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D?VO: Monocular Deep Direct Visual Odometry
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Abstract—In this paper, we present a novel deep learning
and direct method based monocular visual odometry system
named D?VO. Our system reconstructs the dense depth map
of each keyframe and tracks camera poses based on these
keyframes. Combining direct method and deep learning, both
tracking and mapping of the system could benefit from the
geometric measurement and semantic information. For each
input frame, a feature pyramid is built and shared by both
tracking and mapping process. The depth map of keyframe
is efficiently estimated from coarse to fine with the followed
multi-view hierarchical depth estimation network. We optimize
the camera pose by minimizing photometric error between re-
projected features of each frame and its reference keyframe
with bundle adjustment. Experimental results on TUM dataset
demonstrate that our approach outperforms the state-of-the-art
methods on both tracking and mapping.

I. INTRODUCTION

Visual odometry (VO) enables robots to perceive the
surrounded environment and determine its localization with
a light-weighted camera, thus is essential for robotics, au-
tomatic driving and autonomous flight of UAVs. In the
last couple of years, several classic VO systems have been
proposed and have proven their good performance under a
large number of scenarios. Simultaneous localization and
mapping system (SLAM) can be regarded as an extended
version of VO, which implements the same function but ap-
plies additional modules such as loop closing. Both of these
systems are built based on two fundamental interdependent
processes, i.e. tracking and mapping. The mapping process
reconstructs the structure of environment and the tracking
process calculates the camera pose based on the known depth
structure. According to the different tracking and mapping
methods, VO can be divided into two categories, i.e. feature
based method and direct method. Feature based methods,
e.g. ORB-SLAM [1], find corresponding feature points and
track camera pose via solving PnP problem. Their mapping
process calculate the depth of those feature points with
triangulation. Direct method based VO, e.g. LSD-SLAM [2],
does not need to extract feature points, the system obtains
depths on high-textured region with epipolar line search by
minimizing the photometric error between current frame and
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its reference keyframe. Both tracking and mapping of these
methods are based on geometric calculation.

With rapid development of deep learning, deep neural
network has exhibited its strong ability in plenty of com-
puter vision tasks, e.g. classification, recognition, semantic
segmentation, stereo vision, etc. With those advancements,
plenty of learning based methods have been proposed to
solve dense mapping and camera tracking. Single view depth
estimation networks [3], [4], [5], [6], [7] direct infer the
depth map from a single input RGB image. Different with
conventional geometric methods, these methods attempt to
learn a mapping relationship between the RGB image and its
depth map. The networks are trained with mass of data and
regress the depth value of each pixel of the input RGB image.
[8], [9] investigate the potential of combining stereopsis cues
and the learned structure priors from a single-view depth
CNN. These approaches combine multi-view stereo cues and
single-view priors in a loosely coupled manner. Multi-view
depth estimation networks [10], [11], [12] aim to estimate
depth with known camera poses. The geometric information
is embeded into the network by inputting reference image
along with its cost volume that are calculated with a series
of frames with known poses. To estimate the ego-motion
of camera, deep learning based methods always utilize a
pose network with two frames as input and output the
relative pose between them. Single view depth estimation
network and pose network can easily form up a tracking and
mapping system similar to VO, e.g. [13], [14], [15], [16]. In
contrast to traditional VO system, without geometric cues,
the depth prediction is purely based on priori knowledge of
training dataset. Also, the pose network is too ambitious to
predict camera motion with only two RGB images. Another
problem is that both networks do not encode camera intrinsic
information, which means the system cannot be generalized
to other camera with different intrinsic parameters. To solve
those limitations, [17] proposed to replace the pose net with
direct minimizing photometric error to obtain camera pose.
BA-Net [18] embeded bundle adjustment(BA) into a single
view depth estimation network. Rather than using a pose net,
direct method which estimate camera pose with BA are more
practical and reliable.

With geometric calculation, state-of-the-art traditional VO
systems are robust and performs well for camera tracking in
most scenarios. However, the reconstructed depth structure
is incomplete, since only depths of feature points or in
high-textured region are measured. CNN-based depth and
pose prediction methods could output dense depth map and
camera pose, but the pose or depth prediction may be
purely based on semantic information learned from training
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dataset. Without geometric measurement, the depth or pose
prediction may crash in unfamiliar or unseen scenarios. To-
ward practical CNN-based VO, we aim to encode geometric
information in both tracking and mapping process with deep
learning. We combine the advantages of both deep learning
and the traditional method in our VO system. To this end,
we propose deep direct visual odometry, denoted as D?VO.
For dense mapping, we develop a multi-view depth estima-
tion network. The network takes frames with corresponding
camera poses as input. The multi-view geometric information
is encoded with the calculated cost volume based on camera
poses. To maintain both efficiency and accuracy, the depth
map is estimated hierarchically from coarse to fine. With
the RGB frame and its estimated dense depth, the following
camera pose can be optimized with bundle adjustment(BA)
by minimizing the photometric error between current frame
and re-projected reference frame. To utilize the advantage of
CNN, the photometric error is calculated between features of
two frames. The features are extracted with a neural network
and shared by depth estimation network for efficiency. Based
on this multi-view depth estimation network and the feature
based direct method, we design the pipeline of our keyframe
based VO as follows. In our system, we only estimate the
depth of keyframes. The depth of this keyframe is estimated
with its previous frames, and the following frames are
tracked with direct method based on this keyframe. The
tracking and mapping process are coupled as the traditional
method, and our system gets semantic information with CNN
and could output dense depth map. For system initialization,
we design an initialization method with the same depth
network used for mapping. Without additional network for
initialization, the storage space of the program can be saved.

To summarize, our D?VO uses an efficient multi-view
depth estimation network for mapping and feature map based
direct method for tracking. Both depth and pose are estimated
based on geometric measurement in our system, thus our sys-
tem combines the advantage of CNN and traditional methods.
We also design an initialization method with the same depth
estimation network. The experimental results demonstrate
our system outperforms the state-of-the-art methods.

II. RELATED WORK

In this section, we investigate related works to our D?VO,
e.g. traditional VO/SLAM systems, CNN-based depth and
pose prediction methods and learning-based VO systems.

State-of-the-art VO/vSLAM systems can be categorized
into two classes: feature-based method and direct method.
Notable feature-based methods include PTAM [19] and
ORB-SLAM [1]. These methods estimate camera pose by
detecting sparse feature points and finding correspondences
between current frame and local map and applying PnP
algorithm to the feature correspondences. With estimated
camera poses, the depth of each feature point could be
calculated via triangulation. Direct methods such as LSD-
SLAM [2] and DSO [20] find correspondences on high-
textured region, resulting in a much denser depth map. Both
methods optimize camera trajectory with BA to minimize

photometric error. To obtain dense depth map, DTAM [21]
features a standard multi-view dense depth/disparity esti-
mation pipeline including cost volume computation, cost
volume aggregation, depth estimation and depth refinement.
Visual-inertial systems (VINs) [22] is a method based on
low-cost IMUs which can provide accurate camera motions
in real-time. [23] presents an IMU pre-integration correction
approach which reduces the negative impact of IMU noises.

The great progress of deep learning stimulates the
learning-based depth estimation methods. Eigen et al. [3]
was the first to employ a two-stage network architecture for
single-view depth prediction. This two-stage network was
further improved in [4] to output both depth normal and
the depth map. Laina et al. [5] improved the accuracy of
single-view depth estimation with a deep CNN based on
ResNet. DORN [6] proposed a spacing-increasing discretiza-
tion strategy to discretize depth, recasted depth network
learning as an ordinal regression problem. To alleviate the
difficulties in collecting data with depth ground truth, Garg
et al. [7] developed an unsupervised training method for
depth estimation using a objective function to minimize the
photometric error between stereo image pairs.

Although CNN-based depth prediction network could in-
fer dense depth map for every pixel, the accuracy and
generalization ability of these methods are still worrisome.
The network learns depth of single image with only priori
knowledge in training datasets, resulting in poor performance
in unseen scenarios. To alleviate this problem and com-
bine the advantage of geometric and semantic information,
some approaches combined single-view depth estimation
with mature traditional SLAM/VO system. Yang et al. pro-
posed a Bayesian DeNet [9] which computed depth and
the corresponding uncertainty using a single-view depth
CNN, multi-view depth measurements were then fused in
a Bayesian framework. CNN-SLAM [24] and CNN-SVO
[25] used depth map from single-view depth estimation as
an initialization of depth estimation. [26], [27] implemented
dense mapping by inputting RGB image with sparse/semi-
dense depth map obtained from ORB-SLAM/LSD-SLAM to
depth estimation network respectively.

To better integrate geometric cues into CNN, multi-view
depth estimation networks predict depth with multiple input
frames with known camera poses. DeepMVS [28] divided
an input RGB image into small image patches and input
the reference patches and their candidate matching patches
on the epipolar line of neighbor images to the network
for finding matching correspondences. MVDepthNet [10]
computed the cost volume of a reference image using the
conventional plane sweep algorithm and then input the
reference image along with its cost volume into a lightweight
CNN for accurate depth estimation. MVSNet [11] calculated
cost volume on feature map with differentiable re-projection
layer. The cost volume was then fed into a CNN with 3D
convolution. DeMoN [29] presented a depth and motion
network which explored the stereo cues by alternating optical
flow estimation with the estimation of camera motion and
depth. The optical net found dense pixel correspondences
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Fig. 1. Tllustration of tracking and mapping of frame I, we track relative
pose T;; between If and its keyframe 1%, Once I¢ is determined as a new
keyframe, we estimate the depth of I with all the frames between I and
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Fig. 2. Three examples of estimated depth map of the keyframe I’f during
initialization. As the initialization progresses, the depth map of the initial
frame is continuously improved.

and depth map was calculated with triangulation and refined
with depth net. DENAO [30] tightly coupled a single-view
depth net with an optical flow net as an auxiliary helper.

Some methods also proposed to estimate camera pose
based on CNN. DeepVO [31] employed an RNN to predict
camera pose end-to-end from input image sequence. Many
methods, e.g. Tinghui et al. [13], GeoNet [14], sfm-net [15],
UndeepVO [16], concurrently trained a pose net and a depth
net to form CNN-based VO systems. The depth net and pose
net were jointly trained and provide training constraint to
each other in an unsupervised manner. The depth network
took a single image as input to predict depth map and the
pose network took two successive images as input to predict
the relative pose between them. However, the depth net
and pose net were performed separately during deployment.
Without geometric cues, predicting pose directly from two
images is difficult. To avoid the pose prediction difficulties,
Wang et al. [17] replaced the pose prediction network with
direct method, where the camera pose was calculated with
BA. BA-Net [18] proposed to integrate the BA option into
a deep neural network. They predicted the depth of image
with single-view depth estimation method but optimized the
camera pose with BA to minimize photometric error between
the features of image pairs. To force the network to learn
multi-view geometric information, DeMoN [29] predicted
the camera pose from a branch of optical flow net. DeepTAM
[12] iteratively updated poses with predicted pose residuals
between reference frame and warped neighbor frame from a

‘
;?:;L Initialization Estimate
i Depth of
Current
Extract Track Camera Frame
Feature Pose with BA

Fig. 3. Tllustration of system pipeline. For each input frame, the system
first extracts its feature map. When the system is not initialized, it enters the
initialization process. If the system has been initialized, the system tracks
the camera pose and predict the depth of the key frames.

pose net.

I1I. METHOD

In this section, we illustrate the proposed D?VO in detail.
We first introduce the system pipeline of initialization, track-
ing and mapping. Then we describe the network architecture
for dense multi-view depth estimation in mapping process
and the direct method based tracking procedure.

A. System Pipeline

As illustrated in Fig. 1, for i'" coming camera frame I¢,
we aim to estimate its corresponding camera pose T; =
[Ri,t;] € SE(3) in world coordinate, composed of a 3x3
rotation matrix R; € SO(3) and a 3D translation vector
t; € R3. The camera poses are tracked based on its
corresponding keyframe 1%, which is a frame before I¢ with
calculated camera pose T; and inverse dense depth map
D;. The inverse depth of I? is estimated with a multi-view
depth estimation network in mapping procedure previously.
With camera trajectory and dense depth map D of each
keyframe, the robot or other equipment is enabled to move
autonomously in an unfamiliar environment.

For a keyframe based monocular VO/SLAM system, track-
ing, i.e. camera pose estimation, is based on the depth of
reference keyframe or local map and mapping, i.e. depth
estimation is based on the known camera poses of pre-
vious frames of the current keyframe. Thus, tracking and
mapping procedure are necessary to each other. Without
neither known camera pose or depth map, the first important
thing for a VO/SLAM is to initialize the system with an
initial depth map and camera pose. In ORB-SLAM [1], the
initial camera pose is calculated with solving homograph
or essential matrix. DeepTAM [12] focuses on solving both
tracking and mapping with CNN, for initialization, they uses
an independent single-view depth estimation network. This
method needs an additional large depth network and cannot
avoid the inherent problem of single-view depth estimation.

We aim to design a CNN-based initialization method
which integrates multi-view geometric cues but without
redundant network. To this end, as same as LSD-SLAM [2],
we randomly initialize the depth map D, of the first input
frame I§. The depth value d, , of the pixel on [u,v]" in
this initialized depth map obeys gaussian distribution, i.e.
duv ~ N(1,0%), where o is set as 0.1 in our system. We
then set frame I as a keyframe I} and track the following
input frame I respect to it. And with the determined camera
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Fig. 4. The architecture of depth estimation network. The depth estimation network contains four sub-networks. The coarse net estimates the initial depth
with the lowest feature resolution, and then three refinement nets gradually improve the depth prediction results of the previous layer.

pose T; of I{, we input frame pairs (i.e. I{ and I’f) and T,
into the mapping network and replace original depth map D1
with the network output. Then we track subsequent frames
with updated depth map D;. With this iterative updating
strategy(see Fig. 2), the depth map D; is continuously
meliorated based on the better camera pose and the pose
of subsequent frames is also improved simultaneously with
the improving reference depth map. For simplicity, we update
the depth map D; of the first keyframe I¥ with fixed number
of frames. When the pose of 10" frame I, is determined,
we set I, as the new keyframe I%,. Then we estimate the
depth map of this new keyframe by feeding features of I%,,
I’f and the relative pose T ; into the network.

After initialization, the following tracking is based on
the reference keyframe. For input frame I to our system,
we firstly utilize a neural network with 8 layers to extract
the features. Every two layers, the resolution of the feautre
map is reduced half with stride being set to 2. We take
feature maps of each resolution to build a multi-scale feature
pyramid F/*(n = 1,2, 3,4). The camera pose is determined
by minimizing the photometric residual of features between
current frame and its reference keyframe. The detailed track-
ing process will be introduced in Sec. IIIC. Different to the
initialization part, we do not update the depth of keyframe
after obtaining the pose of a new frame for efficiency.

After tracking several frames, the distance between the
new frame to its reference keyframe may get larger and
overlapping rate between two frames decreases. At this time,
the current keyframe is not suitable for further tracking, so
we need to determine a new keyframe. To this end, a distance
coefficient D is defined to measure the distance between the
current frame If to its reference keyframe I?:

D= |R¢'es - RE6E, (1

If D > 0.15 or the rotation angle between I and Ié? is
larger than 6°, we determine the current frame I as a new
keyframe IF.

For a newly determined keyframe, we need to calculate
its depth map for the next tracking. We input all the features
of frames between the current frame I¥ and the second prior
keyframe with their camera poses to our depth network. The
network produces the depth map of the current keyframe
end-to-end. The full system pipeline is illustrated in Fig. 3.

B. Mapping network architecture

We present the details of our multi-view depth estimation
network architecture in this subsection. The depth network
takes the feature map of reference keyframe F. ;. the fea-
tures F7'(i = 1,2,..., N) of N previous sequential neighbor
frames along with their poses T,.s and T} (i = 1,2,...,N)
and camera intrinsic K as input. The depth map D,..; of I¥_ f
is estimated following a hierarchical coarse-to-fine strategy.
As shown in Fig. 4, we utilize four sub-networks to estimate
depth. We call the sub-network based on the top of feature
pyramid F! with lowest feature resolution as coarse net,
and denote other three sub-networks as refinement net. The
coarse net estimates the initial depth and the other refinement
nets refine depth result based on this initial depth map.

To encode multi-view geometric information into the depth
network, we first construct the cost volume in each sub-
network. To form the cost volume, we need to warp the
neighbor feature to reference feature with respect to different
depth hypothesis. The depth hypothesis D,..; of reference
keyframe is sampled in discrete interval. Without a prior
depth for coarse depth net, the depth hypotheses are divided
with a fixed depth range. The depth value d. of a pixel
in m'" depth hypothesis and n'" pyramid level could be
calculated as:

d — dm;
dr = domin mazx mzn, _ ,17“'
. +mx* 1 (m=0
where d,,;n, and d,,q, are the minimum and maximum depth
value respectively. We take M depth hypotheses for each
depth map.

7M71) (2)
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Fig. 5. The depth estimation results from sub-networks in different pyramid
levels. D1 represents the depth prediction result output by the coarse net,
then the depth maps in D2 D3 D4 are gradually refined.

For the refinement net, the search range of depth on the
epipolar line could shrink to a narrower band based on the
previously predicted depth. Thus, the depth hypothesis value
dy, could be calculate as:

=0,1,...,M—1) 3)

where d,. is the previous depth of the last pyramid and o
is the depth sample 1nterval

Correspondlng to m'" depth hypothesis D" of reference
keyframe at n'” pyramid level, we warp each pixel u’.. on

nei
neighbor feature Fj,,, ; to the reference feature F_ ; to form

M
dr, = pre+(m—?)*a*dpre,(m

net,i
’

n,m . . .
a new feature F, ;. using warping function:

n m —
u,.; =7(Treprneii ™

D)) “)
where T.ctneii 18 the relative camera pose between Iffe f
and I, ;, 7 is the camera projection model which projects
a 3D point in the world coordinate to a 2D coordinate on
the image frame, 7~ ! is the inverse projection model that
recovers 3D point in the camera coordinate from its 2D
projection.

Assume the dimension of the feature map F;.

neii 18 H X
W x C, the warped feature Fn’e:”z with M depth hypotheses

1nsizeofH><W><C’><M.

’I'LE’L i

The cost volume C is calculated based on F7; ; " and Fl s
Some methods directly build 4-dimensional cost volumes and
perform 3D convolution. Instead, to maintain computational
efficiency, we use the group wise average proposed in [32].
Specifically, we divide the feature maps of both reference
frame and warped neighbor frames into G' groups respect to
the channel dimension. In each feature group with size of
H x W x C/G x M, the mean and variance of feature can
be calculated as:

( nez ’

form up the feature map F7'

ref g + Z’L 1 FZ&TZ

F?nean 9 N+1 (5)
n n 2
Fr o ‘Fref g Fmean g| + Zz 1 | nez z,g - Fmean,g'
var,g — N+1
(6)

Feature Pyramid

F .l. ...

1" |c

___upsample |

uMp]e ___upsample

BA
module

=== Ginit

Fig. 6. Ilustration of tracking procedure. Tracking procedure shares the
same feature pyramid as the depth prediction network. The obtained feature
F"(n = 1,2,3) will be input to the BA module for camera tracking. At
each pyramid level, we iteratively update the camera pose then input the
result to the next level for further refinement

We set the feature variance 'y, - as the cost volume C¢ and
average the value along its channel dimension. The size of
averaged cost volume in each group is H x W x 1 x M. The
redundant channel is then abandoned. We then concatenate
Cj to form the final cost volume Cy in size of H xW xGM.

We input the cost volume C' with feature F)_; to the
coarse net. For the refinement net, we additionally input
the up-sampled depth map result from last pyramid level.
The sub-networks have the same number of layers. Each
of them is encoder-decoder based network, and skip con-
nections are applied to the layers with same resolution
in the encoder and the decoder, formed the network as a
U-Net. In the encoder part, the feature map is processed
with convolutional layers and the resolution reduced every
two layers. For decoder, the feature map is up-sampled
with deconvolutional layer. Each deconvolutional layer is
followed by a convolutional layer. As a result, each sub-
network has 14 convolutional/deconvolutional layers. The
sub-network at higher level of pyramid, e.g. the coarse net
at the top level, has input features and cost volume with
smaller resolution. To ensure the capability of the coarse
net to capture the global depth, we employ the sub-network
with more channel numbers. Since the resolution is small
at top level of pyramid, large number of feature channels
will not reduce the efficiency. With the resolution of feature
map enlarged at lower level of pyramid, we reduce the
channel numbers of the refinement network to guarantee
the computation speed. Based on the previous depth result
from higher level, the refinement net only needs to capture
the detailed local information, thus the reduction in feature
channels will not lead to loss of accuracy. As shown in Fig.
5, the depth map is estimated from coarse to fine.

C. Tracking procedure

The tracking process is based on the same feature pyramid
as depth estimation network. As proposed in BA-Net [18],
we further process these features with additional convolu-
tional layers. Specifically, the feature F" is added with up-
sampled feature of F"~1, Then the feature map is convolved
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TABLE I
COMPARISON RESULTS OF DEPTH ESTIMATION ON TUM DATASET.

Error Accurac
Method oy Tseimy T o0 s
DeepMVS | 0.7 | 009 | 0.198 | 0.795 | 0908 | 0.97
DeepTAM | 0.115 | 0.072 | 0.15 | 0.866 | 0.953 | 0.981
MVDepthNet | 0.101 | 0.066 | 0.137 | 0.874 | 0951 | 0.981
DENAO | 0,093 | 0.063 | 0.121 | 0.891 | 0.959 | 0.979
Ours 0.0890 | 0.055 | 0.126 | 0.904 | 0.968 | 0.958

with another convolutional layer, resulting in the feature
F'(n=1,2,3) for camera tracking.

To determine the camera pose between the current frame
I and its reference keyframe Ié?, we first initialize the
current camera pose T; with the previous frame T, i,
then we optimize the camera pose iteratively with bundle
adjustment. To this end, we transform the camera pose T;
into Lie algebra forma/t as &. We re-project the feature F:l

to keyframe Fj as F? with (4). We sample 4096 points at
[u, v, c]" in high gradient region and calculate its photometric
error €7, .(€)) between F; and F; . Assuming the size of

feature map F? is H x W x GM, the overall feature-metric
error can be expressed as,

E(ﬁ) = {eﬁ,u,c(fﬂu € [07 H)vw € [07 W)a (S [07 GM)}
)
Following Levenberg-Marquardt (LM) algorithm, we solve
for an optimal update pose A& with:

AE=(J(E)TIE) +ADE) T IETEE)  ®)

Where ¢ is a parameterization of the lie algebra of SE(3),
J(&) is the Jacobian matrix, J(£)TJ(€) is the Hessian matrix,
D(¢) is the diagonal matrix of Hessian matrix and A is
the damping factor. Then the camera pose is then updated
iteratively with:

£ =ALo¢ ©

and o denotes parameter update. We implement these matrix
computations in deep learning framework and form up a dif-
ferentiable BA module. At each pyramid level, we iteratively

MVDepthNet

DENAO Ours Ground Truth

Visualization results of multi-view depth estimation result from DeepMVS, DeepTAM, MVDepthNet, DENAO and ours.

update the camera pose then input the result to the next level
for further refinement (See Fig. 6).

D. Implement details

Our network was implemented with Tensorflow, trained
and evaluated on a single Nvidia TITAN Xp GPU with 12GB
of VRAM. We used the ScanNet [33] dataset to train our
network. We collect image pairs and image sequences for
depth network training. The image pairs are chosen from the
dataset if the overlapping ratio between projected image and
reference image is greater than 65%. For image sequences,
we choose five frames at intervals of 2 frames. With these
strategies, we collected 309k image pairs and 227k image
sequences. During training, we online augment the training
reference images and the corresponding neighbor images by
randomly changing their brightness, saturation, hue, and ran-
domly flipping image pairs vertically or horizontally as well
as their corresponding ground truth. Accordingly, the relative
camera pose is adjusted according to the flip operation.

We use the Adam optimizer during the entire training
procedure. We first train the depth network and feature
pyramid with image pairs for 2200k iterations, then input
the image sequence to train the network for 100k iterations.
To train tracking net feature, we first fix the feature of feature
pyramid and train the tracking net for 100k iterations. Finally,
the tracking and mapping networks are jointly trained for 10k
iterations. The over all objective function can be expressed
as:

L= Ldepth + Epose (10)
and
4
Lacptn = »_|D™ — D™ (11
n=1
3

Lpose = Y (E" =™+ r" —x™))  (12)

n=1

where D™ and D™ are the predicted depth map and ground
truth depth map at n*"* pyramid level. t” and r™ are camera
translation and rotation expressed in Euler angle format, t™*
and r"* are the corresponding ground truth.
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TABLE I
COMPARISON RESULTS OF CAMERA TRAJECTORY ON TUM DATASET.

RPE-RMSE[m/s] ATE-RMSE[m]
init w/ gt init w/o gt init w/ gt init w/o gt

Sequence | —ops- LSD- LSD- LSD-
SLAM DeepTAM Ours SLAM DeepTAM Ours SLAM DeepTAM Ours SLAM DeepTAM Ours
fr1/desk 0.960 0.121 0.075 0.237 0.120 0.073 2.124 0.336 0.230 0.571 0.337 0.186
frl/xyz 0.024 0.033 0.088 0.049 0.032 0.064 0.015 0.051 0.093 0.031 0.048 0.090
fr1/360 crash 0.127 0.106 crash 0.114 0.093 crash 0.223 0.128 crash 0.205 0.089
fri/desk2 | 19.238 0.201 0.163 0.442 0.217 0.143 | 23.613 0.488 0.399 0.761 0.584 0.294
fr1/floor 0.286 0.282 0.217 0.286 0.311 0.102 0.764 0.629 0.611 0.790 0.689 0.244
fr1/plant 0.212 0.281 0.098 0.069 0.297 0.112 0.351 0.776 0.210 0.096 0.667 0.304
frl/room 0.727 0.150 0.123 0.335 0.157 0.116 1.002 0.636 0.298 0.639 0.637 0.285
frl/rpy 0.110 0.039 0.069 0.063 0.040 0.043 0.060 0.065 0.090 0.053 0.078 0.056
frl/teddy 0.240 0.184 0.110 0.303 0.173 0.132 0.670 0.444 0.310 0.774 0.376 0.312
average 2.725 0.158 0.117 0.223 0.162 0.098 3.575 0.405 0.263 0.464 0.402 0.207

Fig. 8.

During network training, we warp features and build cost
volume with ground truth camera pose. The inverse depth
range of coarse net din, dmar are set to 0.01 and 2.5
respectively. The pose is updated for 3 times at each pyramid
level during training. For deployment, we update camera
pose for 10 times at each pyramid level in BA module.

IV. EXPERIMENT

We use 9 sequences in TUM dataset [34] to evaluate the
performance of our D?VO. We first evaluate the depth esti-
mation accuracy of our mapping network. To compare with
other methods, we construct our test set as follows. In each
image sequence, we uniformly sampled five images with a
stride of 10 images in a non-overlapping sliding window
manner. We treat the 3% image of every five sampled images
as the reference image, and the other four images as the
neighbor images. As a result,we obtain a total of 337 sets
of test image sets. We use four metrics to measure the error
and accuracy of the depth result, i.e. relative error (L1-rel),
inverse depth error (L1-inv), scale invariant error (sc-inv) and
percentage of predicted pixels where the L1-rel is within a
threshold 6. We compare our method with four state-of-the-
art multi-view depth estimation methods, i.e. DeepMVS [28],
MVDepthNet [10], DENAO [30], DeepTAM [12]. The result
of those methods are obtained with their source codes and
pre-trained models.

As shown in Table. I and Fig. 7, we outperforms the
state-of-the-art methods on both quantity and quality for

The visualization results of camera trajectory and reconstructed depth structure on fr1/360, frl/plant, fr1/desk, frl/desk2 and frl/teddy.

all the evaluation metrics. It is worth mentioning that the
training dataset and testing dataset of our network are entirely
different, while DeepMVS, MVDepthNet and DENAO used
sampled image pairs from TUM dataset for training. Some
scenarios in their training data and test data may be quite
similar. Compare with one-stage depth prediction network
MVDepthNet and DeepMVS, our depth network refines
the depth from coarse to fine with muliple sub-networks.
The mapping networks of both D2VO and DeepTAM are
built based on this coarse-to-fine and iterative optimization
strategy. However, D?VO predicts depth with hierarchical
network and estimates depth from low resolution. DeepTAM
inputs the depth result iteratively into the same network with
fixed resolution.

To evaluate the tracking accuracy of D?VO, we compare
our system with traditional direct method based SLAM, i.e.
LSD-SLAM [2], and learning based tracking and mapping
method, i.e. DeepTAM [12], on 9 sequences from TUM
dataset. The trajectory results are evaluated with RPE and
ATE error. To remove the affect of initialization method,
we first initialize all the systems with ground truth depth
map (i.e. init w/ gt) and compare the tracking result. Then
we utilize the separate initialization method of each sys-
tem (i.e. init w/o gt) and compare the result of the full
system. The comparison results are shown in Table. II. We
outperform the other methods on 6 sequences in 9 sequences
of TUM dataset. The comparison results between different
initialization methods demonstrate the effectiveness of our
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initialization strategy. In Fig. 8, we display the trajectory
and reconstruction results of five example image sequences.

V. CONCLUSIONS

Geometric information is essential for visual odometry.
To integrate geometric cues into both tracking and mapping
of learning based VO system, we propose D?VO, which
estimate depth of keyframes with multi-view depth estima-
tion network and track camera poses with direct method.
The light-weighted depth net is designed with a hierarchical
coarse-to-fine strategy, guaranteeing the efficiency and ac-
curacy of our mapping process. The system initialization is
based on the same depth network, which saves the memory
space of the program. The camera poses are calculated by
minimizing the photometric error between feature maps of
the frames. The tracking and mapping are tightly coupled
with keyframes as traditional VO/SLAM systems. Benefiting
from both traditional geometric calculation and deep CNN,
our D?VO yields state-of-the-art results on both tracking and
mapping. In the future, we will attempt to extend our system
to joint optimize the depth and pose with CNN.
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