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Abstract— In this paper, the gain scheduling technique is
applied to design a balance controller for an autonomous
bicycle with an inertia wheel. Previously, two different balance
controllers are needed depending on whether the bicycle is
stationary or dynamic. The switch between the two different
controllers may cause the instability of the autonomous bicy-
cle. Our proposed gain scheduled controller can balance the
autonomous bicycle in both stationary and dynamic cases. A
physical system is built and experiments are carried out to
demonstrate the effectiveness of the gain scheduled controller.

I. INTRODUCTION

The control of bicycles has aroused interests of scientists
and engineers for a long time [1][2][3]. Considering au-
tonomous bicycles, the balance control is interesting because:
the mathematical model of the bicycle is a time-varying
system; autonomous bicycles are under-actuated systems
[5]; autonomous bicycles are multiple-input multiple-output
(MIMO) systems. It is difficult to decouple the effects of the
multiple inputs.

When bicycles are moving forward, they can be balanced
by the centrifugal force via changing the steering angle [1].
However, when the velocity of bicycles is low, the centrifugal
force is too small to balance the bicycle. Thus, the slower
the autonomous bicycle moves, the harder it is to balance
the bicycle via changing the steering angle. Therefore, it is
difficult to balance a stationary bicycle, and other additional
components are required. For the autonomous bicycle as
shown in Fig. 1, we use a torque-controlled motor to drive the
inertia wheel, which was installed between the front wheel
and the rear wheel. The inertia wheel is used to provide a
reactive torque to assist the self-balancing of the autonomous
bicycle when it moves in a low speed or even stops. Besides
the torque-controlled motor, the velocity of the autonomous
bicycle can be controlled by a servo motor installed at the
center of the rear wheel, and the steering angular velocity can
be controlled by a stepper motor. According to the existing
papers, the operating modes of the autonomous bicycle can
be categorized into the following modes.
• Stationary mode: the rear wheel of the bicycle stops

moving, and the autonomous bicycle is balanced by
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Fig. 1. RoBicycle - the Autonomous Robot Bicycle System

additional components. Options of the additional com-
ponents include a rotor mounted on the crossbar [6],
a pendulum to balance the autonomous bicycle by
tilting force [7], a gyroscope to balance the autonomous
bicycle by gyroscopic effect [8][9][10], a high speed
flywheel with a single DOF gimbal [11], and an inertia
wheel [12][13][14] which is used to provide the balance
torque.

• Dynamic mode: the rear wheel drives the autonomous
bicycle to move at a fast speed, and the autonomous
bicycle can be balanced by steering the handlebar only
[15][16][17]. It is shown that the bicycle will fall onto
the ground if the moving speed is less than a certain
value which depends on the physical parameters of the
bicycle itself [1][18]. It is almost impossible to keep
balance under this dynamic mode once the velocity of
the autonomous bicycle is lower than this physical limit.

In the aforementioned papers, most of them only take into
consideration one of the operating modes. Therefore if we
combine these controllers and apply them to our autonomous
bicycle system, the controller needs to be switched between
different modes when the autonomous bicycle status changes
between being stationary and moving along some certain
curve. However, the switch of controllers usually comes
from engineering experience. The system stability cannot be
guaranteed by theoretical proof. For different autonomous
bicycles, due to different physical parameters, the switching
time is different. Besides, the switching time and strategy
should be determined by a lot of experiments, which are time
consuming. In order to overcome the aforementioned limita-
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tions, firstly, we establish a linearized dynamic model, where
both inertia wheel torque and the steering handlebar rotation
are included as system inputs. Then, the gain scheduling
technique is applied to design the balance controller based
on the linearized dynamic model. The stability of the closed-
loop autonomous bicycle is also analyzed.

Primary contributions of this paper are summarized as
follows. A gain scheduled balance controller is designed
without switching between different controllers. The stabil-
ity of the closed-loop autonomous bicycle with the gain
scheduled balance controller can be guaranteed under mild
assumptions. Experiments demonstrate the effectiveness of
the gain scheduled balance controller.

This paper is organized as follows. Section II presents the
dynamic modeling of the autonomous bicycle, during which
both the dynamics of the inertia wheel and the dynamics of
the bicycle are considered. In Section III, the gain scheduling
controller design method is introduced and applied to the
autonomous bicycle. The stability of the closed-loop bicycle
is also analyzed. In Section IV, experiments are conducted
to demonstrate the effectiveness of the proposed controller.
Finally, the conclusion and future works are described in
Section V. Due to space limitations, proofs are not included.

II. MATHEMATICAL MODEL OF AN
AUTONOMOUS ROBOT BICYCLE

The mathematical model presented in this section includes
the effects of the inertial wheel and the steering handlebar
on the balance of the bicycle. The trail effect is neglected.
Parameters used in the model are depicted in Fig. 2.

In detail, θ is the roll angle of the robot, with θ = 0
being the balancing point assuming the bicycle is not moving.
The rotational angle of the inertia wheel is given by φ . The
main bicycle frame consists of all components on the robot
bicycle except for the inertia wheel. The mass of the main
bicycle frame and the inertia wheel are given by m1 and m2
respectively. The distances from the ground to the center of
mass of the main bicycle frame and the inertia wheel are
given by L1 and L2 respectively. The center of mass of the
whole bicycle is denoted by point P. The momentums of
inertia of the main bicycle frame and the inertia wheel with
respect to x-axis are given by I1 and I2 respectively. The
bicycle’s moving speed is represented by V . The distance
between the center of the front wheel and the center of the
rear wheel is given by L. The horizontal distance between
the center of mass P and the rear wheel center is represented
by d. The rotational angle and angular velocity of the front
steering handlebar is represented by δ and δ̇ , respectively.
The gravity acceleration is represented by g = 9.81m/s2. In
Fig. 2(b), when the front handlebar is steered with an angle
δ , the radii of the tracks of the front wheel, the center of mass
of the robot, and the rear wheel are denoted by R1, R2 and
R3, respectively. In practice, L is relatively small compared
to the radius of the trajectory, so R1 ≈ R2 ≈ R3=̇R. Define
the curvature of the trajectory center as σ = 1/R= tan(δ )/L.
The output torque of the motor driving the inertia wheel is
represented by Tr.
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Fig. 2. Definition of parameters: (a) Front view; (b) Top view with with
the steering angle δ ; (c) Side view (seeing from the front wheel to the rear
wheel) when the bicycle is straight up; (d) Side view when the bicycle tilts.

The moving speed of the robot V is independent of θ and
φ during the movement.

Ttran =
1
2

m1(V 2
x1 +V 2

y1 +V 2
z1)+

1
2

m2(V 2
x2 +V 2

y2 +V 2
z2)

=
1
2

m1[V 2 +(V σd +L1θ̇ cosθ)2 +(−L1θ̇ sinθ)2]

+
1
2

m2[V 2 +(V σd +L2θ̇ cosθ)2 +(−L2θ̇ sinθ)2].

(1)

Similarly, the rotational kinetic energy can be derived by con-
sidering the bicycle frame and the inertia wheel separately

Trot =
1
2

I1θ̇
2 +

1
2

I2(θ̇ + φ̇)2. (2)

The potential energy is given as

U = (m1L1 +m2L2)g(1+ cosθ). (3)

Then according to the Euler-Lagrange Expression

d
dt

(
∂L

∂ q̇i

)
− ∂L

∂qi
= τi, (4)

where L = Ttran +Trot−U , qi’s are generalized coordinates
including θ and φ , q̇i’s are generalized velocities, and τi’s
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are generalized force with τθ = (m1L1+m2L2)cosθσV 2 and
τφ = Tr. After substituting σ with tan(δ )/L and linearizing
sinθ ≈ θ , we have the dynamics model of the robot:

(m1L2
1 +m2L2

2 + I1 + I2)θ̈ + I2φ̈ − (m1L1 +m2L2)gθ =

−V (m1L1 +m2L2)d
L

δ̇ − (m1L1 +m2L2)V 2

L
δ .

(5)

I2(θ̈ + φ̈) = Tr. (6)

The motor driving the inertia wheel can be modeled [19] as:

Vm = Lm
di
dt

+Rmi+Keωm,

Tm = Kt i,

Tr = NgTm,

(7)

where Vm is the driving voltage, Ke is the motor back electro-
magnetic force, ωm is the angular velocity of the motor,
which equals to φ̇ , Lm is the armature coil inductance, Rm
is armature coil resistance, i is the armature current, Tm is
the motor torque before the gear box, Kt is the motor torque
constant and Ng is the gear ratio. Tr is the motor generated
torque after the gear box. It is also the torque driving the
inertia wheel in this autonomous bicycle. In practice, for a
motor Lm << Rm. Using the above model in (7), the required
motor torque can be calculated as

Tr = NgKt

(Vm−KeNgφ̇

Rm

)
. (8)

We combine the bicycle model (5)-(6) with the motor model
(8), and then rewrite them in state space representation:{ .

xxx(t) = AAA(V )xxx(t)+BBB(V )uuu(t)

yyy(t) =CCCxxx(t)+DDDuuu(t)
(9)

where the system output is yyy, the inner state is

xxx =
[
θ θ̇ φ̇ δ

]T (10)

and the system input is

uuu =
[
Vm δ̇

]T
(11)

with

AAA(V ) =


0 1 0 0
bg
a 0

N2
g Kt Ke
aRm

− bV 2

aL

− bg
a 0 − I2+a

aI2

N2
g Kt Ke
Rm

bV 2

aL
0 0 0 0

 , (12)

BBB(V ) =


0 0

−NgKt
aRm

V bd
aL

I2+a
aI2

NgKt
Rm

−V bd
aL

0 1

 , (13)

and

a = m1L2
1 +m2L2

2 + I1,

b = m1L1 +m2L2,
(14)

where CCC and DDD are the identity matrix and zero matrix with
appropriate dimensions, respectively.

Because V is changing with respect to time, (9) is a
linear time-varying system. Traditional linear time-invariant
controller could not work on this system. To solve this
problem, we design the controller based on the idea of gain
scheduling and prove the stability of the closed-loop bicycle
system in Section III.

III. GAIN SCHEDULING AND ITS APPLICATION
ON OPTIMAL CONTROL

In this section, firstly we show how to design the state
feedback control law using the idea of gain scheduling. Then
we present the design procedure in detail.

A. Problem Statement

In the above model, since the state space model is time-
varying as the moving speed V changes, we define the system
in a more general form. We use an inner parameter α to
represent the changing parameter (V in our robot bicycle).
The nonlinear system can be rephrased as a linear MIMO
parameter-varying system represented for all t ≥ 0 by:

ẋxx(t) = AAA(α)xxx(t)+BBB(α)uuu(t),

yyy(t) =CCC(α)xxx(t),

α = α(t), xxx(0) = xxx000,

(15)

where for all t ≥ 0 the state xxx(t) ∈ Rn, the input uuu(t) ∈
Rni , and the output yyy(t) ∈ Rno ; for all t ≥ 0 the parameter
α = α(t) ∈ [α0,αn] =: I ⊂ R; for all α ∈ I the coefficient
matrices AAA(α) = [ai j(α)] ∈ Rn×n, BBB(α) = [bi j(α)] ∈ Rn×ni ,
and CCC(α) = [ci j(α)] ∈ Rno×n; the number of inputs ni ≤ n,
and for all α ∈ I the matrix BBB(α) is full column rank.

The following assumptions are made [20]:
Assumption 3.1: The parameter α is a continuous and

bounded function of t, differentiable almost everywhere with
bounded derivative, and is measured for all t ≥ 0.

Assumption 3.2: The system described in the first formula
of (15) is completely controllable for all α ∈ I.

We apply the state feedback control law

uuu(t) =−KKK(α)xxx(t),

α = α(t),
(16)

to the system (15) for all t ≥ 0, where for all α ∈ I = [α0,αn]
the matrix KKK(α) ∈Rni×n is the state feedback gain matrix.

Remark 3.3: For a more general case, uuu(t) =
−KKK(α)xxx(t) + vvv(t) is used in (16), and for all t ≥ 0
the input vvv(t) ∈Rni is some exogenous input to the system.
In this paper, the problem can be described as a special
case when vvv(t) = 000.

For a fixed α , the control law can be designed to ensure
stability by traditional linear control methods. As the inner
parameter changes, the control law design is given by gain
scheduling.

B. Gain Scheduling
We describe the main idea of gain scheduling [20][21] as

follows. We choose a finite number of fixed αl ∈ I. For each
fixed αl , the gain matrix KKK(αl) is designed by the linear
quadratic regulator (LQR), i.e. KKK(αl) = RRR−1BBBT (αl)PPP(αl),
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where PPP(αl) is the solution to the following algebraic Riccati
equation

AAAT (αl)PPP(αl)+PPP(αl)AAA(αl)−PPP(αl)LLLPPP(αl)+QQQ(αl) = 000,

LLL(αl) = BBB(αl)RRR
−1(αl)BBB

T (αl).
(17)

For α ∈ [αl ,αl+1], the gain matrix KKK(α) can be determined
by the linear interpolation between KKK(αl) and KKK(αl+1),
which can be expressed as

KKK(α) = KKK(αl)+
KKK(αl+1)−KKK(αl)

αl+1−αl
(α−αl). (18)

Intuitively, by choosing an appropriate number of αl ∈ I,
provided that the rate of change of α is sufficiently small,
the design criteria for the system (15) are satisfied.

Theorem 3.4: Let Assumption 3.1-3.2 hold and h =
αl+1 − αl . For the system (15) with the controller uuu =
−KKK(α)xxx, where KKK(α) is obtained by (18), there exists
µ,ε > 0, such that if |α̇| ≤ µ and h < ε , limt→∞ xxx = 000.

Proof: According to (17), it can be easily checked that
PPP(αl + h) = PPP(αl) + ooo(h), and KKK(αl + h) = KKK(αl) + ooo(h).
From (18), it is clear that KKK(α) = KKK(αl) + ooo(α − αl).
Define AAAc(α) = AAA(α)−BBB(α)KKK(α), and let λ (AAA) denote the
eigenvalues of AAA. Thus AAAc(α) = AAAc(αl)+ ooo(α −αl). Now
applying the results on analytic perturbation of eigenvalues of
a matrix [23], [24], one can obtain λ (AAAc(α)) = λ (AAAc(αl))+
ooo(α −αl). Therefore, when h→ 0, λ (AAAc(α)) ∈ C−. Thus
according to the Lemma 3.5 in [20], the theorem can be
proved.

C. Application in the Control of Autonomous Bicycle

For the autonomous bicycle, via Popov–Belevitch–Hautus
test, one can easily find that for any velocity V , (AAA,BBB) are
controllable. Besides, in practice, the velocity of the bicycle
is continuous with respect to time. Thus Assumptions 3.1-3.2
are satisfied.

Now we consider the application of gain scheduling in
the control of the autonomous robot bicycle model. Matrices
in the state space representation AAA(V ) and BBB(V ) are time-
varying with V (t). At a series of fixed speeds V = Vl , for
l = 1,2, . . .n, the LQR controller is used to obtain the gain
matrix KKK(Vl). When choosing the matrices QQQ and RRR in the
controller design, practical physical limitations should be
taken into consideration. For example, there is a rotational
speed limit of the inertia wheel driving motor. The selection
of parameters in QQQ and RRR needs to ensure the motor operates
under this speed limitation. As we know, the inertia wheel
needs to work when the bicycle’s moving speed is slow, and
the operation of the steering wheel is helpful but not a must.
Similarly, when the bicycle runs at a relatively high speed
with the rotation of the steering handlebar and the centrifugal
force is large enough, the operation of the steering wheel
is rather important for the system compared to the inertia
wheel. It means that we need to adjust the parameters of
controller design so that under different situations, two inputs
of the system contribute accordingly as we expected. One
option is to set RRR = diag(r11,r22/(V γ + ε)) for sufficient
small ε and γ > 1. In the experiments proposed in this

  
(a)                                        (b) 

Fig. 3. Static disturbances experiments: (a) a disturbance towards one
direction; (b) a disturbance towards the opposite direction.

 Fig. 4. Results of Experiment 1: Static disturbances

paper, by testing performances when the bicycle is stationary
and moving along a straight line or a circle as the special
cases respectively, γ = 4 is used. Then the value r11 = 10
and r22 = 20 are used considering the contributions of the
inertia wheel and the steering handlebar at different bicycle’s
moving speeds. According to Theorem 3.4, applying the gain
matrix KKK(V ), with V covering the whole speed range, gain
scheduling control guarantees the stability of the closed-loop
bicycle system.

IV. EXPERIMENTS

A. Experimental Setup

A two-wheeled autonomous robot bicycle depicted in Fig.
1, namely RoBicycle, is built up. It is a nonlinear system
with three driving inputs: the steering handlebar, the rear
wheel rotation and the inertia wheel. The steering handlebar
is driven by a servoing motor and can be controlled by
either position or speed instructions. The inertia wheel motor
is driven by torque using Field-Oriented Control. The rear
wheel can be driven by either torque command or speed
command.

Although practical applications of RoBicycle demonstrate
good performance when it runs on both flat surface and small
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(a)               

 

(b)  

Fig. 5. Accelerating and braking experiment: (a) RoBicycle started running
on the left of the screen; (b) RoBicycle stopped on the right of the screen.

 Fig. 6. Results of Experiment 2: Accelerating and braking

bumps or bridges, the analyses and control of the bicycle
running on the non-flat surface are beyond the scope of this
paper. In this paper, all experiments have been performed on
a flat non-slippery surface. The full robot state information is
available by using the IMU to obtain Euler angle and attitude
of the robot with Kalman filter and data fusion, and encoders
of the driving motors to monitor the rotation angle of each
motor. The control law of the robot has been implemented
on an STM32H7 chip in C language with a sampling time of
Ts = 0.005s. ROS middleware is used for data transmission
and recording and other high-level strategy, such as planning
and decision, which is beyond the scope of this paper.

B. Experimental Results

Three experiments were performed to show the effective-
ness and robustness of the autonomous robot bicycle system
with the gain scheduled controller. These experiments are
shown in the accompanying video.

1) Static disturbances: As shown in Fig. 3(a)-(b), after the

   
(a)                                    (b) 

   
                 (c)                                   (d)               

Fig. 7. Hybrid Line - Circle - Line experiment: (a) started moving forward;
(b)-(c) run circle; (d) changed the curve from a circle back to a straight line.

 Fig. 8. Results of Experiment 3: Hybrid Line - Circle - Line

autonomous robot bicycle kept self-balanced in the equilib-
rium point for a few seconds, a disturbance towards one di-
rection was made by human hand before the system returned
to the equilibrium point and the inertia wheel rotational
angular velocity slowed down. Then a similar disturbance
towards the opposite direction was made. The results are
depicted in Fig. 4. After each disturbance, the Euler angle
θ changed dramatically. The inertia wheel controller gave a
peak torque over 10 Nm before the tilting Euler angle moved
back to the equilibrium point. The inertia wheel rotational
angular velocity φ̇ also changed during this period as a result
of the torque applied to the flywheel. The rear wheel did not
move, so the speed V = 0, with some noises obtained from
the rear wheel motor encoder.

2) Accelerating and braking: As shown in Fig. 5(a)-(b),
RoBicycle started balancing from the standstill, and then
moved forward. The human operator gave an acceleration
instruction to the rear wheel using the remote controller
followed by a braking instruction to stop the moving. The
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RoBicycle is balanced by the proposed controller during
the whole accelerating and braking period. The results are
depicted in Fig. 6. The accelerating and braking could be
regarded as external disturbances to the balance control.
That is why θ , Tr and φ̇ changed largely during the speed
changing between 10-22 s. The steering handlebar angle
changed at the time when RoBicycle started moving forward
to correct a static error of the initial value once it was
powered up. Once it stopped moving forward, the Euler
angle damped before it finally settled down around the
balancing point. Tests on uneven surfaces such as going
across deceleration belts also demonstrate the effectiveness
and robustness of the controller.

3) Hybrid Line - Circle - Line - Stop: As shown in Fig.
7(a)-(d), the RoBicycle accelerated along a straight line.
Then the human operator sent a desired Euler angle using
the remote controller to change the path to a circle. After the
bicycle running along a circle curve for about 60 seconds, an
instruction was given to change the path back to a straight
line, before a braking signal to speed it down. The RoBicycle
kept self-balanced through the whole procedure, even when
the moving speed turned back to 0 finally. The results are
depicted in Fig. 8. In this experiment, all previous control
design and strategies were applied. Initially, when the desired
Euler angle is zero, the inertia wheel torque contributed
greatly to the self-balance, with the steering handlebar angle
almost unchanged. After the bicycle received the deired Euler
angle and moved along a circle, the handlebar contributed
largely to the balancing, with the inertia wheel speed slowing
down. The bicycle can balance itself to the desired Euler
angle with the proposed controller. Again, RoBicycle kept
self-balanced by the gain scheduled controller during the
whole Stationary - Line - Circle - Line - Stop period. It was
shown that the robotic system was stable with the proposed
gain scheduled controller.

V. CONCLUSIONS
In this paper, we have designed a gain scheduled con-

troller to balance an autonomous bicycle. Compared with
other controllers, the proposed controller can balance the
bicycle without switching controllers between the stationary
mode and the dynamic mode. Experiments demonstrate that
the proposed gain scheduled balance controller is effective
whether the autonomous bicycle is stationary or moving.
Our future work will be dedicated to the model-free robust
balance controller design by means of robust dynamic pro-
gramming techniques developed in [25].
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