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Abstract— Control of wire-borne underactuated brachiating
robots requires a robust feedback control design that can deal
with dynamic uncertainties, actuator constraints and unmeasur-
able states. In this paper, we develop a robust feedback control
for brachiating on flexible cables, building on previous work on
optimal trajectory generation and time-varying LQR controller
design. We propose a novel simplified model for approximation
of the flexible cable dynamics, which enables inclusion of para-
metric model uncertainties in the system. We then use semidef-
inite programming (SDP) and sum-of-squares (SOS) optimiza-
tion to synthesize a time-varying feedback control with formal
robustness guarantees to account for model uncertainties and
unmeasurable states in the system. Through simulation, hard-
ware experiments and comparison with a time-varying LQR
controller, it is shown that the proposed robust controller results
in relatively large robust backward reachable sets and is able to
reliably track a pre-generated optimal trajectory and achieve
the desired brachiating motion in the presence of parametric
model uncertainties, actuator limits, and unobservable states.

I. INTRODUCTION AND RELATED WORK

When considering mobile robots in practical settings, a
key challenge is robust locomotion. In unstructured environ-
ments ranging from cities to farmland, the ability of mobile
robots to locomote safely in a robust manner independent of
model constraints and uncertainties is at once both extremely
important and extremely challenging. The authors have de-
veloped a wire-borne underactuated brachiating robot [1] for
potential applications such as precision agriculture, power
line inspection, urban area surveillance, public safety, and
traffic management. However, traversing highly unstructured
environments such as a network of elevated wires introduces
a significant model uncertainty into the system, as low-order
deterministic equations of motion cannot capture the dynam-
ics of flexible and deformable bodies. Other examples of
wire-traversing robots have recently emerged, including the
SlothBot [2] capable of rolling on a mesh of wires. However,
brachiating robots could offer unique advantages such as the
capability to pass obstacles on wires, if they could overcome
the challenge of swinging on such vibrating medium.

Over the past two decades, research efforts on control of
brachiating robots have exclusively focused on brachiation
on rigid structures, such as ladders and monkey bars. The
earliest brachiating robot was introduced by Fukuda [3] for
brachiation on ladder bars. Later, a heuristic control method
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(a) (b)
Fig. 1. (a) Robot hardware prototype performing a brachiation maneuver,
(b) CAD model of the robot prototype.

was proposed for a two degrees of freedom robot locomoting
on horizontal parallel bars [4]. The Target Dynamics algo-
rithm was proposed in [5] to enable locomotion of a simpli-
fied two-link brachiating robot over several rungs of a ladder.
Using this method, instead of handling the system dynamics
via reference trajectories, the control task is achieved by rep-
resenting the robot dynamics with a simplified single pendu-
lum as a lower dimensional target. Zero-energy cost motions
for passive brachiating models attached to an unchangeable
ceiling were investigated in [6]. An underactuated brachiating
robot with magnetic “feet” was designed in [7], for which a
feedback linearization based controller was used to track op-
timal motion trajectories. In [8], a PD control and an adaptive
robust control were employed to track optimal trajectories
for a two link brachiating robot with uncertain kinematic
and dynamic parameters, moving between fixed supports.
Pchelkin et al. [9] presented an optimization framework to
generate trajectories for energy efficient brachiation of a
24-DoF Gorilla robot on horizontal ladder bars. A model-
free sliding mode control scheme was presented in [10],
[11] for brachiating along a rigid structural member with an
upward slope. More recently, a three-link brachiation robot
was presented in [12], which used an iterative LQR algorithm
for trajectory generation and a combination of a cascaded
PID control and an input-output linearization controller to
track desired trajectories and swing along monkey bars.

To the best of the authors’ knowledge, none of the
prior works in the literature has addressed the problem of
brachiating on a vibrating flexible cable. The authors have
recently presented a time-varying LQR (TVLQR) controller
design in [13] for brachiation on flexible cables. However,
the cable dynamics and its associated uncertainties could
not be considered in the TVLQR design, and the region of
attraction could not be formally verified for that controller.
Building on previous work on optimal trajectory generation
[14] and TVLQR controller [13], this paper attempts to in-
clude the cable dynamics in the control design, and presents
a robust closed-loop controller with formal guarantees for
brachiating on flexible cables with uncertainties. We propose
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an approximate dynamic model for the cable consisting of
three parallel spring-dampers, enabling inclusion of para-
metric model uncertainties in the system. Leveraging the
recent developments in semidefinite programming (SDP) and
sum-of-squares (SOS) optimization [15], [16], we synthe-
size a time-varying feedback control to account for model
uncertainties and unmeasurable states in the system, and
track pre-generated optimal trajectories to achieve a desired
configuration.

In recent years, a large amount of work has been carried
out on developing Lyapunov-based feedback controllers
along with formal guarantees of their region of attraction
(for time-invariant systems), or their invariant sets (for time-
varying systems) via SOS programming [17]–[21], which can
accommodate external disturbances and model uncertainties
in the dynamics. These approaches can be mainly categorized
into two methods: synthesizing closed-loop controllers while
minimizing the outer approximation of the reachable sets
[21], versus feedback control design by maximizing the
inner approximation of the backward reachable sets [17],
[20]. While the former method is better suited for real-time
planning in unknown environments, the latter provides the
advantage of driving to a pre-defined goal from a larger set
of initial conditions using a single reference trajectory.

For the proposed wire-borne underactuated brachiating
robot shown in Fig. 1, we compute an inner-approximation
of the backward reachable set around a nominal trajectory
for a given set of final configurations, and synthesize a
feedback control action (in terms of the measurable states)
on a finite time horizon to maximize the size of the backward
reachable set. The controller accounts for parametric model
uncertainties, actuator limits, and unmeasurable states, while
keeping motion trajectories inside the backward reachable
set. The non-convex nonlinear optimization problem is for-
mulated as a semidefinite program, which is broken down
into approximate convex sub-problems and solved by an
iterative algorithm using sum-of-squares programming.

In addition to the Lyapunov-based methods which employ
sum-of-squares programming, there are other approaches in
the controls literature for robust control of underactuated
systems, including adaptive control [22]–[24], sliding mode
control [25]–[27] and backstepping [28], [29]. However, as
will be shown throughout the paper, the SOS-based controller
has the advantage of explicitly attempting to maximize the
size of the robust backward reachable set, which results
in a relatively large verified region for a single nominal
trajectory. Moreover, the SOS-based controller is more robust
to parametric uncertainties and control saturation, due to
the fact that it directly accounts for bounded uncertainties
and torque limits in the optimization process. Further, using
SDP and SOS programming, there will be no need to design
an observer for the unmeasurable states (the position and
velocity of the gripper attached to the cable), as the control
law can be constructed as an output feedback including only
the measurable system states.

In summary, the main contributions of this work include:
i) a novel dynamic modeling approach and a Fourier-based

system identification to model the flexible cable as three
parallel spring-dampers with parametric uncertainties,
ii) a formally-verified robust feedback control design for
brachiating robots, which takes the cable model uncertainties
into consideration using sum-of-squares optimization, and
iii) hardware validation of the proposed method by
conducting real-world experiments on a brachiating robot
prototype traversing a flexible cable. To our knowledge, the
experimental result provides the first hardware evaluation
of a feedback control design for brachiating robots attached
to flexible cables. The proposed design also leads to the
first SOS-based robust controller design in the domain of
underactuated brachiating robots.

II. MULTI-BODY DYNAMIC MODEL
A. Flexible Cable Dynamics with Parametric Uncertainty

Dynamics of a flexible cable with negligible bending and
torsional stiffness can be described by partial differential
equations (PDEs) [30]. However, control of PDE models is
challenging, as their solution is a function of both space and
time and belongs to an infinite-dimensional space [31], [32].
One approach to analyze PDE systems relies on derivation
of approximate models, for which the dynamic behavior of
the system is described by ordinary differential equations
(ODEs). In [14], we presented a robot-cable dynamic
model consisting of a two-link underactuated brachiating
robot, a lumped-mass flexible cable, and two soft junctions
connecting the robot grippers to the cable. The full-cable
PDE system was approximated as a set of ODEs via a
finite-element method [33], which resulted in a large number
of generalized coordinates for the dynamic model, making
it impractical to be included in a feedback control design.

In this section, we propose a new approximate model
which captures the dynamic effects of the flexible cable while
keeping the model as a 3-DOF system described by ODEs.
The proposed model provides the ability to include paramet-
ric model uncertainties in the state equations, paving the way
for a “robust” feedback control design to compensate for dis-
crepancies between the actual and the approximated models.

The Fourier analysis of the vibration of the full-cable
model during a brachiating maneuver reveals that only the
first three harmonics contribute significantly to the dynamics

m0

m1

m2

d1

d2

l1

l2

θ1

θ2

zg

−0.5 0 0.5 1

1

1.5

2
kibi

zci

k1b1

zc1

k2b2

zc2

k3b3

zc3

x (m)

z
(m

)

Fig. 2. Multi-body model of the two-link brachiating robot with the
proposed cable model consisting of three parallel spring-dampers.
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(see Section II-B). Thus, the vibrating effects of the flexible
cable on the robot can be adequately captured by three paral-
lel linear springs and dampers connecting the pivot gripper to
three different attachment heights. The stiffness and damping
coefficients of the spring-dampers, as well as the heights of
the attachment points, depend on the physical characteristics
of the cable, specifically the frequencies and the amplitudes
of the harmonics retrieved by Fourier analysis.

The proposed model for the system, from which the
system dynamics are obtained, is shown in Fig. 2. The system
consists of two rotational and one translational degrees of
freedom (DOF): θ1 as the angle of the first link with respect
to the vertical axis, θ2 as the joint angle relative to the first
link, and zg representing the vertical Cartesian position of
the robot’s gripper that is attached to the cable. The system
has underactuation degree of 2, in the sense that only θ2 is
actuated, with the robot’s single torque actuator located at
the joint between the two links.

We denote the stiffness, damping and attachment height
of the three spring-dampers by ki, bi and zci (for i = 1, 2, 3)
respectively. The parametric uncertainties in the cable model
are taken into account by including an uncertainty term w
in the stiffness parameters of the three springs, that is

ki = k0i ± w k0i , i = 1, 2, 3 (1)
where k0i denotes the nominal stiffness of the springs.

The nonlinear equations of motion of the system are
derived by the Lagrangian method, with the state vector
represented by x = [θ1, θ2, zg, θ̇1, θ̇2, żg]T .

B. System Identification via Fourier Analysis
We use the output-error method [34] to replicate the

dynamic behavior of the full-cable with the proposed spring-
dampers model. With the output-error method, the unknown
system parameters including the stiffness, damping and at-
tachment height of the three spring-dampers are tuned so that
the Fourier spectrum of the position of the pivot gripper dur-
ing a brachiating maneuver with the proposed model fits the
Fourier spectrum of the robot with the full-cable model. The
algorithm for the output-error method can be summarized as:
i) apply the same control input u(t) to the robot-cable system
with the full-cable model and the spring-dampers model, ii)
compare the Fourier spectrum of the resulting simulated state
zg using each model, iii) optimize the set of parameters
{ki, bi, zci} (as the optimization decision variables) until
the resulting Fourier spectrums – in terms of the frequen-
cies (fi, f̂i) and the amplitudes (ai, âi) of the first three
harmonics – are as close as possible in least squares sense:

argmin
ki, bi, zci

J =

3∑
i=1

(f̂i − fi)2 + (âi − ai)2, (2)

where J is the least square cost. We used the built-in
MATLAB gradient-based optimization routine “fmincon” to
solve the constrained nonlinear optimization problem in (2).
The system identification results are listed in Table I, and the
resulting Fourier spectrums of the two models are compared
in Fig. 3. The physical parameters of the full-cable model
used as the reference will be shown later in Table II.

a1: 437.8

a2: 258.1

a3: 341.9
a1: 415.9

a2: 251.6

a3: 333.4

(a) (b)
Fig. 3. Frequency spectrum of the cable vibration, (a) Finite-element
model, (b) Proposed model. The first three harmonics are shown in red.

TABLE I
SYSTEM ID RESULTS FOR THE PROPOSED CABLE MODEL.

Spring # Stiffness (k0) Damping (b) Attachment Height (zc)

1 76.74 4.25 2.00
2 180.50 4.72 2.04
3 279.14 4.88 2.06

III. CONTROL SYNTHESIS AND VERIFICATION
With the parametric uncertainties present in the model

described above, a robust closed-loop control design is
required to control the robot brachiating on flexible cables.
Moreover, the position and velocity of the pivot gripper
attached to the cable (zg, żg) cannot be measured in practice
to be included in a state-feedback control policy. We use
semidefinite optimization and sum-of-squares programming
to synthesize a time-varying feedback control law in terms of
the measurable states of the system, with formal robustness
guarantees against parametric uncertainties in dynamics and
actuator saturations, in order to track a pre-generated optimal
trajectory to a desired configuration.

A. Problem Formulation
For the two-link brachiating robot attached to a flexible

cable with a parametric model uncertainty, the nonlinear
time-varying closed-loop equations of motion have the form:
˙̄x(t) = fcl(x̄, ū, w, t), x̄(t) ∈ R6, ū(ȳ, t) ∈ R, w ∈ R, (3)

with the state vector x̄(t) as the joint angles/velocities and
the gripper position/velocity, and ȳ ∈ R4 as the output vector
of the system formed by the measurable states:

x̄(t) = [θ̄1(t), θ̄2(t), z̄g(t), ˙̄θ1(t), ˙̄θ2(t), ˙̄zg(t)]T , (4)

ȳ(t) = [θ̄1(t), θ̄2(t), ˙̄θ1(t), ˙̄θ2(t)]T . (5)
The control input ū(ȳ, t) is the torque input at the center
joint described by a time-varying feedback control in terms
of the measurable states constrained by actuator saturation:
umin ≤ ū(ȳ, t) ≤ umax. Note that to derive the time-varying
system equations, the states and the control input are defined
as the deviations from a nominal reference trajectory:
x̄(t) = x(t)− xref (t), ū(ȳ, t) = u(ȳ, t)− uref (t). (6)
The uncertainty term w is the parametric model uncer-

tainty in the cable as in (1), which is bounded and is
described by the set W = {w ∈ R | wlb ≤ w ≤ wub}.

Defining the inner-approximation of the backward reach-
able set Br(t) as a time-varying level set of the Lyapunov
function V (x̄, t):

Br(t) = {x̄ ∈ R6 | V (x̄, t) ≤ r(t)}, (7)
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our objective is that given a set of desired final conditions Xf ,
synthesize a time-varying output feedback controller ū(ȳ, t)
that maximizes the volume of the set Br(t) for any valid
parametric model uncertainty, so that:
x̄(t0) ∈ Br(t) ⇒ x̄(tf ) ∈ Xf , ∀t ∈ [t0, tf ], ∀w ∈ W . (8)

Equation (8) implies that if the robot initial configuration
lies in the set Br(t), it will be driven to the desired set Xf

by the controller.
To guarantee the invariance condition in (8), it is sufficient

to insure that on the boundary of the set Br(t), the Lyapunov
function V (x̄, t) increases by a slower rate than the boundary
level, keeping the trajectories inside the level set, that is
V (x̄, t) = r(t)⇒ V̇ (x̄, ū, w, t) < ṙ(t), ∀t ∈ [t0, tf ], ∀w ∈ W (9)

where the time derivative V̇ is calculated by:

V̇ (x̄, ū, w, t) =
∂V (x̄, t)

∂x̄
fcl(x̄, ū, w, t) +

∂V (x̄, t)

∂t
. (10)

By approximating the volume of the set Br(t) with the
integral of the boundary level r(t) over the finite horizon
time [t0, tf ] (resulting in a conservative under-approximation
of Br(t)), the overall optimization problem can be stated as:

max
V (x̄,t),r(t),ū(ȳ,t)

∫ tf

t0

r(t) (11)

s.t. V (x̄, t) = r(t) ⇒ V̇ (x̄, ū, w, t) < ṙ(t),

∀t ∈ [t0, tf ], ∀w ∈ W
umin ≤ ū(t) ≤ umax, ∀t ∈ [t0, tf ]

Br(tf ) = Xf .
The initial Lyapunov function candidate is obtained using

the time-varying LQR control design [13] as V0(x̄, t) =
x̄T (t)S(t)x̄(t), where S(t) is the solution to the differential
Riccati equation Ṡ(t) = −(ATS+SA−SBR−1BTS+Q),
with A(t) and B(t) as the Jacobian linearization of the
original nonlinear system about the nominal trajectory, Q =
QT ≥ 0, Qf = QT

f ≥ 0 and R = RT > 0 as the LQR cost
matrices, and S(tf ) = Qf .

To include the time-varying Lyapunov function in the
optimization decision variables, we decompose V (x̄, t) as

V (x̄, t) = V0(x̄, t) + x̄TP (t)x̄, P (t) ≥ 0, (12)

where V0 is the initial Lyapunov function described above,
and P (t) is a time-varying positive-semidefinite matrix with
a fixed scale to be used as a decision variable. With the
proposed decomposition, the time derivative V̇ has the form:

V̇ (x̄, ū, w, t) =
∂V0(x̄, t)

∂x̄
fcl(x̄, ū, w, t) +

∂V0(x̄, t)

∂t
(13)

+ 2x̄TP (t)fcl(x̄, ū, w, t) + x̄T Ṗ (t)x̄(t).

To determine the goal set Br(tf ), we use V0(x̄, tf ) =
x̄TS(tf )x̄, P (tf )=0 and r(tf )=1, with S(tf )=Qf as a 6×6
diagonal matrix which its diagonal elements determine the
desired boundary on the final states, representing the set Xf .

B. Sum-of-Squares Optimization Programs

The polynomial S-procedure [35] and sum-of-squares re-
laxation technique [15] for polynomial nonnegativity are
used to express (11) as a non-convex optimization in the
form of semidefinite programs:

max
P,r,ū,L,Lu,{1,2},Lw,{1,2},Lt,{1,2,3}

∫ tf

t0

r(t) (14a)

s.t. ṙ(t)− V̇ (x̄, ū, w, t)− L
(
V (x̄, t)− r(t)

)
− Lw,1(w − wlb)

− Lw,2(wub − w)− Lt,1(t− t0)(tf − t) ≥ 0 (14b)
ū(t)− umin + Lu,1(V (x̄, t)− r(t))

− Lt,2(t− t0)(tf − t) ≥ 0 (14c)
umax − ū(t) + Lu,2(V (x̄, t)− r(t))

− Lt,3(t− t0)(tf − t) ≥ 0 (14d)
Lw,{1,2}, Lu,{1,2}, Lt,{1,2,3} ≥ 0 (14e)
P (t) ≥ 0, P (tf ) = 0, r(t) > 0, r(tf ) = 1. (14f)

The decision variables consists of the Lyapunov function
V (x̄, t) (through P (t)), the boundary level r(t), the control
law ū(ȳ, t), and the set of Lagrange multipliers L(x̄, w, t),
Lu,{1,2}(x̄, t), Lw,{1,2}(x̄, w, t) and Lt,{1,2,3}(x̄, w, t) as S-
procedure polynomial certificates. To reformulate the opti-
mization as a convex problem, the problem can be solved
by an iterative, three-way search between the two bilinear
pairs involving the decision variables (L(x̄, w, t), r(t)), and
(ū(t), V (x̄, t)), as stated in optimizations (15) to (17).
i) Fix the Lyapunov function V (x̄, t) and the boundary level
r(t), and introduce the slack variable γ,

min
γ,ū,L,Lu,{1,2},Lw,{1,2},Lt,{1,2,3}

γ (15)

s.t. γ −
[
V̇ (x̄, ū, w, t)− ṙ(t) + L

(
V (x̄, t)− r(t)

)
+ Lw,1(w − wlb) + Lw,2(wub − w) + Lt,1(t− t0)(tf − t)

]
≥ 0

(14c), (14d), (14e)

ii) Fix the Lagrange multiplier L(x̄, w, t) and the Lyapunov
function V (x̄, t),

max
r,ū,Lu,{1,2},Lw,{1,2},Lt,{1,2,3}

∫ tf

t0

r(t) (16)

s.t. (14b), (14c), (14d), (14e), (14f)

iii) Fix the control law ū(ȳ, t) and the Lagrange multipliers
L(x̄, w, t) and Lu,{1,2}(x̄, t),

max
r,P,Lw,{1,2},Lt,{1,2,3}

∫ tf

t0

r(t) (17)

s.t. (14b), (14c), (14d), (14e), (14f)

The three-step optimization search has converged when no
more improvement is observed in

∫
r(t).

It is important to note that to exploit the use of sum-of-
squares technique, the system dynamics fcl and the control
law ū(t) are restricted to be polynomials. To that end, the
nonlinear equations of motion in (3) are converted to poly-
nomial dynamics by Taylor expansion around the nominal
trajectory. Moreover, for practical computation, the optimiza-
tion problems in equations (15) to (17) are implemented
by time-sampling [21], where the constraints are checked
only at sample times ti ∈ [t0, tf ], i ∈ {1, . . . , N}. Since
brachiation maneuvers are about 0.8 seconds long, we use
N = 40 to achieve 20 ms sample intervals, which results in
a close approximation for our application.

C. Library of Trajectories and SOS-based Controllers
The parametric model uncertainty in the system results

in restricted inner-approximation of the backward reachable
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sets for the optimal trajectories, as will be shown in Section
IV. Inspired by the funnel libraries [21] algorithm, we
can employ several optimal trajectories and their associated
SOS-based controllers to enclose a larger set of initial
configurations and state-space by the controller. The optimal
trajectories are generated from different initial configurations
on the cable, while all drive the robot to the same set of
desired final configurations Xf . By using a sufficient number
of trajectories covering the entire range of initial conditions
on the cable, we can create a feedback motion planning
platform to robustly control the brachiating robot on the
flexible cable from all possible initial configurations.

IV. SIMULATION RESULTS AND HARDWARE
EXPERIMENTS

The physical parameters of the robot-cable system used
for the SOS synthesis/verification and in the simulations
and hardware experiments are summarized in Table II. It
is assumed that brachiating maneuvers are performed on
an 8 meter flexible cable. For the proposed cable dynamic
model, the equivalent spring-damper parameters to such
cable (derived by the system ID procedure) are listed in Table
I. The uncertainty in the cable dynamics is taken into account
in our computations by considering 20% parametric model
uncertainty in the stiffness of the three springs. That is, the
uncertainty parameter in (1) is set to w = 0.2, resulting in
ki ∈ [0.8k0i

, 1.2k0i
].

Using the parametric trajectory optimization method
presented in [14], an open-loop optimal reference
trajectory for a single brachiating maneuver over
the flexible cable was generated for the initial
and final states of [−45◦,−90◦, 1.84 m, 0, 0, 0] and
[45◦, 90◦, 1.9 m, 120 (deg/s), 120 (deg/s), 0] respectively,
associated to [θ1, θ2, zg, θ̇1, θ̇2, żg]. The finite time horizon
is set to t ∈ [0, 0.7] seconds, according to the reference
trajectory. The control input is constrained to u ∈ [−5, 5]
Nm based on the torque limits of the actuator installed on the
robot hardware prototype. For initialization of and compar-
ison to the SOS-based controller, a TVLQR feedback con-
troller was designed for the same robot as presented in [13].

The performance of the SOS-based output feedback con-
troller for the robot with parametric model uncertainty is
demonstrated experimentally, and is evaluated in terms of
three criteria: i) the size of the approximated backward
reachable set for the SOS-based controller compared to
the TVLQR controller, ii) the robot performance under the
controller starting from initial conditions different than the
optimal nominal trajectory and with cable stiffness different
than the nominal value, iii) the robot performance under
the controller when executing multiple sequential swings to
traverse the entire length of the cable.

The optimizations and simulations in this section are
computed on a workstation with a 3.0 GHz Intel Core i7 pro-
cessor and 32 GB of RAM. The SOS optimization programs
are expressed as SDP problems using the YALMIP toolbox
[36], and solved by the MOSEK optimization toolbox [37]
for MATLAB.

TABLE II
PHYSICAL PARAMETERS OF THE ROBOT AND THE CABLE

Parameter Value
Main body center of mass m0 = 1.247 kg

Link 1 and 2 center of mass m = m1 = m2 = 0.794 kg
Link 1 and 2 length l = l1 = l2 = 0.35m

Link 1 & 2 center of mass location d1 = 0.15m, d2 = 0.2m
Link 1 and 2 moment of inertia I1 = I2 = 0.0088 kg m2

Cable length and linear mass lc = 8m, mc = 0.25 kg/m
Cable stiffness and damping kc = 785400N/m, bc = 4Ns/m

(a) (b), (c)

(d) (e)
Fig. 4. Comparison of the inner-approximation of the robust backward
reachable set for the SOS-based and the TVLQR controllers, projection of
θ1 vs. (a) θ2, (b) zg , (c) żg , (d) θ̇1, (e) θ̇2.

A. Robust Control Synthesis and Verification Results

The iterative optimization algorithm described in (15) to
(17) was carried out for the brachiating robot system detailed
above. We used polynomials of degree 4 for the Lagrange
multipliers L, Lu, Lw and Lt, while the degree of the con-
troller polynomial ū is set to 1. The computing time required
for the offline optimization convergence was approximately 4
hours. The long time required for convergence is not an issue
for practical implementation of the controller, as the resulting
feedback control policy ū(ȳ, t) (represented by time-varying
gains on measurable states) will be hard-coded into the robot.

To visualize the resulting robust backward reachable set,
we project its 2-dimensional subspaces (out of the full 6-
dimensional state-space) on 2D plots. Fig. 4 shows the
projections of each state vs. θ1, and compares the inner-
approximation of the robust backward reachable sets for
both the SOS-based controller and the time-varying LQR
controller. As shown on the plots, the resulting invariant sets
for the SOS-based controller cover a larger part of the state-
space compared to TVLQR. The inner-approximation of the
backward reachable set for the TVLQR controller is com-
puted by solving the SOS program in (14a) without includ-
ing the controller ū in the optimization decision variables,
eliminating the need for the second step optimization in (16).

Furthermore, as depicted in Fig. 5, the verified set of initial
conditions X0 which is driven to the desired set Xf by the
SOS-based controller is larger in every dimension compared
to the corresponding set for the TVLQR controller.
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(a) (b) (c)
Fig. 5. Comparison of the verified set of initial conditions §0 which are
driven to the desired set Xf for the SOS-based and the TVLQR controllers,
projection of (a) θ1 vs. θ2, (b) θ̇1 vs. θ̇2, and (c) zg vs. żg .

B. Validation by Simulation Experiments
The performance of the robust SOS-based controller as

well as the inner-approximation of its backward reachable set
are validated by 20 simulation trials of the brachiating robot
attached to the full-cable model. The stiffness of the cable is
set to 20% less than the nominal value. The robot starts from
random initial conditions on the cable within the verified
set of initial condition, and the time-varying SOS-based
controller is applied for the time horizon of the nominal
trajectory. In Fig. 6, the resulting motion trajectories are
plotted on top of the projections of the robust verified regions
computed in Section IV-A. As can be seen on the plots, the
resulting brachiating motion trajectories under the feedback
controller lie within the verified backward reachable set for
most of the experiments. Note that a few trajectories leave the
verified region on θ̇1 dimension, which could be explained by
the conservative and inner-approximation formulation used
to derive the invariant sets.

Fig. 7 shows one of the above experiments, where the
robot starts on a cable with stiffness of 20% less than the
nominal value and from the off-nominal initial configuration
of [−42◦, −100◦, 1.85 m, −10 deg/s, 20 deg/s, 0.1 m/s]. The
results of the TVLQR, and the SOS-based feedback con-
trollers are compared in Fig. 7. As shown in Fig. 7(c)-(d),
the states of the system under SOS-based feedback control
successfully track the reference trajectory and approach the
desired final configuration, with the final joint angles of
[47.23◦, 91.86◦] and joint velocities of [192.1, 127.2] deg/s.
The control torque input resulted by SOS-based control is
in the range of [−0.9, 4.1] Nm (Fig. 7(e)), which is within
the joint torque limits of ±5 Nm. However, the TVLQR
controller under the same conditions did not succeed in
approaching the desired final configuration, ending up at
the joint angles of [41.24◦, 83.25◦] degrees and the joint
velocities of [135.45, −110.18] deg/s.

C. Continuous Brachiation over Cable via Trajectory Li-
brary

To traverse the entire length of a cable, the robot needs
to perform “continuous” brachiation, a chained locomotion
sequence in which the robot conducts multiple, sequential
swings. This scenario presents a real-world challenge since
the robot starts from non-zero dynamic states for all except
the first swing, and the cable continues to vibrate signifi-
cantly throughout the motion.

To perform continuous brachiation on the flexible cable,
we form a trajectory library containing 10 optimal trajecto-
ries. The trajectories start from a range of initial joint angles

(a) (b) , (c)

(d) (e)
Fig. 6. Simulated motion trajectories with the SOS-based controller
(for brachiation on full-cable model with 20% stiffness error starting from
random initial configurations) plotted on top of the approximated backward
reachable set. Projection of θ1 vs. (a) θ2, (b) zg , (c) żg , (d) θ̇1, (e) θ̇2.

(a) (b)

(c) (d) (e)

Fig. 7. Brachiation on flexible cable with 20% stiffness error, starting
from off-nominal initial configurations: (a) TVLQR motion trajectory, (b)
SOS-based motion trajectory, (c) joint trajectories, (d) joint velocities, (e)
torque profiles.

(θ1, θ2) on the cable, and a combination of pivot gripper
positions and velocities (zg, żg) to account for the cable
vibration, but all with zero initial joint velocities (θ̇1, θ̇2),
as the robot starts each swing with both grippers attached
to the cable. A few of these trajectories and their veri-
fied invariant regions associated to their SOS-based robust
controllers are plotted in Fig. 8. The final states of all
optimal trajectories are set to the desired configuration of
[45◦, 90◦, 1.9 m, 120 (deg/s), 120 (deg/s), 0].

Based on the initial configuration of the robot at the
beginning of each swing, the controller framework chooses
one of the trajectories and its associated controller to be
applied over the next brachiation motion. The resulting
motion trajectories and the resulting torque under the SOS-
based controllers are shown in Fig. 9. Note that there is only
a pause of 1 second enforced between sequential swings.
While the reference trajectories are not designed for the exact
configuration of each swing, the robust SOS-based feedback
controller enables the robot to reliably traverse the length of
the cable in 5 successful swings. As can be seen on Fig.
9(a), for all the swings under the SOS-based controller, the
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(a) (b) (c)

(d) (e)

Fig. 8. The inner-approximation of the backward reachable sets for the
trajectory library (displaying 5 out of 10 trajectories). Projection of θ1 vs.
(a) θ2, (b) θ̇1, (c) θ̇2, (d) zg , (e) żg .

(a)

(b)
Fig. 9. Continuous brachiation on flexible cable with 20% stiffness
error, using a trajectory library and their SOS-based controllers (a) Feedback
motion trajectory, (b) Torque profile.

free gripper approaches the cable with the desired final joint
angles of [45◦, 90◦], which is considered a successful motion
for this application.
D. Validation by Hardware Experiments

Experimental validation of the developed robust feedback
controller has been conducted on the wire-borne brachiating
robot shown in Fig. 1. Fig. 10 shows a time-lapse of
six frames in a successful brachiation maneuver in an
experimental setting. The overall robot path is similar to the
trajectories identified in simulation (Fig. 9).

Data was collected from 10 closed-loop control experi-
ments of the hardware brachiating robot attached to an 8-
meter flexible cable. Using a single nominal trajectory, and
starting from various initial conditions on the cable within the
verified set of initial conditions, the time-varying SOS-based
controller was applied for the time horizon of the nominal
trajectory. Fig. 11 plots the resulting motion trajectories on
top of the projections of the robust verified backward reach-
able set. Despite initial conditions and cable stiffness differ-
ent from the nominal trajectory and values, the controller per-
forms successfully and reach the desired final configuration.
While some of the experimental trajectories slightly violate
the verified regions, this could be due to the conservative and
inner-approximation formulation used to derive the invariant
sets, as well as the inherent model mismatch between the dy-

Fig. 10. Time-lapse of the robot brachiation traveling from left to right.

(a) (b) , (c)
Fig. 11. Experimental motion trajectories with the SOS-based controller
plotted on top of the approximated backward reachable set. Projection of
θ1 vs. (a) θ2, (b) θ̇1, (c) θ̇2.

namic model and the actual hardware. Note that the gripper
states (zg and żg) are unmeasurable states of the system.

A visualization of one of the experimental swings of the
physical hardware is shown in Fig. 12. The robot starts
on the cable from the off-nominal initial configuration of
[−42.5◦, −99◦, 1.85 m, 0, 0, 0], and successfully tracks the
reference trajectory and approaches the desired final config-
uration, with final joint angles of [43◦, 88◦] and joint veloci-
ties of [116, 57] deg/s. The hardware controller has only mi-
nor deviations from the reference trajectory while achieving
a final configuration with low positional and velocity errors.
Additionally, the controller does not saturate the actuator,
with control torque input in the range of [−0.5, 5] Nm.

The videos of the simulation results and the hardware
experiments presented in this section can be found in the
accompanying video of the paper, available at https://

vimeo.com/sfarzan/iros20.

(a)

(b) (c) (d)
Fig. 12. An example experimental result for brachiation on flexible
cable, starting from off-nominal initial configurations: (a) SOS-based motion
trajectory, (b) joint trajectories, (c) joint velocities, (d) torque profile.
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V. CONCLUSIONS
We presented and experimentally tested a robust time-

varying feedback controller with formal guarantees for a
two-link underactuated brachiating robot traversing flexible
cables. A simplified dynamic model for flexible cables is
proposed, in which the vibration dynamics of the cable is
closely approximated by parallel spring-dampers attached to
different heights, providing the ability to include parametric
model uncertainties caused by the flexible cable. Semidefinite
optimization and sum-of-squares programming are used to
compute an inner-approximation to the backward reachable
set around an optimal trajectory for a given set of desired
final configurations. A robust SOS-based feedback control is
synthesized to maximize the size of the reachable set, while
considering the bounded parametric model uncertainties,
actuator saturations and unmeasurable states in the system.
A library of optimal trajectories and their associated SOS-
based controllers is formed to enable the robot to traverse
the entire length of the cable in a continuous fashion.

The resulting verified regions, as well as the reported
simulation and hardware experiments, demonstrate that com-
pared to a TVLQR controller, the SOS-based controller
results in larger robust backward reachable sets, enabling the
robot to employ fewer reference trajectories and associated
controllers to reliably traverse a flexible cable under model
uncertainty.
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