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Abstract— We present a distributed algorithm to enable a
group of robots to collaboratively manipulate an object to a de-
sired configuration while avoiding obstacles. Each robot solves
a local optimization problem iteratively and communicates
with its local neighbors, ultimately converging to the optimal
trajectory of the object over a receding horizon. The algorithm
scales efficiently to large groups, with a convergence rate
constant in the number of robots, and can enforce constraints
that are only known to a subset of the robots, such as for
collision avoidance using local online sensing. We show that
the algorithm converges many orders of magnitude faster, and
results in a tracking error two orders of magnitude lower, than
competing distributed collaborative manipulation algorithms
based on Consensus alternating direction method of multipliers
(ADMM).

I. INTRODUCTION

In many situations, manipulating an object requires mul-
tiple robots. We present the Scalable Optimal Collaborative
Manipulation with Local Constraints (SOCM LoCo) algo-
rithm, a distributed algorithm by which a group of robots
can collaboratively move an object to a desired configuration
while avoiding obstacles in the environment. Each robot
only communicates with its neighbors over a connected
communication network, making the algorithm distributed.
The algorithm’s efficient scalability arises from its constant
computational complexity, independent of the number of
robots, allowing for an arbitrary number of robots to col-
laborate. The algorithm also allows for individual robots
to sense obstacles online and impose collision avoidance
constraints without other robots explicitly knowing about
these constraints. In simulation, we show that SOCM LoCo
provides 100 times better tracking performance and several
orders of magnitude faster convergence rate than a distributed
method based on Consensus alternating direction method of
multipliers (ADMM) and performs comparably to leader-
follower methods.

Our algorithm would be useful in a variety of collaborative
manipulation applications, including in automated manu-
facturing or warehouse environments and in autonomous
construction of buildings or structures in hazardous or remote
environments such as in space. In these applications, a
team of robots can work together to move large parts or
sub-assemblies into place, providing greater scalability than
traditional monolithic robots. In addition, our algorithm can
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Fig. 1. A group of robots jointly manipulating an object along a desired
trajectory. The robots compute a collision free trajectory, even if only a
subset of the robots know about the presence of obstacles through local
sensing.

be applied in disaster relief scenarios, where heavy and
varied debris must be cleared by a group of robots to aid
emergency workers in search of survivors. In all these cases,
our algorithm enables the coordination of the group of robots
in manipulating objects.

The algorithm proceeds in a receding horizon fashion.
Each robot solves a series of local optimization problems
iteratively and communicates with its neighbors over a
communication network, enabling the entire group to ma-
nipulate the object along an optimal trajectory respecting the
object’s dynamics, collision avoidance constraints, and input
constraints of the robots. For convex constraints and affine
object dynamics, our algorithm is guaranteed to converge
to the globally optimal trajectory. In more practical cases
with non-convex constraints such as collision avoidance
and non-linear dynamics, including rotational dynamics, the
algorithm gives locally optimal, collision free trajectories.
The algorithm is inspired by the Separable Optimization
Variable ADMM (SOVA) method [1]. Specifically, we use
a separable optimization variable property unique to the
collaborative manipulation problem to greatly reduce the
number of optimization variables handled by each robot,
thereby leading to faster convergence and better performance
than other ADMM methods.

The contributions of this work are as follows. We derive
the SOCM LoCo algorithm and prove its convergence to the
globally optimal trajectory for an object with affine dynamics
and convex constraints. Through iterative linearization, we
extend the method to the case of non-linear dynamics and
non-convex constraints. Further, we show the algorithm has
a constant computational complexity, independent of the
number of robots, while other methods scale cubically in
the number of robots. In simulation, we show SOCM LoCo
converges many orders of magnitude faster and attains a
tracking error 100 times smaller than distributed methods
based on Consensus ADMM.
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This paper is organized as follows: in Section II, we note
previous approaches and formulate the manipulation task
as an optimization problem in Section III. We derive our
distributed algorithm using the alternating direction method
of multipliers in Section IV and apply our algorithm to
objects with non-convex dynamics in Section V. In Section
VI, we demonstrate our algorithm with as many as 100
robots collaboratively manipulating an object under different
communication constraints. We provide concluding remarks
in Section VII.

II. RELATED WORKS

Many approaches achieve collaborative manipulation us-
ing centralized control schemes which aggregate local in-
formation from each robot to compute individual motor
commands [2], [3], [4]. These approaches require significant
computation and communication and do not scale with the
number of robots involved in the manipulation task. To allow
for distributed schemes, previous approaches use potential
fields to guide each robot to the object and subsequently
manipulate the object by enclosing it, described as object
closure or caging [5], [6]. These methods do not provide a
mechanism for specifying local constraints for each robot
which our method provides. To handle constraints, some
methods plan for collision free trajectories in convex spaces
of the environment centrally and follow these trajectories
using local controllers [7], [8]. Our method does not require
any centralized computation procedure, making it fully dis-
tributed.

Some other approaches employ a leader-follower archi-
tecture in which a single robot (leader) actively manipulates
the object along a desired trajectory while the other robots
(followers) infer the motion of the leader and move in
consistency with the leader’s motion. In some approaches
[9], the followers communicate their motion constraints
explicitly to the leader which shares the desired trajectory
to all robots, incurring significant communication and poor
scalability, while others require a human operator to issue
commands for the group of robots [10]. Some other methods
allow for collaboration between the leader and followers
without communication. In these approaches, only the leader
knows its desired trajectory. The followers estimate the
leader’s trajectory using force sensors and move along with
the leader using non-linear feedback controllers [11], [12],
[13], impedance controllers [14], [15], [16], and adaptive
controllers [17]. For small groups of robots, the followers can
estimate the leader’s trajectory using impedance controllers
without force sensors [18], with greater tracking errors for
larger groups. All the above approaches allow the robots to
follow the leader’s trajectory but do not address trajectory
planning for the group of robots. In contrast, our method
finds the optimal trajectory for the object, avoiding collisions
in the environment.

Other distributed methods describe the desired object
trajectory using impedance without a designated leader [19].
The desired object impedance is distributed among the robots
to compute individual control inputs using knowledge of the

geometric relations between the robots. Each robot receives
its desired trajectory before the task and follows the specified
trajectory through impedance control. Like leader-follower
approaches, these methods allow for following a desired
trajectory without trajectory planning. In addition, these
methods are suited to manipulation tasks involving a few
robots (2 to 5 robots) with known grasp points and do not
scale to large groups of robots.

Our method enables a group of robot to collaboratively
plan an optimal trajectory for an object, responding to
avoid obstacles in the environment known by a subset
of the robots, while manipulating the object. In addition,
with constant computational complexity, our algorithm scales
to large groups of robots. We derive our algorithm using
the alternating direction method of multipliers (ADMM),
exploiting separability of the optimization variable to achieve
lower computation and communication complexity. ADMM
has been applied in receding horizon control, albeit in a
centralized fashion [20]. Our distributed method provides
greater tolerance to errors through feedback with a receding
horizon approach.

III. PROBLEM FORMULATION

We desire to manipulate an object from an initial configu-
ration to a desired final configuration by controlling a group
of robots to work in collaboration. Each robot grasps the
object before manipulating it. We denote the object’s config-
uration and velocities as xobj which includes its position and
translational velocity and its orientation and angular velocity.
We consider a group of N robots manipulating the object.
Robot i applies force Fi and torque Γi to the object. We can
express the manipulation task as an optimization problem
given by

minimize
∫ T

t=0

(
ψ(xobj(t)) +

N∑
i=1

βi(Fi(t),Γi(t))
)
dt

subject to g(xobj(t), F (t),Γ(t)) = 0 ∀t
h(xobj(t), F (t),Γ(t)) ≤ 0 ∀t

(1)
We include a desired trajectory tracking objective for the
manipulated object ψ(·) and encode desired behaviors for
robot i such as to minimize energy or fuel consumption
in βi(·). In addition, we consider dynamic constraints and
equality constraints on the initial configurations and ve-
locities of the object and robots given by g(·). We also
incorporate additional convex constraints on the object’s
configuration and its derivatives denoted by h(·) which can
include collision avoidance constraints represented by safe
convex zones within the environment.

Communication Graph

We represent the robots as nodes in an undirected graph
G described by a set of vertices V = {i | i = 1, · · · , N} and
a set of edges E . An edge (i, j) exists in E if robot i can
communicate with robot j. We assume the communication
graph G is connected i.e. we can obtain a path linking every
pair of nodes from the edges in E . In addition, we denote the
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neighbor set of robot i as Ni = {j | (i, j) ∈ E} consisting of
robots which can communicate with robot i.

IV. DISTRIBUTED CONTROL

Distributed approaches to solving (1) typically involve
communicating all relevant problem information to a single
robot designated as a leader which computes and shares the
solution to the other robots or followers. However, these
approaches require significant communication especially for
large groups of agents. With our approach, each robot
computes its applied force and torque without a designated
leader. To derive a scalable distributed scheme, we express
problem (1) as

minimize
N∑
i=1

∫ T

t=0

(
ψi(xi,obj(t)) + βi(Fi(t),Γi(t))

)
dt

subject to gi(xi,obj(t), Fi(t),Γi(t)) = 0 ∀t, ∀i ∈ V
hi(xi,obj(t), Fi(t),Γi(t)) ≤ 0 ∀t, ∀i ∈ V
xi,obj(t) = xj,obj(t) ∀t, ∀j ∈ Ni, ∀i ∈ V

(2)
where each robot maintains a local copy of the trajectory
of the object xobj and ψi(xi,obj(t)) represents the tracking
objective for the object trajectory associated with robot i. To
retain the same objective function in (2), each robot receives
the same tracking objective function for its local copy of the
object trajectory. We introduce the equality constraints on
local copies of the object’s trajectory to ensure that all local
object’s trajectories coincide.

Theorem 1. The optimization problem expressed in (2) is
equivalent to (1) with the same optimal control inputs for
each robot and associated object trajectory.

Proof. Noting that the communication graph G is connected,
the equality constraint in (2) ensures that all robots maintain
the same object trajectory (xi,obj(t) = xobj(t) ∀i, t). Con-
sequently, the objective function in (2) simplifies to the
objective in (1). Both problems are thus equivalent with the
same minimizers and optimal objective value.

With this formulation, the objective function in (2) is
separable among the robots, and thus we can develop fully
distributed schemes for solving the optimization problem.
We discretize the optimization problem in (1) for transcrip-
tion to a numerical optimization problem. The size of the
optimization problem grows super-linearly with the duration
of the manipulation task and the number of collaborating
robots which makes solving the entire problem challenging
in real-time. Meanwhile, many robotic tasks involve object
manipulation over considerable time periods. Thus, we take
a receding horizon control approach to solving (2). We
solve the optimization problem over a smaller time horizon
consisting of Nτ stages, apply the control inputs from the
first stage, and repeat the procedure at each time interval.
In addition, this approach provides added robustness to
errors through feedback at each time interval. The resulting

optimization problem at each time instance is given by

minimize
N∑
i=1

Nτ−1∑
τ=0

(
ψi(xi,obj(τ)) + βi(Fi(τ),Γi(τ))

)
subject to gi(xi,obj(τ), Fi(τ),Γi(τ)) = 0 ∀τ, ∀i ∈ V

hi(xi,obj(τ), Fi(τ),Γi(τ)) ≤ 0 ∀τ, ∀i ∈ V
xi,obj(τ) = xj,obj(τ) ∀τ, ∀j ∈ Ni, ∀i ∈ V

(3)
A naive method for solving the optmization in (3) involves

distributing local copies of the entire optimization variable
among the robots as in previous ADMM methods [21]. With
this approach, each robot computes the control inputs for
all robots within the group but only applies the control
inputs relevant to it. The size of the optimization variables
is O(N) and thus scales linearly with the number of robots.
Consequently, this approach incurs significant computation
and communication complexity for larger groups of robots
and number of stages Nτ .

To overcome the drawbacks of this naive approach, we
employ the SOVA method in [1] which produces a distributed
procedure with faster convergence rates and much lower
computation and communication complexity, by noting the
optimization variable is separable among the robots. More-
over, each robot has no explicit knowledge of the local
constraints of the other robots with our approach. Figure 2 il-
lustrates the distribution of the optimization variables among
the robots. Each robot optimizes over variables relevant to
its actions.

Fig. 2. Distribution of the optimization variables among the robots.

In this approach, the optimization variable is distributed
among the robots with equality constraints on correspond-
ing elements within each robot’s optimization variable. We
denote robot i’s contribution to the objective function in
(3) as Ji(·) and drop the inputs to Ji. We represent the
vertical concatenation of xi,obj(τ), τ = 0, · · · , Nτ − 1, as
xi,obj. Likewise, we represent the vertical concatenation of
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the control inputs over the same interval as Fi and Γi. The
augmented Lagrangian La of (3) is

La =

N∑
i=1

(
Ji(·) + cTi gi(·) + dT

i hi(·)

+
∑
j∈Ni

(
λT
ij(xi,obj − vij) + γT

ij (xj,obj − wij)
)

+
ρ

2

∑
j∈Ni

(
‖xi,obj − vij‖22 + ‖xj,obj − wij‖22

))
(4)

with the slack variables vij and wij for the equality con-
straints on the local object’s trajectories and ci, di, λij ,
and γij as dual variables on the problem constraints gi(·),
hi(·), and the object trajectory constraints respectively with
di ≥ 0. The augmented Lagrangian (4) includes the penalty
ρ on the residual in the equality constraints on the lo-
cal object trajectories. Each robot’s optimization variable
is updated iteratively as the minimizers of the augmented
Lagrangian while the dual variables associated with the
problem constraints are updated through dual ascent on the
augmented Lagrangian. The update step for the force and
torque applied by each robot and the object trajectory reduces
to the solution of a convex minimization problem for which
efficient optimization solvers exist. We denote the vertically
concatenated control inputs and trajectories at robot i as
ri = (xi,obj,Fi,Γi) and update ri using

rk+1
i = argmin

xi,obj,Fi,Γi

max
ci,di

{
Ji(·) + cTi gi(·) + dT

i hi(·) + qkTi xi,obj

+ ρ
∑
j∈Ni

∥∥∥xi,obj −
xki,obj + xkj,obj

2

∥∥∥2
2

}
(5)

with the dual variable qi associated with the equality con-
straint on xi,obj and subsequently update qi with

qk+1
i = qki + ρ

∑
j∈Ni

(
xk+1
i,obj − xk+1

j,obj

)
(6)

We compute the applied forces and torques at each time
interval and execute only the first control input associated
with the first stage of the optimization problem in (3). For
each problem instance, the robots communicate their local
object trajectories only, allowing each robot to independently
select control forces and torques which satisfy its dynamic
constraints and other robot-specific desired behaviors. Hence,
each robot does not need to exchange information relating
to its local constraints. Each robot updates its applied force,
torque, and object trajectory over the problem horizon using
(5). The dual variable updates involve simple algebraic
operations which are efficient to execute. At the beginning
of the manipulation task at t = 0, the initial values of these
optimization variables are initialized as the solution to the
optimization problem given by

r0i ← argmin
xi,obj,Fi,Γi

max
ci,di

{
Ji(·) + cTi gi(·) + dT

i hi(·)
}

(7)

At subsequent time instances t > 0, the optimization vari-
ables are initialized using the solution to the previous prob-

lem instance. This choice of initialization improves compu-
tation efficiency especially in manipulation tasks with slowly
changing problem constraints as prior problem information
is passed to the problem instance at the present time t.

Theorem 2. The torques and forces applied by the robots
Fi, Γi ∀i ∈ V converge to their optimal values in (3).
Likewise, xi,obj ∀i ∈ V converges to the corresponding
optimal trajectory in (3).

Proof. The augmented Lagrangian of (3) is closed, finite,
and convex. Hence, a minimizer exists for the update steps
in (5) at all iterations k. As the algorithm progresses as in
[1], the residuals reduce to zero, and the iterates from (5)
and (6) converge to the optimal control inputs, trajectories,
and dual variables.

Remark 1. Each robot has no explicit knowledge of the
local constraints of other robots, a significantly useful feature
of our method. In problems where each robot has local
sensors for collision avoidance, this feature allows for fully
distributed sensing without any sharing of local collision
avoidance constraints.

Algorithm 1 summarizes the distributed control scheme.
The algorithm is executed for the duration of the manipula-
tion task, and the control inputs are applied at intervals of
δt. In the method ForwardIntegrate, we initialize the opti-
mization variables at the last stage of the problem instance
by integrating the values of these variables at the previous
stage.

Algorithm 1 Scalable Optimal Collaborative Manipulation
with Local Constraints (SOCM LoCo)
while manipulation task in progress do

for i = 1, · · · , N do
(xi,obj,Fi,Γi)← DistributedControl(t,xi,obj(t))
Fi(t+ δt)← Fi(0)

end
end

V. PLANAR MANIPULATION WITH QUADRATIC
OBJECTIVE

Given the physical limitations of robots, large object
manipulation requires synergy between multiple robots. The
robots apply forces at different locations on the object which
contribute to translation and rotation of the object shown
in Figure 3. The relationship between these forces and the
resulting object motion depends on the object mass and
inertia properties. Here, we consider a network of N robots
collaborating to manipulate the object. The robots carry the
object without friction effects. However, we can incorporate
the effects of friction into the dynamics of the object simply
in (8). The total effect of these forces on the object’s linear
motion is described by the translational dynamics of the
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Function DistributedControl(t,xi,obj(t))
Initialization:
q0i ← 0
k ← 0
rki := (xki,obj,F

k
i ,Γ

k
i )

if t = 0 then
r0i ← argmin

xi,obj,Fi,Γi

max
ci,di

{
Ji(·) + cTi gi(·) + dT

i hi(·)
}

else
(xprev
i,obj, f

prev
i ,Γprev

i )← previous optimal solution
for τ = 0, · · · , Nτ − 2 do

x0
i,obj(τ)← xprev

i,obj(τ + 1)

F0
i (τ)← Fprev

i (τ + 1)
Γ0
i (τ)← Γprev

i (τ + 1)
end
F0
i (Nτ − 1)← Fprev

i (Nτ − 1)
Γ0
i (Nτ − 1)← Γprev

i (Nτ − 1)
x0
i,obj(Nτ − 1)← ForwardIntegrate(F0

i ,Γ
0
i )

end
do in parallel i = 1, · · · , N

rk+1
i ← Equation (5)
qk+1
i ← Equation (6)
k ← k + 1

while not converged or stopping criterion is not met;
return (xi,obj,Fi,Γi)

object given by

Mp̈ =

N∑
i=1

Fi (8)

where M denotes the mass of the object, p ∈ R3 denotes the
(x, y, z) position of the object, and robot i applies force
Fi ∈ R3 to the object.

The forces applied to the object produce angular motion
about the object’s center of mass since the forces have
a non-zero orthogonal component to the relative position
vector between the object’s center of mass and the point of
application of these forces. The resulting rotation is described
by

Jω̇ =

N∑
i=1

(
ri × Fi

)
+ Γi (9)

with J ∈ R3 the mass moment of inertia of the object and
ri ∈ R3 the relative position of robot i in a fixed coordinate
frame with the object’s local coordinate frame located at its
center of mass. We denote the angular acceleration of the
object as ω̇ ∈ R3 and its angular velocity as ω ∈ R3. The
torque Γi ∈ R3 applied by robot i contributes to the rotation
of the object.

For 2D manipulation, the robots apply no force along the
z axis, Fi,z = 0, p ∈ R2, and ri ∈ R2. Likewise, the object’s
rotation occurs about the z-axis with ω ∈ R. The object’s

Fig. 3. Collaborative manipulation of an object by a group of robots. Each
robot applies a force to the object, producing translation and rotation of the
object.

rotational dynamics reduces to

Jω̇ =

N∑
i=1

(
Rri × Fi

)
+ Γi (10)

where R ∈ R2×2 denotes the rotation matrix transforming
vectors in the local object frame to a fixed coordinate frame.
We obtain R from

R =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(11)

and note the dependence of R on the current orientation
of the object about the z-axis denoted by θ. As described
in Section V, we formulate the manipulation task as an
optimization problem and discretize the continuous-time
problem using trapezoidal integration over a time interval of
δt to obtain a numerical optimization problem. At each time
instant t, the optimization problem over a receding horizon
of Nτ stages is

minimize
p,ṗ,θ,ω

N∑
i=1

ψi(pi, ṗ,θ,ω)

subject to Av,iṗi = Bv,iṗi +Kv,iFi

Ap,ipi = Bp,ipi +Kp,iṗi

Aω,iωi = Bω,iωi +Kω,iFi +Kr,iΓi

Aθ,iθi = Bθ,iθi +Kθ,iωi

ṗi(0) = ˙̄pi(t), pi(0) = p̄i(t)

ωi(0) = ω̄i(t), θi(0) = θ̄i(t)

ṗi = ṗj , pi = pj ∀j ∈ Ni
ωi = ωj , θi = θj ∀j ∈ Ni

(12)

We denote the vertical concatenation of p for all τ as p and
do likewise for θ, ω, F, and Γ. The objective function ψi(·)
is given by

ψi(·) = eT
i Gei + FT

i HfFi + ΓT
i HrΓi (13)

where

ei =


pi − pdes
ṗi − ṗdes
θi − θdes
ωi − ωdes
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and pdes, ṗdes, θdes, and ωdes denote the desired object trans-
lation and rotation. We introduce the positive semi-definite
matrices Gp, Gv , Gθ, and Gω weighting the deviations in
the object’s position, orientation, and their derivatives, placed
along the diagonal of G. We have included the other terms
in the objective function in (13) to obtain solutions that
minimize actuator effort as a proxy for energy consumption
and have introduced the positive definite matrices Hf and
Hr. In addition, we constrain the initial position, orientation,
and their derivatives to the object’s position, orientation and
derivatives at time t which we denote as p̄i(t), ˙̄pi(t), θ̄i(t),
and ω̄i(t). Subsequently, we denote p̄i(t), ˙̄pi(t), θ̄i(t), and
ω̄i(t) as p̄i, ˙̄pi, θ̄i, and ω̄i respectively.

We describe the translation dynamics of the object in (12)
with Av,i, Ap,i, Bv,i, Bp,i, Kv,i, and Kp,i and the rotational
dynamics of the object with Aω,i, Aθ,i, Bω,i, Bθ,i, Kω,i,
Kθ,i, and Kr,i. The object’s angular acceleration depends
on the rotation matrix R(θ), a function of the object’s ori-
entation (10). Hence, the rotational dynamics constraints are
non-convex as Kω,i(θ) depends on the object’s orientation.

In general, distributed optimization methods have no con-
vergence guarantees for non-convex optimization problems.
Nonetheless, we linearize Kω,i about the object’s desired
orientation at t = 0 and about the previous solution of the
optimization problem at all other time which reduces the
problem to a convex optimization problem. We provide the
resulting algorithm in Algorithm 2. Following the procedure
in Section IV, we distribute the problem among the robots.
Robot i computes its control inputs, object’s position, orien-
tation, and dual variables from the system of linear equations
(5):

Λk+1
i ak+1 = dk+1 (14)

where a = (ṗi, pi, θ̇i, θi, Fi, Γi, ci), Λi ∈ R12Nτ×12Nτ

denotes the Hessian of the optimization problem in (5), ci
represents the dual variables of the constraints in (12), and
d incorporates information on the solution of other robots in
Ni, ensuring that all robots arrive at the same position and
orientation along which to manipulate the object.

Algorithm 2 Manipulation with Non-Convex Dynamics
while manipulation task in progress do

for i = 1, · · · , N do
Kω,i ← Linearize rotation dynamics (10) at xprev

i,obj
(xi,obj,Fi,Γi)← DistributedControl(t,xi,obj(t))
Fi(t+ δt)← Fi(0)

end
end

VI. SIMULATIONS

Now, we evaluate the Scalable Optimal Collaborative
Manipulation with Local Constraints (SOCM LoCo) method
in a manipulation task with a quadratic tracking objective on
the desired object trajectory and control inputs for each robot
as described in Section V. We examine the communication
and computation resources required by our method in com-
parison to a leader-follower control architecture where the

leader computes the control inputs for the entire group and
consensus ADMM methods [21]. In addition, we evaluate
the performance of our approach across different communi-
cation constraints represented by the communication graph
G. We consider a group of N = 100 robots collaborating to
manipulate an object along the desired trajectory.

A. Computation Complexity

At time t, each robot solves the optimization problem in
(12) for its control inputs iteratively. The update procedure
for robot i’s control inputs requires solving the linear system
of equations given in (14). This linear system can be solved
efficiently by factoring Λi. In the SOCM LoCo method,
factoring Λi ∈ R14Nτ×14Nτ requires O(N3

τ ) floating-point
operations (flops). A subsequent back-solve step to obtain
the control inputs incurs a cost of O(N2

τ ) flops. Likewise,
the dual update procedure incurs a cost of O(Nτ ) flops.
Hence, the SOCM LoCo method requires a computation cost
of O(N3

τ ) where we have ignored the less dominant terms
in the computation cost.

As described in Section II, leader-follower control
schemes require the designation of a leader which computes
the control inputs for all robots in the team. Each robot’s
control input is obtained by solving a linear system of
equations similar to (14) with a positive definite Hessian
matrix H ∈ R(N+12)Nτ×(N+12)Nτ . We can factor H with
O(N3N3

τ ) flops and solve for the control inputs with
O(N2N2

τ ) flops. Consequently, leader-follower methods re-
quire O(N3N3

τ ) flops with the less dominant terms ignored.
In consensus ADMM methods, each robot computes the

control inputs for the entire group. Factoring the Hessian
and solving for all the control inputs takes O(N3N3

τ ) and
O(N2N2

τ ) respectively. Thus, consensus ADMM methods
have the same complexity as leader-follower methods with
O(N3N3

τ ) flops.
The computation complexity of both leader-follower and

consensus ADMM methods scale cubically with the number
of robots involved in the manipulation task. As a result, these
methods require significant computation resources for manip-
ulation tasks with large groups of robots. The SOCM LoCo
method reduces computation complexity of leader-follower
and consensus ADMM methods by a factor of N3. Notably,
complexity of the SOCM LoCo method is independent of
the number of robots. As such, performance of SOCM
LoCo does not degrade with large groups of robots, unlike
leader-follower and consensus ADMM methods. The lower
complexity of SOCM LoCo enhances its performance in
object manipulation problems which require high frequency
control inputs.

B. Communication Complexity

In the SOCM LoCo method, each robot shares its local
copy of the object trajectory over Nτ stages with its neigh-
bors defined in G. The object trajectory can be represented
with 48Nτ bytes in double precision floating-point format.
As such, O(Nτ ) bytes of information flows over the peer-to-
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peer network between each robot and its neighbors at each
communication round.

In leader-follower methods, the leader robot computes
and shares the control inputs for the entire team. Each
communication round involves sharing O(NNτ ) bytes of
information. Likewise, each communication round in con-
sensus ADMM methods takes O(NNτ ) bytes per robot. The
amount of communication scales linearly with the size of the
group, presenting a challenge with large groups. However,
the SOCM LoCo method provides about a factor of N lower
communication complexity, constant for all group sizes,
which allows the robots to collaborate on the manipulation
task with minimal communication.

C. Communication Constraints and Convergence

We examine the SOCM LoCo method in manipulating an
object along the desired trajectory shown in Figure 4 with
20 robots. We note that the desired object trajectory is not
required to be dynamically feasible for the group of robots;
hence, perfect tracking is not always achievable. Larger
tracking errors arise in infeasible regions of the desired
trajectory. Moving the object to its desired final position
requires rotating the object to enable it to fit through narrow
passages, shown in the provided video. Figure 5 shows the
tracking errors in the position and orientation of the object
during the task. With the SOCM LoCo method, the position
tracking error remains less than 10−5 m2 with its orientation
error less than 10−4 rad2 as the object follows its desired
trajectory.

Fig. 4. A group of 20 robots (in red) manipulate an object (in green) to a
desired final position and orientation. The robots rotate the object to enable
it to fit through narrow passages. Three robots are shown for visualization
purposes.
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Fig. 5. With the SOCM LoCo method, the robots manipulate an object
along a desired trajectory with small tracking errors in the object’s position
and orientation.

Next, we evaluate the performance of the SOCM LoCo
method on fully-connected communication graphs, randomly
generated connected graphs, and chain graphs (the least-
connected acyclic graph with each robot having at most two
neighbors). We examined the consensus ADMM method on a
fully-connected graph. We summarize the examined methods
and associated communication constraints in Table I.

We examine the tracking error on the desired object
trajectory as the number of collaborating robots increases.
Figure 6 shows the mean tracking error of each method for
different number of robots. The SOCM LoCo method out-
performs consensus ADMM methods by almost two orders
of magnitude in tracking the desired trajectory. The tracking
performance of consensus ADMM methods degrade with the
larger groups of robots as the size of each agent’s optimiza-
tion variable increases. However, the tracking error in the
SOCM LoCo method remains relatively constant for groups
greater than 40 robots. Leader-follower methods require
more stringent communication conditions as all follower
robots must communicate with the designated leader robot.
This demand makes leader-follower approaches unsuitable
in environments with limited communication infrastructure
which are prevalent in robotics. In contrast, the SOCM LoCo
method provides desirable performance with small tracking
errors within 10−5 m2 in these environments even in extreme
cases with chain communication graphs for all group sizes.
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Fig. 6. Mean tracking error on the desired manipulated object trajectory
for different number of collaborating robots. SOCM LoCo attains smaller
tracking errors by two orders of magnitude compared to consensus ADMM
and provides comparable tracking performance with the leader-follower
method across different communication graphs.

TABLE I
EVALUATED METHODS AND COMMUNICATION CONSTRAINTS

Name Method Communication Graph

random SOCM LoCo randomly-connected
fully-connected SOCM LoCo fully-connected
chain SOCM LoCo chain
leader-follower leader-follower all followers to leader
consensus-ADMM consensus-ADMM fully-connected

Further, we examine the convergence rate of SOCM LoCo
and consensus ADMM methods for a manipulation task with
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100 robots. SOCM LoCo converges within 600 iterations and
attains a significantly lower tracking error less than 10−3 m2

as shown in Figure 7. In contrast, consensus ADMM fails
to attain the same magnitude of error within 1200 iterations.
The large number of iterations required for convergence in
consensus ADMM method hinders its application to receding
horizon problems where an optimization problem is solved
at every timestep.
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Fig. 7. The SOCM LoCo method provides faster convergence compared
to consensus ADMM methods with N = 100 robots, and SOCM LoCo
converges to a significantly lower tracking error less than 10−3 m2 within
a few hundred iterations. Consensus ADMM methods require much greater
number of iterations for convergence to the same error magnitude.

VII. CONCLUSION

Object manipulation requires the collaboration of multiple
robots in many situations such as autonomous construction.
In this work, we develop the SOCM LoCo method for
optimal collaborative manipulation by robots without a fully-
connected communication graph or a designated leader.
SOCM LoCo enables large groups of robots to jointly ma-
nipulate objects with minimal communication, requiring no
communication of each robot’s planned trajectory and control
inputs. The complexity of our method is independent of the
number of robots, leading to superior improvements in com-
putation and communication complexity compared to earlier
distributed control schemes. Future work will demonstrate
the application of the SOCM LoCo method in manipulation
tasks in SE(3) space with non-convex objective functions
and constraints.
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