Tumbling and Hopping Locomotion Control for a Minor Body Exploration Robot

Keita Kobashi1, Ayumu Bando1, Kenji Nagaoka2, and Kazuya Yoshida1

\textbf{Abstract}—This paper presents the modeling and analysis of a novel moving mechanism “tumbling” for asteroid exploration. The system actuation is provided by an internal motor and torque wheel; elastic spring-mounted spikes are attached to the perimeter of a circular-shaped robot, protruding normal to the surface and distributed uniformly. Compared with the conventional motion mechanisms, this simple layout enhances the capability of the robot to traverse a diverse microgravity environment. Technical challenges involved in conventional motion mechanisms, such as uncertainty of moving direction and inability to traverse uneven asteroid surfaces, can now be solved. A tumbling locomotion approach demonstrates two beneficial characteristics in this environment. First, tumbling locomotion maintains contact between the rover spikes and the ground. This enables the robot to continually apply control adjustments to realize precise and controlled motion. Second, owing to the nature of the mechanical interaction of the spikes and potential uneven surface protrusions, the robot can traverse uneven surfaces. In this paper, we present the dynamics modeling of the robot and analyze the motion of the robot experimentally and via numerical simulations. The results of this study help establish a moving strategy to approach the desired locations on asteroid surfaces.

\section{I. \textbf{INTRODUCTION}}

The exploration of asteroids is an interesting and scientifically lucrative endeavor owing to the wealth of information asteroids may contain about the origin and evolution of our solar system. The gravitational acceleration of asteroids has been estimated to be between 1.0×10^{-5} m/s\(^2\) and 1.0×10^{-2} m/s\(^2\). Owing to the microgravity environment on asteroid surfaces, friction-based locomotion such as wheel mobility, which significantly depends on gravity, cannot achieve sufficient locomotion \cite{1}. Moreover, robots utilizing such locomotion are likely to experience significant bumps and ground reaction forces resulting in periods of unintentional floating. \cite{2}.

To overcome friction-based locomotion limitations, several moving mechanisms have been invented for adapting to the microgravity environment; examples include hopping mobility and the ciliary vibration drive \cite{3} – \cite{5}. A sampling of hopping and ciliary locomotion robots includes MINERVA, MASCOT, and MINERVA-II as developed by Japan Aerospace Exploration Agency (JAXA) and Centre National d’\text{etudes Spatiales} (CNES), and JAXA, respectively. However, the conventional mechanisms have vital problems to access the desired locations on asteroid surfaces. Therefore, these problems should be addressed for the success of future missions.

Hopping mobility is induced by an impulsive force that is derived from robots’ internal actuator. Various actuators have been explored in previous studies, such as motors with a flywheel \cite{6}, elastic energy derived from internal springs \cite{7}, and the deformation of a bimetal exposed to a temperature gradient \cite{8}. Although the effectiveness of the hopping mobility was demonstrated by MINERVA-II during the landing on the surface of Ryugu, the robots utilizing this hopping mobility may experience repeatedly rebound on asteroid surfaces and lose their moving directivity. While some space probes have observed the surfaces of asteroids \cite{9} and \cite{10}, the characteristics of asteroids’ surfaces are varied, and hence, further investigation is required. Consequently, for practical use, the soft-landing techniques for such hopping rovers that can adapt to unknown asteroid surfaces, are still difficult to achieve. Hence, such hopping rovers cannot explore their desired locations.

Alternatively, ciliary vibration-type motion is generated by the oscillation of the robot \cite{11} – \cite{13}. For ciliary-type motion robots, elastic bodies attached to the body of the robot are bend, and the elastic forces generated from the transformation of its cilia work as the propulsion forces. Owing to this mobility, the motion is predictable \cite{14}; however, most of the sequence of this mobility is crawling on the ground. Therefore, ciliary-type motion robots experience great difficulty of traversing uneven surfaces, even if the obstacles are small.

Moreover, legged robots utilizing their limb to grasp boulders on asteroid surfaces have been invented by the National Aeronautics and Space Administration (NASA) \cite{15}. This mechanism overcomes the challenges of the moving directivity and the traversability. However, such robots have
complex systems that require intricate controllers. Therefore, the practical use of legged robots in real missions is still affected by various obstacles.

In contrast to asteroid exploration, the proposed tumbling locomotion exhibits advantages in overcoming these significant challenges. Tumbling locomotion is induced by an internal actuator and the spring-mounted spikes attached to the perimeter of the robot. The reaction torque generated by the internal actuator makes the robot rotate, and the contacts between the spikes and the ground have the spikes transform. Thus, the robot obtains its motion through the frictional and elastic forces of the spikes interacting with the ground.

During tumbling, the robot maintains contact with the ground; thus, contributing to the controllability of the robot and consequently, the predictability of the robot’s motion. Moreover, the tumbling locomotion enables the robot to traverse uneven surfaces because the spikes are able to grapple steps and small obstacles on asteroid surfaces. Accordingly, the tumbling motion improves the chances of the robot approaching its desired locations and expands the scope of its action on asteroid surfaces.

In this paper, we mention the dynamics modeling of the small tumbling robot and analyze the characteristics of the tumbling motion based on numerical simulations. Moreover, some physical experiments are conducted to validate the proposed dynamics model.

II. Locomotion Mechanism

In this section, we address the mechanism of the proposed tumbling locomotion. The notions of conventional hopping and ciliary vibration drive are described in Fig. 2 (a) and Fig. 2 (b). As shown in Fig. 2 (a), the internal actuator of the robot realizes the hopping mobility. Robots utilizing this mobility have a significant drawback that the robots lose their moving directivity because of the repeated rebounding. Conversely, the ciliary vibration drive described in Fig. 2 (b) has high directivity. While traversing asteroid surfaces, the robots assuming ciliary vibration driving mobility have high chances to touch the ground because of the micro-hopping, which enables them to have high moving directivity. However, the robots cannot traverse uneven surfaces by assuming this moving mode.

On the contrary, the proposed moving mechanism, tumbling, can overcome these drawbacks involved in the conventional mobilities while holding the advantages of these two moving modes. Moreover, the tumbling movement can be generated by an internal torque, which can also generate the hopping movement. Therefore, robots utilizing the tumbling mobility are able to switch two moving modes using an actuator.

The sequence of motion is shown in Fig. 3. The robot receives the reaction torque derived from the rotation of its internal motor. Based on the magnitude of the reaction torque, the robot selects one of the two moving modes, tumbling and hopping.

III. Definition of Tumbling and Hopping

For clarity, we define the two significant modes of the robot’s motion, tumbling and hopping.

- Tumbling: As shown in Fig. 4 (a), the spikes of the robot contact the ground, sequentially. Periods of no contact with the ground are possible; however, less than a revolution in the air is required.
- Hopping: As shown in Fig. 4 (b), contact is not maintained with the ground. The spikes of the robot are not required to contact the ground sequentially. A single revolution or more is necessary while floating in the air.

IV. Dynamics Modeling

In this study, we address the robot in a 2D environment. The robot exhibits a circular shape and has eight spikes connected by linear springs and dampers. The internal actuator is located at the geometric center of the robot.

A. Equation of Motion

From Fig. 5, when one of the robot spikes is in contact with the ground surfaces, the forces obtained using the
following equations act on the robot.

\[m \frac{d^2 x}{dt^2} = \sum_{i=1}^{n} f_i \]
\[m \frac{d^2 y}{dt^2} = mg + \sum_{i=1}^{n} N_i \]
\[I \frac{d^2 \theta}{dt^2} = \sum_{i=1}^{n} N_i r_i \cos \phi - \sum_{i=1}^{n} f_i r_i \sin \phi + T_M \]

Since the spikes are connected by linear springs and dampers, \(N_i \) and \(f_i \) are described as follows:

\[N_i = \frac{T_M}{r_i} \cos \phi + F_{K_i} \sin \phi \]
\[f_i = \begin{cases}
\frac{T_M}{r_i} \sin \phi - F_{K_i} \cos \phi & \text{(Static Friction)} \\
\text{sgn}(v_{x_i}) \mu N_i & \text{(Maximum Static Friction)} \\
\text{sgn}(v_{x_i}) \mu_d N_i & \text{(Dynamic Friction)}
\end{cases} \]

\[F_{K_i} = k(h_0 - h) - d \frac{dh}{dt} \]

B. Motor Equation

The robot adopts a DC motor as its internal actuator. The centrifugal force produced by an eccentric motor can be expressed as follows:

\[\begin{cases}
F_{Mx} = m_e r_e \frac{d \theta_M}{dt} \cos(\theta_M + \phi) \\
F_{My} = m_e r_e \frac{d \theta_M}{dt} \sin(\theta_M + \phi)
\end{cases} \]

Moreover, we discuss the centrifugal torque derived from the DC motor. This robot system has a brushed DC motor that rotates the eccentric masses. Generally, the equations of a DC motor can be expressed as follows:

\[T_M = K_f I_M = J_M \frac{d^2 \theta_M}{dt^2} + \nu_M \frac{d \theta_M}{dt} + T_r \]
\[V_M = L_M \frac{d I_M}{dt} + R_M I_M + K_E \frac{d \theta_M}{dt} \]

In the case that the motor does not have a gear head, \(\nu_M \) is ideally equal to 0. In addition, since the center of gravity of the eccentric masses is not collocated with the rotation axis of the motor, the following disturbing torque affects the motor.

\[T_r = -m_e r_e \cos(\theta_M + \phi) \]

However, in this case, \(T_r \) is virtually equal to 0 because \(g \) is significantly smaller than 1 owing to the microgravity environment.

Moreover, we assume \(V_M \approx R_M I_M + K_E \frac{d \theta_M}{dt} \) in the subsequent analysis model since an electrical time constant of a motor \(L_M / R_M \) is significantly smaller than a mechanical time constant. For these approximations, \(\frac{d^2 \theta}{dt^2} \) and \(T_M \) are negligible.
described as follows:

\[
\frac{d^2\theta_M}{dt^2} = \frac{K_T}{J_M R_M} \left(V_M - K_E \frac{d\theta_M}{dt} \right)
\]

(11)

\[
T_M = \frac{K_T}{R_M} \left(V_M - K_E \frac{d\theta_M}{dt} \right)
\]

(12)

\(T_M \) is the exerted torque from the motor, hence the robot receives \(T_M \) as its reaction torque.

V. NUMERICAL SIMULATION

In this section, we discuss the numerical simulations conducted to evaluate the characteristics of the tumbling and hopping motions. The dynamics model discussed in Section IV is used in these simulations. Parameters of the robot used in these simulations are listed in Table V. Here, \(r_{body} \) and \(l_{spike} \) denote the radius of the body and the length of a spike, respectively.

A. Tumbling Characteristics

1) Analysis of Translational Velocity: To begin with, we analyze the translational velocity of the robot during tumbling. We assume a flat surface and assign \(T_M \) in the range between 0.01 N·m and 0.015 N·m until the end of the simulation. In this simulation, we set \(g = 2.5 \times 10^{-3} \text{m/s}^2 \).

The \(x \) and \(y \) portions of translational velocity \(v_x \) and \(v_y \) are shown in Fig. 6 (a) – (f). In these figures, the profiles of the velocity appear as almost two piecewise linear lines. The slope of the linear line indicates the acceleration of the robot. We assign \(\alpha_1 \) and \(\alpha_2 \) as the representatives of these acceleration, which \(\alpha_1 > \alpha_2 \). When the spikes of the robot receive static frictional forces, the acceleration is equal to \(\alpha_1 \); conversely, when the spikes receive dynamic frictional forces, the acceleration of the robot is \(\alpha_2 \). Hence, the acceleration of the robot appears to experience one significant discrete change, while tumbling and the friction coefficient changes at this discrete change. As mentioned in Section IV, the static and dynamic frictional forces are \(T_M/r \sin \phi - F_K \cos \phi \) (Static Friction) and \(T_M/r \cos \phi + F_K \sin \phi \), respectively. Generally, the static friction forces are larger than the dynamic friction forces; therefore, \(\alpha_1 \) corresponds to the static friction forces and \(\alpha_2 \) corresponds to the dynamic friction forces. The friction forces depend on \(T_M \). Thus, the large torque \(T_M \) enlarges \(\alpha_1 \) and \(\alpha_2 \). However, \(\alpha_1 \) and \(\alpha_2 \) are not proportional to \(T_M \) since the energy that the robot receives from \(T_M \) are partially converted to the vertical component of the robot’s momentum.

2) Climbing Ability: To evaluate the traversability on uneven asteroid surfaces with the tumbling motion, analyzing the ability to climb a step plays a key role. We assume the initial state of the robot as one of its spikes is on the ground and the other is about to locate on a step. Using this simulation, we evaluate the ability of the robot to climb a step. The result of this simulation is represented in Table. VI. In these simulations, we set \(g = 2.5 \times 10^{-3} \text{m/s}^2 \) and \(T_M = 0.015 \text{N·m} \) until the end of simulation. However, \(g \) and \(T_M \) are irrelevant to the climbing ability. Even if \(g \) is large, the
robot can climb by receiving the large T_M. This result shows
that the threshold is located between the heights of 0.10 m
and 0.12 m. When the spike of the robot is on top of the step,
then the robot has finally climbed the step. However, when
no spike is on the step, one of the spikes initially touches the
lateral side of the step. This contact occurs when the robot
and its repulsive force are not into contacts with the step.
Therefore, the threshold can be determined by the sum of
the radius of the body and spike length of the robot because
this length determines whether the spike is on the step or
not.

B. Switch Tumbling and Hopping

Although the tumbling motion enables the robot to ap-
proach the desired locations accurately, some large obstacles
on asteroid surfaces can inhibit its movement owing to the
limitation of the climbing ability. Hence, the robot should
achieve the hopping motion to leap over obstacles, and we
have to assess the condition for switching the tumbling and
hopping motion. Two conditions are considered for switching
these modes.

1) The spike touching the ground must maintain contact
with the ground until ϕ_i exceeds 90°.
2) To maintain static friction, the torque T_M should be
below $\mu r F_K$.

First, we deal with the first condition. If the spike ceases
a contact with the ground before ϕ_i reaches 90°, the robot
starts floating and stops the tumbling motion. Therefore, the
spike must maintain the contact with the ground until ϕ_i
reaches 90°. To meet this requirement, the natural frequency
($f_{\text{natural}} = \sqrt{k/m}$) of the robot should be low. When
the length of the springs attached to the spikes exceeds the
original length, the springs start shrinking. This makes the
robot to commence floating. Hence, m should be large to
prevent the robot from floating. In particular, when g is
below 10^{-5} m/s² order, the amplitude of vibration extends
compared to 10^{-3} m/s² or larger case. Consequently, the
importance of the heavy mass of the robot increases especially
in a low gravity environment.

Second, we address the second condition. In this discus-
sion, the robot must be under the first condition. If the spike
touching the ground slips before ϕ_i reaches 90°, the robot
starts floating in the air. Hence, the spike of the robot must
maintain the static friction until ϕ_i reaches 90°. To maintain
the static friction, the horizontal component of the robot’s
pushing force should satisfy the following equation.

$$f_i < \mu N_i \quad (13)$$

i.e.

$$\frac{T_M}{r} \sin \phi - F_K \cos \phi < \mu \left(\frac{T_M}{r} \cos \phi + F_K \sin \phi \right) \quad (14)$$

This equation claims that the horizontal component of its
pushing force should be below the maximum static friction
force. We can control the torque actively and it mostly
affects the horizontal component of its pushing force when
ϕ becomes 90°. Therefore, we can obtain the following
condition by substituting $\phi = 90°$.

$$T_M < \mu r F_K \quad (15)$$

VI. Experiments

To verify the dynamics modeling proposed in Section
IV, we conduct some experiments. The experiment envi-
ronment and the test bed are shown in Fig. 9 (a) and (b),
respectively. This test bed comprises electric circuits with
a power battery, an air tank, a brushed DC motor with an
eccentric mass, air bearings attached to the bottom of the
test bed, and eight spikes made from acrylonitrile-butadiene-
styrene (ABS) polymer. Owing to the compressed air in
its air tank and the flowing of air from the bottom air
bearings, the test bed can float on the granite table. This
enables the robot to move in a two-dimensional emulated

<table>
<thead>
<tr>
<th>Height of Step [m]</th>
<th>0.02</th>
<th>0.04</th>
<th>0.06</th>
<th>0.08</th>
<th>0.10</th>
<th>0.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ability to Climb</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

| TABLE VI |
| RESULTS OF CLIMBING SIMULATION |

Fig. 8. Conditions of Switching Conditions

Fig. 7. Climbing Simulation
Fig. 9. Overview of the Microgravity Simulating Experiment Environment and Test Bed

Fig. 10. Sequence of Tumbling Locomotion

(a) Experiment Environment
(b) Test Bed

Fig. 9. Overview of the Microgravity Simulating Experiment Environment and Test Bed

microgravity environment. The DC motor is attached to the test bed perpendicularly to the granite table. The weight of this test bed is 4.45 kg. The DC motor is controlled remotely via XBEE, wireless communication modules. The rotational speed of the motor is controlled by a proportional-integral-differential (PID) controller that is implemented on Arduino, a micro controller. The position of the test bed is recorded by an opti-track, motion capture cameras. The acceleration of gravity is generated by slightly tilting the granite table. On the surface that the robot moves, sand paper on a steel plate is attached. This sand paper contributes to simulating the friction coefficient of uneven asteroid surfaces.

A. Tumbling Locomotion

First, we verify the feasibility of the tumbling locomotion. Fig. 10 shows the tumbling locomotion. Fig. 10 indicates that the proposed method actually works in a microgravity environment and its spikes can keep its contact with the simulated surface while tumbling.

Subsequently, to confirm the dynamics model, we apply the motor’s torque listed in Table. VII to the robot for 3 s (owing to the specification of the motor) and analyze the tumbling motion. In Table. VII, f_{target} and $\dot{\omega}$ denote the target motor frequency and the angular acceleration of the motor, respectively. In this experiment, we arrange $g = 2.5 \times 10^{-3} \text{m/s}^2$. Fig. 11 (a) shows the x position of the robot in experiments and numerical simulations. Moreover, Fig. 11 (b) shows the x component of the translational velocity of the robot in experiments and numerical simulations. This figure indicates the validity of the dynamics model mentioned in Section IV. Moreover, the translational velocity of the robot increases as the torque proliferates, and the friction status affects the acceleration of the robot. Owing to the applying time of 3 seconds, the velocity decreases suddenly approximately 4 or 5 seconds unlike the numerical simulations. Contacts between a spike and the simulated surface cause the sudden reduction since the contacts disperse the energy of the robot.

B. Climbing Ability

Finally, we verify the robot’s ability to climb a step. In this experiment, we prepare two steps whose heights are 0.1 m and 0.12 m, respectively. Based on the limitation of the motor, we apply $T_M = 0.015 \text{ N-m}$ to the robot for 3 seconds. g is $2.5 \times 10^{-3} \text{m/s}^2$.

To begin with, we mention the success case of climbing a step. In this case, the height of the step is 0.1 m, which is approximately equal to the sum of the radius of the body and spike length. Fig. 12 (a) shows the sequence of climbing a step. From these figures, it is obvious that the robot actually climbs a step.

Conversely, in the failure case, the height of the step is 0.12 m, which exceeds the sum of the radius of the body and spike length. Additionally, for the other case, Fig. 12 (b) shows the sequence of climbing a step. From Fig. 12 (b), a spike of the robot has a contact with the lateral surface of the step before the robot completes its climbing motion. The reaction force derived from this contact works as the repulsive force of the robot; therefore, the robot cannot climb the step.

Thus, we can verify that the climbing ability of the robot depends on the sum of the radius of the body and spike

<table>
<thead>
<tr>
<th>f_{target} [Hz]</th>
<th>$\dot{\omega}$ [rad/s2]</th>
<th>T_M [N-m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>20</td>
<td>41.9</td>
</tr>
<tr>
<td>#2</td>
<td>25</td>
<td>52.4</td>
</tr>
<tr>
<td>#3</td>
<td>30</td>
<td>62.8</td>
</tr>
</tbody>
</table>

TABLE VII
THE TORQUE OF THE MOTOR ASSIGNED FOR ANALYZING TRANSLATIONAL VELOCITY
length; specifically, the robot is able to climb only such steps whose height is below the sum.

C. Switch Tumbling and Hopping

Based on the switching condition mentioned in Section IV, we validate the switching conditions of tumbling and hopping modes by experiments. Considering the condition $T_M < \mu r F_K$, we assign the motor’s torque listed in Table. VIII to the robot. At the calculation of T_M, we use F_K computed from the numerical simulation. In this experiment, we modify g 1.4×10^{-3}m/s2.

The results of this simulation are described in Fig. 13 (a) and (b). Each of these figures shows the sequences of tumbling and hopping motion of the robot. These figures indicate that the conditions function.

<table>
<thead>
<tr>
<th>f_{target} [Hz]</th>
<th>$\dot{\omega}$ [rad/s2]</th>
<th>T_M [N-m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>20</td>
<td>0.0100</td>
</tr>
<tr>
<td>#2</td>
<td>25</td>
<td>0.0125</td>
</tr>
</tbody>
</table>

TABLE VIII

THE TORQUE OF THE MOTOR ASSIGNED FOR VALIDATION OF SWITCHING CONDITIONS

VII. CONCLUSION

In this study, we presented the dynamics modeling and analysis of tumbling locomotion by numerical simulations and physical experiments. The model considers the motor’s torque and the elastic damping forces derived from the
spikes. Thus, the robot’s motion can be expressed mathematically. Moreover, we analyzed the characteristics of its tumbling motion by numerical simulations. The translational velocity during tumbling locomotion positively depends on the motor’s torque, and the robot can climb obstacles whose height is below its radius. In addition, we performed some physical experiments to verify the validity of the dynamics model. These experiments helped validate the proposed dynamics model, and we obtained a deep insight into the characteristics of tumbling locomotion.

For future study, the following two issues should be addressed: One is the mechanical approach, which addresses the effects of the shape of the spikes. The other is the theoretical approach, which deals with the controller to generate the motion of the robot to access the desired locations.

REFERENCES

