimal input at each time
step.

In this paper, we propose a new trajectory-free, sampling-
based feedback motion planning algorithm that can handle
arbitrary obstacle configurations for autonomous robots (in
2D environments). MPC makes it possible to use both linear
and nonlinear system models, which highly increases the
application areas of the proposed MPC-Graph algorithm.
The algorithm consists of two stages. First stage generates
a sparse graph structure that covers the collision-free con-
figuration space with rectangular areas/volumes. Then, the
second stage uses MPC to funnel the robot from a starting
point to a goal location. Fig. 1 illustrates the block diagram
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of the proposed algorithm.
We organize the paper as follows. Section II provides

background on sampling-based motion planning algorithms
and summarizes the MPC concept. Section III proposes the
MPC-Graph algorithm in detail. Section IV reports simula-
tion environment and the results. Section V outlines our work
and discusses the future directions of the proposed study.

II. BACKGROUND AND RELATED WORK

A. Sampling Based Motion Planning

Probabilistic Roadmaps (PRM) and Rapidly Exploring
Random Trees (RRT) provide a foundation for the sampling-
based motion planning algorithms. PRM algorithm first
generates a graph (roadmap) that represents the collision-
free configurations, and then one can find the optimal
path through sampled nodes between the start and goal
configurations [11]. On the other hand, the RRT algorithm
generates nodes by sampling the collision-free space and
connects the closest nodes and grows tree structure [12].
Both probabilistic methods can handle the difficulties that
come from complex environments and high dimensional
configuration spaces, making them powerful alternatives in
many motion planning applications.

Sampling-based methods have plentiful modifications and
extensions. For example, instead of using points, some of
these studies focus on using sequentially connected regions.
Each region navigates the robot next region to reach goal
configuration, [10].

One of the first studies on this subject, Sampling Based
Neighborhood Graph (SNG), was presented by Yang and
LaValle, [13]. In this study, they partition the obstacle-free
space with spherical regions (nodes) and create a neighbor-
hood graph by analyzing the intersection of the nodes (Fig.
3). They define a global navigation function in a way that
robot passes through one region to another until it reaches the
node that contains the goal point. Later, Yang and LaValle
[14] introduced an enhancement for this method to increase
the size of the regions (at each sampling iteration), eventually
obtaining a more sparse graph representation.

Several researchers developed methods based on sparse
neighborhood trees (as opposed to the graph structure) to
navigate to the robot using a different type of feedback
controllers with varying shapes of node structures (ellipse,
circle, square) [15]–[18].

B. Model Predictive Control

Model Predictive Control (MPC) is a feedback control
algorithm that generates an input sequence at each sampling
instant for the indicated horizon to minimize the related
cost function while respecting the specified state and input
constraints. After the computation of the input sequence,
the controller drives the plant with the first element of the
computed input array, and the horizon proceeds towards the
future [19]. MPC aims to find an optimal reactive input signal
that will derive the system to the desired configuration by
minimizing the cost function.

In our work, we use the quasi-infinite horizon model
predictive control, which guarantees asymptotic closed-loop
stability [20]. In order to assure stability, Chen and Allgöwer
propose a procedure for obtaining the terminal region and
terminal cost matrix, which in turn generates an upper bound
for the infinite horizon cost for the nonlinear problem. The
optimization problem is formalized as follows:

J(x(t),u(·)) =

∫ t+Tp

t

(
||x(τ)||2Q + ||ū(τ)||2R

)
dτ

+||x(t+ Tp)||2P
(1)

subject to

ẋ = f(x,u) (2a)
u(τ) ∈ U, τ ∈ [t, t+ Tp] (2b)
x(t+ Tp) ∈ Ω. (2c)

x(·) is the system state vector, u(·) is the input to the
system defined by a set of nonlinear differential equations,
f(x(·),u(·)) and Tp is a finite prediction horizon. Q and
R are positive-definite and symmetric matrices for states
and inputs, respectively. We obtained terminal state penalty
matrix P and terminal region Ω by applying the procedure
presented in [20] and obtained the following bound on the
infinite horizon cost which guarantees stability of the closed-
loop system,

||x(t+ Tp)||2P ≥
∫ ∞

t+Tp

(
||x(τ)||2Q + ||u(τ)||2R

)
dτ

∀x(t+ Tp) ∈ Ω. (3)

III. MPC-GRAPH

MPC-Graph algorithm consists of three consecutive
stages: graph generation, Dijkstra’s search algorithm, and
feedback motion control. In the graph generation stage, the
algorithm aims to cover the obstacle of free space on the map
with sampled regions. The sampling process continues by
generating overlapping rectangular areas until the termination
condition is satisfied. After the sampling process, we run
Dijkstra’s search algorithm on the graph to find all possible
“optimal” paths starting from any arbitrary node to the goal
node.

In the feedback motion control stage, MPC computes
optimal (finite horizon) inputs that drive the dynamic robot
towards the next node while satisfying the constraints, i.e.,
staying inside the region and not exceeding velocity and ac-
celeration limits with guaranteed stability. In this algorithm,
rather than constructing (open-loop) connected trajectories,
we generate a sparse collision-free neighborhood graph.

A. Graph Generation

In the graph generation stage, we randomly sample a
point in obstacle-free space, generate a node by creating
a “large” region around the random sample, and finally
connect the generated node to the graph by analyzing the
intersections with the already existing zones. The process
continues until the termination condition is satisfied. In a
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Algorithm 1 MPC-Graph Generation
1: for k = 1 to K do
2: do
3: qrand ← UniformRandConf()
4: while qrand ∈WO and qrand ∈ B
5: Nodek ← GenerateRectRegion(qrand)
6: Nodek ← Expand(Nodek)
7: G.InsertNode(Nodek)
8: B ← B ∪Nodek
9: if TerminationSatisfied(G,α, Pc) then

10: Po = DijkstraAlgorithm(G)
11: return Po
12: end if
13: end for

x
qrand

x1
2

x

(a) (b)

(c)

x

x

qobs

Fig. 2. Generation of a node: (a) initial map of the arena, (b) a square node
is generated, (c) square node is expanded in discrete steps along directions
indicated as 1 and 2

similar approach, Golbol et al. [17] cover the free space
with rectangular regions connected in a tree-like manner
for controller reusability in their reference governor based
control approach. Since MPC performs the control policy
computations in real-time for all possible convex constraint
sets, in our work, we construct the graph using rectangular
nodes that have arbitrary aspect ratios. Thus, we can obtain
a more sparse graph.

The algorithm starts with randomly sampling the obstacle
free space and generating nodes around these sampled points.
At any time, the set of points covered by a node is denoted
as B:

B =
⋃
k

Nodek (4)

The algorithm continues to sample the free and non-covered
space randomly and generates and expands a new rectangular
node around the sample point. The new node is inserted in
the graph, and an edge is generated between this node and
every node overlapping with it. Edge weights are set to be
the distances between the centers of the new node and the
overlapping nodes.

In the algorithm, we implemented the termination condi-
tion presented in [14] which mainly estimates the quality of
the coverage of the sampled space. If the algorithm satisfies

the following condition graph generation stage terminates,

m ≥ ln(1− Pc)

lnα
− 1 (5)

where m is the number of successive failures followed by
the first success, Pc and α are user determined parameters
that effect the density of the coverage of the map. If the
termination condition in (5) is satisfied, we run a search
algorithm on the graph to compute an optimal policy, and
this policy is returned. Algorithm 1 details the whole process.

1) Node Generation: In order to generate a node around
the point qrand, first, the shortest distance between qrand and
obstacles is calculated. Formally, let WOi be the ith obstacle
in the map, WO be the obstacle set, and qobs be the point on
the obstacle which is closest to qrand,

WO =
⋃
i

WOi (6a)

qobs = arg min
q∈WO

‖q − qrand‖. (6b)

Let also dmin be the shortest distance between qrand and the
closest point on the obstacle, qobs, dmin = ‖qrand − qobs‖.
Then the hypothetical circle centered at qrand with radius
dmin is drawn as in Fig. 2b. By definition of dmin, this
circle is guaranteed to be obstacle-free. After obtaining the
circle, the largest square inside the circle with one edge
perpendicular to the line segment connecting qrand and qobs
is constructed. This procedure guarantees that the region
covered by the square is obstacle-free.

2) Node Expansion: After generating a square region, we
expand it to increase the sparsity and the coverage of the free
space. Moreover, larger nodes enable the robot to move faster
in the MPC-graph framework. Inside each node, MPC based
control policy ensures that the robot strictly stays inside
the boundaries of the active node. In order to enforce this
constraint, the MPC algorithm fundamentally slows down
the robot as it approaches a region boundary. In this context,
with larger nodes, the robot stays longer in the same region;
hence it moves for a longer time at high speed.

The procedure for expansion is as follows. First, the square
node expands laterally to form a rectangle, as in Fig. 2(c), in
discrete steps. At each discrete step, the current edge length
of the rectangle parallel to direction 1 is multiplied by a
constant factor (γ = 1.2 in this paper) until the node collides
with an obstacle or limits of the arena. If a collision occurs,
the algorithm reverts to the last expansion. The same process
takes place in the perpendicular direction, as in Fig 2c, and
finally, a larger rectangular node is obtained.

B. Graph Search

After the termination condition in (5) is satisfied, we
run Dijkstra’s search algorithm to find the optimal discrete
planner for the graph. For each node, the policy returns the
next node that the robot should go.

In the graph we constructed, G, there is an edge between
two nodes if they overlap. Edge weight is the distance be-
tween the centers of the nodes. Thus, our approach optimizes
the algorithm for the shortest average path length.
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C. Motion Control

In the second stage of our MPC-Graph methodology, we
calculate the “optimal” planning policy Po, which routes the
robot from an arbitrary node to the GoalNode in discrete
steps. The last phase of the method is the motion control
stage. Here, our goal is to smoothly and safely navigate the
robot from its current node to the next node determined
by the policy Po while satisfying both state and input
constraints, which also involves strictly staying inside the
current node for all time. Since the regions are drawn
totally inside the obstacle-free space, this guarantees that
no collision occurs (assuming the objects are static). The
robot should also respect the imposed constraints such as
speed (state) and acceleration (input) limits, which are very
important for experimental robotics. In this work, we adopt a
MPC based feedback policy for the execution of the motion
control.

When the robot is in CurrentNode, and the target
node is NextNode, reference point is chosen to be the
centroid of their intersection for that region, [xr yr]T =
Centroid(CurrentNode ∩NextNode). MPC stabilizes the
system at the origin. Thus, we define a local reference frame
L for CurrentNode as

x̄ = x− xr
ȳ = y − yr.

(7)

We rewrite the constraints in these coordinates. Using MPC,
we calculate the optimal finite-horizon input sequence that
satisfies the constraints and navigates the robot towards

Algorithm 2 MPC-Graph Execution
1: CurrentNode← StartNode()
2: NextNode← Po.Next(CurrentNode)
3: r ← Centroid(CurrentNode ∩NextNode)
4: while qgoal not reached do
5: if qt ∈ GoalNode then
6: r ← qgoal
7: else if qt ∈ NextNode then
8: CurrentNode← NextNode
9: NextNode← Po.Next(CurrentNode)

10: r ← Centroid(CurrentNode ∩NextNode)
11: end if
12: ut ← MPC(qt, r, CurrentNode)
13: end while

origin. We apply the first element of this sequence to the
robot.

When robot enters the intersection area, NextNode be-
comes the new CurrentNode, and the node determined
by the policy Po for that node is the new NextNode.
The same process recursively applies until the robot reaches
the goal region. In the goal region there is no NextNode,
and reference point is at qgoal. This procedure is given in
Algorithm 2.

IV. IMPLEMENTATION, RESULTS AND CONCLUSIONS

This section introduces the results obtained from the
implementation of the MPC-Graph algorithm.

(c) (d) (g) (h)

(a) (b) (e) (f)

MAP 1 MAP 3

MAP 2 MAP 4

Fig. 3. On the different maps two different sampling based algorithms are tested. The proposed MPC-Graph algorithm generates 49, 51, 129 and 102
rectangular nodes in (a), (c), (e) and (g) respectively. SNG algorithm resulted in generating 78, 155, 192 and 148 circular nodes in (b), (d), (f) and (h)
respectively.
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TABLE I
COMPARATIVE RESULTS OF NODE GENERATION

Map Algorithm # Nodes CPU Time

Map 1 SNG 90.85 0.14
MPC-Graph 41.70 0.19

Map 2 SNG 125.60 0.17
MPC-Graph 46.56 0.19

Map 3 SNG 199.51 0.82
MPC-Graph 133.53 1.05

Map 4 SNG 138.63 1.12
MPC-Graph 117.35 1.35

A. Robot Motion Model

In simulations, we model the robot as a fully actuated ac-
celeration driven holonomic dynamic model in the presence
of non-linear quadratic friction force acting on each axis.
The state vector and the input vector of the model takes the
form q = [x y vx vy]T , and u = [ux uy]T respectively. In
this context, the equations of motion for the robot model is[

ẍ
ÿ

]
=

[
−λ v2x + ux
−λ v2y + uy

]
(8)

where λ = 0.7. We assume that full state measurements are
available in real-time. We discretize the continuous nonlinear
dynamics of the system and uniform synchronous sampling
of measurements with a sampling frequency of fs = 10Hz
(or Ts = 0.1s).

In our control policy, we used quasi-infinite horizon MPC.
The finite horizon length is Tp = 1.5s, which gives us
enough degrees of freedom in enforcing the state and in-
put constraints. We choose the weighting matrices for the
objective cost function in (1) as an identity matrix, Q = I4
and R = I2. Then, by using the procedure presented in [20],
we obtain the following state feedback gain K and terminal
penalty matrix P ,

K =

[
1.00 0 1.73 0

0 1.00 0 1.73

]
(9)

P =


185.28 0 −152.19 0

0 185.28 0 −152.19
−152.19 0 168.32 0

0 −152.19 0 168.32

 . (10)

f(x, y) ≤ c (11a)
−2 ≤ vx, vy ≤ 2 (11b)
−3 ≤ ux, uy ≤ 3 (11c)

The constraints are given in equation (11). Note that
equation (11a) is calculated for each node on the path.

B. Simulation Results

We implemented the methods in MATLAB and performed
simulations on a desktop computer with Intel i7 3.6 GHz
processor running Windows OS. To check the performance
of the node generation stage of MPC-Graph, we implemented
the SNG algorithm with the enhancement presented in [14],

performed comparative analysis. We performed Monte-Carlo
experiments on 4 different maps (# simulations = 1000,
for each map), as illustrated in Fig. 3. We compared the
algorithms in terms of sparsity and computational efficiency.
Table I presents the Monte-Carlo simulation results.

In our simulations we choose α = 0.95 and Pc = 0.95
since these values give satisfactory results in terms of map
coverage and computational time. We adopted Map 1 from
Yand and LaValle [14], which is a simple map composed of
three polygonal obstacles. In this map MPC-Graph algorithm
generates a more sparse graph compared to SNG algorithm
(∼ %55 reduction in # nodes), whereas the SNG creates its
random map faster than the MPC-Graph algorithm (∼ %25
faster). In addition, we tested both approaches on a more
complicated map, Map 2 Fig. 3, composed of 4 polygonal
obstacles with a relatively narrow path. In this scenario, while
computation times are comparable to each other (SNG is
%10 faster than the MPC-Grapha), MPC-Graph illustrates
a remarkable sparsity performance (∼ %63 reduction in #
nodes).

In order to provide a fair comparison, we also tested two
other maps, Map 3 and Map 4, that are composed of curved
(circular, elliptic etc.) obstacles and boundary (in Map 4).
Qualitatively, the results are similar to the Maps 1 & 2,
in the sense that the MPC-Graph algorithm generates more
sparse graphs with the added cost of computational effi-
ciency. We believe that offline computational performances
of both methods are comparable, and both techniques provide
possible times for real applications. Thus, due to the sparsity
performance of our approach, the MPC-Graph method could
be beneficial and powerful in different robotic applications.

Fig. 4 shows the execution of Algorithm 1 and Algorithm
2. Fig. 4a illustrates the graph structure and optimal policy
generated by the graph search stage, and Fig. 4b shows the
trajectory followed by the robot. The supplementary video
visualizes velocity and acceleration plots of the robot while
following the blue trajectory in Fig. 4b. The video shows
that MPC successfully enforces the constraints on qt and ut
while directing the robot to the goal configuration. Also, we
measured the online computation time of MPC. CPU time of
MPC for each iteration is at average tCPU = 0.08s, which
is less than our sampling time.

V. DISCUSSION AND FUTURE WORK

In this paper, we have introduced a new sampling-based
motion planning method, MPC-Graph. The proposed method
generates a sparse graph structure by randomly sampling the
obstacle-free space and creating nodes that have rectangular
shapes with different respect ratio to increase the coverage
and sparsity. Then, MPC guides the robot from start location
to goal location, ensuring that it strictly stays in the obstacle-
free rectangular regions and velocity and input limits with
guaranteed stability. We have tested our algorithm in different
2D environments and compared it to an existing sampling-
based algorithm, SNG. Simulations show promising satis-
factory results that our algorithm generates fewer nodes in a
comparable amount of time.
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(a)

START

(b)

START START

Fig. 4. (a) Representation of how rectangular regions are connected. Blue
arrow indicates the next node in the policy. (b) Execution of the Algorithm 2.
Blue, red and yellow lines show the trajectory that followed by the dynamic
robot with three different starting points. Note that the nodes that are in the
path are shown only.

We tested our algorithm on a holonomic non-linear robot
model in the presence of quadratic friction force. In the
future, we are planning to extend our approach to handle non-
holonomic and under-actuated robot models. MPC-Graph
can also be generalized to include higher dimensional spaces.
For example, in 3D environments, prismatic zones can be
generated to cover the obstacle-free space.

CPU time of MPC at each iteration suggests that we
should further decrease the CPU time for the MPC-Graph
algorithm to apply the algorithm in less powerful embedded
platforms. Several researchers [21], [22] proposed different
solvers that can reduce the computation time for MPC based
control policies. We are planning to adopt a similar approach
to reduce the CPU time of our algorithm, and hence improve
the applicability of the algorithm in a wide range of robotic
applications.
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