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Abstract— Robot motion is controlled in the joint space
whereas the robots have to perform tasks in their task space.
Many tasks like carrying a glass of liquid, pouring liquid, open-
ing a drawer requires constraints on the end-effector during the
motion. The forward and inverse kinematic mappings between
joint space and task space are highly nonlinear and multi-
valued (for IK). Consequently, modeling task space constraints
like keeping the orientation of the end-effector fixed while
changing its position (which is required for carrying a cup
of liquid without dropping it) is quite complex in the joint
space. In this paper, we show that the use of screw linear
interpolation to plan motions in the task space combined with
resolved motion rate control to compute the corresponding
joint space path, allows one to satisfy many common task
space motion constraints in motion planning, without explicitly
modeling them. In particular, any motion constraint that
forms a subgroup of the group of rigid body motions can be
incorporated in our planning scheme, without explicit modeling.
We present simulation and experimental results on Baxter robot
for different tasks with task space constraints that demonstrates
the usefulness of our approach.

I. INTRODUCTION

Planning and control of motion of a robot manipulator to
go from an initial to a goal configuration is a fundamental
problem in robotics. Additionally, during motion, different
constraints on the end-effector may have to be satisfied. For
example, consider the dual-handed manipulation task shown
in Figure 1, where the robot has to hold a tray with a glass
of liquid with both hands and move it from an initial to goal
configuration. To accomplish the task successfully, the robot
has to compute a path (i.e., a sequence of joint angles) such
that the relative pose (position and orientation) between the
two end-effectors as well as the orientation of the tray do
not change along the entire path. The goal of this paper is
to study such motion planning problems with end-effector
constraints (also called task space constraints) that have to
be satisfied during the the motion.

The task space of a manipulator is the set of all end-
effector poses that it can reach. The joint space of a manip-
ulator is the set of all feasible joint angles of the manipulator.
A joint space configuration can be converted to a task space
pose through the forward kinematics mapping, which is a
nonlinear mapping. Joint space based (randomized) planning
approaches are a widely used class of motion planning
techniques [1], [2]. They have been developed to obtain
feasible motion plans in the presence of obstacles. However,
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Fig. 1: The robot has to compute joint space path for both
arms to transfer a tray with a liquid filled glass from an initial
(right) to a goal (left) configuration. To accomplish the task,
the relative configuration between the two end-effectors and
the orientation of the tray should not change during motion.

handling task space constraints in joint space based planning
approaches is quite complicated [3], [4], [5], [6], [7] because
they lead to nonlinear constraints that the joint angles should
satisfy.

Task space based planning approaches are historically
older than joint space based approaches and rose out of
the resolved motion rate control (RMRC) approach in [8].
In this approach, for a given start and goal pose, a path
is first planned in the task space and then the (weighted)
pseudoinverse of the manipulator Jacobian is used to com-
pute the joint angles [9]. The second step is also known as
redundancy resolution for redundant manipulators [10], [11].
Related to the task space based planning approaches are the
operational space based control approaches [12], where the
redundancy resolution may be done at the velocity level or
acceleration level [13]. A key difference between the task
space based path planning and the operational space control
is that in the former it is assumed that the robots are position-
controlled (and thus the output of planning is a sequence
of joint angles), whereas in the latter it is assumed that
the robots are torque controlled (and thus the output is a
sequence of joint torques).

Since specifying tasks are more natural in the task space,
much work has been done in development of task specifi-
cation and prioritization in the context of operation space
control [14], [15], [16]. For task space based planning, most
papers assume that an end-effector path between start and
goal poses is given. When just the start and end poses are
given, it is usually assumed that only the position of the
end-effector is of interest and thus the path can be computed
by interpolation in R3 [11]. Note that the task space is a
subset of SE(3), which is a group and not a vector space.
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Thus, care needs to be taken to respect the group structure of
SE(3) during interpolation. To the best of our knowledge,
this aspect has not been carefully considered in the context of
task space based motion planning. However, in the theoretical
kinematics, computer graphics, and CAD literature, many
interpolation methods between rigid body poses in SE(3)
using a unit dual quaternion representation of SE(3) have
been studied. One such interpolation method is the screw
linear interpolation (ScLERP), which is the analogue of
straight line interpolation between two points in Euclidean
space.

Contributions: In this paper we present a task space
based path planning approach, where we use screw linear
interpolation to compute a path in the task space and use
pseudoinverse of the Jacobian to compute the corresponding
path in the joint space. Note that although RMRC and
screw linear interpolation have been both around for quite
some time, the combination of these two for local path
planning in task space has not been explored in the literature.
Furthermore, we prove that by using ScLERP, any task space
constraint that allows motion within subgroups of SE(3)
can be handled without explicitly considering them. This is
rather surprising, because there has been significant effort in
the literature on incorporating task space constraints like that
shown in Table 1 [4], [5], [17], [18], [19]. Figure 2 shows
one such exemplar problem of opening a door.

In our method, any task constraint that can be decomposed
into a sequence or combination of these motion subgroup
constraints can also be satisfied without explicitly enforcing
them. For example, the solutions for dual handed manip-
ulation example in Figure 1 can be obtained by planning
the path in task space as follows: (1) Set the initial and
goal configuration of each end-effector such that (a) the
relative configuration between them at start and goal are
same and (b) for each end-effector the orientation at the start
and goal are same. (2) Plan the path for each end-effector
using ScLERP with the same interpolation parameter. The
resulting path will satisfy the desired motion constraints, i.e.,
the end effectors will have constant relative configuration and
maintain constant orientation of the tray during the entire
path. We also show other examples of transferring a glass of
liquid with a single manipulator and pouring it into another
container, which can be accomplished very simply without
enforcing the task constraints along the path explicitly. We
also validate our results experimentally using Baxter robot
from ReThink Robotics. The videos of our experiments are
presented in the video attachment to the paper.

Thus, our key contribution is the use of ScLERP in the
context of task space based motion planning and showing
both mathematically and experimentally that this approach
simplifies motion planning with task space constraints in
some applications. The use of dual quaternions to represent
tasks have been proposed before in the context of operation
space control [20]. However they do not use ScLERP. The
use of linear interpolation for dual quaternion in the context
of task space based path planning was proposed in [21]. The
shortcomings of linear interpolation of unit dual quaternions

compared to ScLERP have been pointed out in the graphics
literature [22]. Furthermore, popular heuristics of decoupling
interpolation of translation and rotation of the end-effector
pose also does not ensure satisfaction of task space con-
straints. To the best of our knowledge, none of the previous
work have shown that by using ScLERP, we can essentially
satisfy some task constraints without explicitly considering
them.

II. MATHEMATICAL PRELIMINARIES

Let Rn be the real Euclidean space of dimension n, Rm×n

be the set of all m × n matrices with real entries. The set
of all joint angles, J ∈ Rn, is called the joint space or
the configuration space of the robot where n is the number
of degrees of freedom (DoF) of the robot. The Special
Orthogonal group of dimension 3, which is the space of
all rigid body rotations is denoted as SO(3). The Special
Euclidean group of dimension 3, which is the space of
rigid motions (i.e., rotations and translations) is denoted as
SE(3). Mathematically, SO(3) and SE(3) are defined as:
SO(3) =

{
R ∈ R3×3|RTR = RRT = I, |R| = 1

}
,

SE(3) =
{

(R,p)|R ∈ SO(3),p ∈ R3
}

, where |R| is the
determinant of R and I is a 3 × 3 identity matrix. The set
of all end-effector or hand configurations is called the end-
effector space or task space of the robot and is a subset
of SE(3). A task space configuration g ∈ SE(3) can be
written either as the pair (p,R) or as a 4× 4 homogeneous

transformation, i.e., g =

[
R p
0 1

]
, where 0 is a 1× 3 vector

with all components as 0. An element of SO(3), i.e., a rigid
body rotation, can also be represented by a unit quaternion
and an element of SE(3), i.e., a rigid body motion can be
represented by a unit dual quaternion.

Quaternion: A quaternion is a hypercomplex number,
which can be represented by a tuple Q = (q0, q1, q2, q3)
or as Q = q1i + q2j + q3k + q0 or Q = q + q0 where
q0 is the real scalar part and q is the imaginary vector part
with components q1, q2, q3. Here, i, j, k are the imaginary
numbers which have the following properties: i2 = j2 = k2

= -1 and ij = k , ji = −k, jk = i , kj = −i, ki = j ,
ik = −j. Note that scalars, as well as vectors in R3, can also
be represented as quaternions. For a scalar q1 = q2 = q3 = 0,
and for a vector q0 = 0.

A unit quaternion is a quaternion where ‖Q‖ = q20 +
q21 + q22 + q23 = 1. The conjugate of a quaternion is defined
as Q∗ = q0 − q1i − q2j − q3k whereas inverse is Q−1 =
Q∗/||Q||. For a unit-quaternion Q−1 = Q∗. A rotation can
be represented as a unit quaternion: Q = u sin θ/2+cos θ/2
where θ and u are angle and axis of the rotation. Let P and
Q be the unit quaternion representations of two rotations.
The composition of the two rotations is equivalent to the
quaternion product given by P ⊗ Q = (p0q0 − p · q) +
(p0q + q0p + p× q).

Dual-Quaternion: A dual number is a number of the form
a + εb, where a, b ∈ R, and ε2 = 0, although ε 6= 0. The
concept of dual numbers can be extended to dual vectors as
well as dual quaternions [23]. A dual quaternion is defined as
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Fig. 2: Motion of a door handle (rectangular bars) obtained
by the proposed motion planner using ScLERP based inter-
polation to generate end-effector poses. The ScLERP based
interpolation implicitly maintain the rigid constraint imposed
by the door handle, i.e. at all intermediate poses of the end-
effector frame the distance between the end-effector frame
and hinge of the handle are fixed.

A = Ar + εAd where Ar and Ad are both quaternions and
ε2 = 0, ε 6= 0. The conjugate of a dual quaternion is A∗ =
A∗
r + εA∗

d, where the conjugate on the right hand side is the
conjugate operation on quaternions. The sum of two dual
quaternions A and B is A+B = (Ar +Br)+ ε(Ad+Bd).
Product of two dual quaternions A and B is obtained as
A⊗B = Ar⊗Br+ε(Ad⊗Br+Ar⊗Bd), where ⊗ on the
left denote dual quaternion product and ⊗ on the right denote
quaternion product. For a unit dual quaternion, A⊗A∗ = 1,
i.e., ||Ar|| = 1 and Ar · Ad = 0. A unit dual quaternion
A = Ar + ε

2At ⊗ Ar represents rigid body motions
or transformation where Ar is the rotation unit-quaternion
and At is the linear translation vector (represented as a
quaternion). If A = Ar + εAd with Ar = cos θ2 + u sin θ

2
then power of A with respect to a fractional exponent
τ ∈ [0, 1] can be obtained as Aτ = cos τ θ̄ + ū sin τ θ̄ where
cos θ̄ = cos θ2 − ε

d
2 sin θ

2 , sin θ̄ = sin θ
2 + εd2 cos θ2 . We find

d as d = (2Ad ⊗ A∗
r) · [0, l]T . Also ū = u + εm where

m = 1
2

(
p× u + (p− du) cot θ2

)
and p is the last three

rows of 2Ad ⊗A∗
r .

III. PROBLEM STATEMENT

Let g(0) = g0 ∈ SE(3) be the initial pose of the end-
effector frame of a robot and gd ∈ SE(3) be the desired
end-effector pose. Let Θ = [θ1, θ2, · · · , θn]T ∈ Rn be the
vector formed by concatenating the joint angles, where n is
the DoF of the manipulator. Let Θ(0) ∈ Rn, be the initial
joint space configuration of the manipulator. The motion
planning problem that we consider is defined as: Given
g0 and gd for a manipulator, compute a sequence of joint
angles, Θ(i), i = 0, . . . ,m, such that FK(Θ(m)) = gd,
where FK is the forward kinematics map of the manipulator.
The sequence of joint angles or end-effector configurations
may also need to satisfy different constraints like joint limits,

Motion Subgroup Exemplar Tasks
Rn, n = 1, 2, 3 Opening a drawer (R),

Carrying a glass of water (R3).
SO(n), n = 2, 3 Opening a hinged door, valve (SO(2)),

Re-orienting an object while maintaining
contact with a plane SO(3).

SE(2) wiping a flat surface, e.g., window pane
SO(2)× R1 All rotations in a plane and translations

perpendicular to the plane.
Screw Motion (H(1)) Opening or tightening a bolt with a wrench.

TABLE I: Common Motion Constraints and Exemplar Tasks.

collision avoidance with obstacles, and constraints on motion
of the end-effector.

The motion planning problem becomes challenging in the
presence of constraints on the motion of the end-effector as
well as obstacles in the environment that need to be avoided.
In this paper, we will be presenting a local planning or point-
to-point planning approach that can take into consideration
the constraints on the motion of the end-effector. Incorpora-
tion of joint limits and collision avoidance constraints with
the proposed planner are described in [24]. .

Overview of Solution Approach: We propose to use a
generalization of the Resolved motion rate control approach
proposed in [8]. We use an iterative two-step approach: (a)
In the first step we use a dual quaternion representation of
the end-effector pose and use screw linear interpolation to
compute a path in the task space for the robot to follow. (b) In
the second step, we use the (weighted) pseudoinverse of the
Jacobian to convert the task space path to a joint space path.
The key innovation in this paper is the use of ScLERP to
generate the interpolating poses and showing that for a wide
class of constraints on the path, where the motion is restricted
to sub-groups of SE(3), ScLERP can automatically generate
paths that satisfy the constraints.

The set of unit dual quaternions is a group under the
operation of dual quaternion multiplication. Thus, the unit
dual quaternion representation of SE(3) respects the group
structure of the rigid body motion. Furthermore (as we
show below), when the motion is constrained to be in a
subgroup of SE(3), any interpolated pose obtained from
ScLERP is guaranteed to be in the subgroup. In other words,
without explicit representation or enforcement of the task
constraints (that constrain the motion to be in a sub-group),
the interpolated poses will always satisfy the task constraints
along the path.

IV. SCREW LINEAR INTERPOLATION (SCLERP) AND ITS
PROPERTIES

In this section, we present the basics of Screw Linear In-
terpolation (ScLERP) and some useful properties of ScLERP.
We also compare ScLERP to two baseline approaches that
are commonly used for path planning in task space (T-space).
Let A and B be two unit dual quaternions corresponding to
two rigid body poses. ScLERP is a method to compute a
curve in SE(3) that interpolates between these two poses. It
is the analogue of the shortest path motion in R3 for motion
in SE(3). Let τ ∈ [0, 1] be the interpolation parameter. Then,
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Fig. 3: Comparison of ScLERp based path generation for
door-handle twisting task with (a) independent interpolation
of position and orientation and (b) velocity controller by
minimizing position and orientation error. The path generated
by ScLERP (circular arc) maintained the path constraint
imposed by the door handle while other interpolation ap-
proaches does not maintain the constraint.

any point on the path between A and B can be obtained for
a given value of τ is C(τ) = A⊗ (A∗ ⊗B)τ .

Given any two end-effector poses A and B, there is a
screw motion corresponding to the end-effector motion. In
other words, there is an axis such that a rotation about that
axis (say by angle, θ) and a translation along the axis (say by
distance, d) transforms the T-space pose from A to B. This
screw is an intrinsic property of rigid body displacement
and independent of the choice of coordinate frames [22],
[23]. Thus, the interpolated poses are also independent of
the choice of coordinate frames. ScLERP has a very nice
geometric interpretation with regard to this screw. For any
choice of the parameter τ , the interpolated pose is such that
the rotation is τθ and the translation is τd, i.e., the rotational
and translational displacement are by the same fraction τ .
This is the reason the motion is called screw linear, and note
that the resultant motion need not be linear in T-space.

Task Constraints: The key subgroups of SE(3) and
examples of the types of motion constraints they encode
are given in Table I. These include the subgroup of pure
translations (first row), pure rotations (second row), motion
in a plane (third row), set of all motions that can be generated
by a cylindrical joint (fourth row) and motions that include
screwing or unscrewing operations (fifth row). Please note
that when we say that the motion is constrained to be
in a subgroup, it implies that the screw corresponding to
the motion is in the subgroup; it does not imply that the
end-effector pose has to be in the subgroup. For example,
consider the motion required to open a refrigerator door
or a kitchen cabinet door or turn a handle (as shown in
Figure 3). The motion is in SO(2), since it is a pure rotation
about the hinge axis (the screw axis in this case). However,
the end-effector pose has changes in both translation and
orientation parameter. For existing task space based planning
methods, which are coordinate dependent, the constraint that
the end-effector pose lies on a circular arc has to be encoded
explicitly by using an algebraic equation. However, as we

will show below, since ScLERP is coordinate independent,
we just need to provide the initial and final pose and the
interpolated poses are guaranteed to be on a circular arc.

Interpolating Translation and Orientation Indepen-
dently: A common heuristic used in robotics and also in
many motion planning software packages is to interpolate
the positions and orientations independently using the same
interpolation parameter. Linear interpolation is used for the
translation and spherical linear interpolation (SLERP) is
used for orientation with a unit quaternion representation
of orientation. However, this decoupling leads to a path
that depends on the choice of the coordinate frame. The
interpolated path does not always satisfy the motion group
constraints. Thus, constraints for motions like opening a door
or rotating a handle as shown in Figure 3 will not be satisfied
when generating the path. As Figure 3 shows, the generated
path does not lie on a circular arc and thus would not satisfy
the T-space constraint.

Minimizing the error to the goal in parameter space:
Another approach to motion planning in task space is to
use a kinematic controller to reduce the error between the
initial and the goal pose. This approach can be used with
any representation of SE(3). Let γ be the end-effector pose
parameters formed by concatenating the Cartesian position
and unit quaternion representation of rotation. Let γ0 and
γd be the initial and final end-effector pose respectively.
Then, this approach tries to reduce the error e = γd − γ0

in each parameter and it is equivalent to (weighted) linear
interpolation in the parameter space. As shown in Figure 3,
for turning the handle, it also does not ensure that the T-space
path will lie on a circular arc. Thus motion constraints would
not be satisfied along the path, unless explicitly enforced.

To summarize, there are multiple advantages of using
ScLERP: (1) ScLERP is the generalization of straight line
interpolation between two points in R3 to SE(3). Thus, we
have the analogue of the shortest path motion in R3 for the
motion in SE(3), when there are no constraints on the end-
effector pose [25]. (2) If the motion of the end-effector has to
lie within a subgroup of SE(3), ScLERP with the given start
and goal poses ensures that the path generated will always
be in the same subgroup. Thus, motion constraints can be
enforced without explicitly representing them. (3) Even when
the motion constraints do not form a subgroup of SE(3) or
there are multiple sub-group constraints along a path, we can
introduce intermediate way-points to ensure that the motion
constraints are respected.

A. Useful properties of ScLERP to satisfy task constraints

For different motion subgroups, we now prove the claim
that if the initial and final poses are in the subgroup, then all
intermediate configurations will be in the subgroup. Because
of space constraints we only provide some of the proofs
(for R3 and SO(3)). The others (for SE(2), cylindrical
pair, and screw displacement) can be obtained as simple
corollaries from the given proofs or in an analogous manner.
(a) During a ScLERP, if the orientation of initial and goal
location is kept same, i.e., if the motion is constrained to
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R3, all intermediate locations will have the same orientation
(see Lemma 1). The proof of this lemma can be extended
to the subgroups R2 and R (b) During a ScLERP, if the
position vector of initial and goal location is kept same, i.e.,
if the motion is constrained to SO(3), then all intermediate
configurations of will have the same position (see Lemma
2). This proof can be extended to SO(2). (c) Given a
pair of initial and a pair of goal configurations in dual-
quaternion form such that the relative configurations between
the initial and goal configuration pairs are the same, then
performing ScLERP independently between the two start-
goal-pairs preserves the same relative configurations between
any intermediate configuration pair(see Lemma 3).

Lemma 1: Let A = Ar + εAd and B = Br + εBd

be two unit dual quaternions representing two task space
configurations with Ar = Br = Z (say). Let C(τ) =
Cr(τ) + εCd(τ) = A ⊗ (A∗ ⊗B)

τ be the configuration
at any value of the interpolation parameter τ ∈ [0, 1]. Then
Cr(τ) = Z, for all values of τ ∈ [0, 1].

Proof: Since A = Ar + εAd = Z + εAd, therefore
A∗ = Z∗ + εA∗

d. Then

A∗ ⊗B = (Z∗ + εA∗
d)⊗ (Z + εBd)

= Z∗ ⊗ Z + εK (∵ ε2 = 0)

= 1 + εK (∵ Z∗ ⊗ Z = 1)

(1)

where K = A∗
d⊗Z+Z∗⊗Bd. Using algebraic manipulation

(which we omit due to space constraints) it can be shown
that for any dual quaternion of the form Q = 1+ εK, Qτ =
1 + εK̄(τ) for any value of τ ∈ [0, 1]. Therefore, using (1),
we get (A∗ ⊗B)

τ
= (1 + εK)

τ
= 1 + εK̄.

∴ C(τ) = A⊗ (A∗ ⊗B)
τ

= (Z + εAd)⊗
(
1 + εK̄

)
= Z + ε(Ad + Z⊗ K̄) (2)

Since (2) is valid for all τ ∈ [0, 1], Cr(τ) = Z, ∀ τ ∈ [0, 1].
Lemma 2: Let A = Ar + ε

2At ⊗ Ar and B = Br +
ε
2Bt ⊗ Br be two unit dual quaternions representing two
task space configurations with At = Bt = Z (say). Let
C(τ) = Cr(τ) + ε

2Ct(τ) ⊗ Cr(τ) = A ⊗ (A∗ ⊗B)
τ be

the configuration at any value of the interpolation parameter
τ ∈ [0, 1]. Then Ct(τ) = Z, for all values of τ ∈ [0, 1].

Proof: Since A = Ar + ε
2Z⊗Ar,

A∗ = A∗
r +

ε

2
(Z⊗Ar)

∗
= A∗

r +
ε

2
(A∗

r ⊗ Z∗) .

∴ A∗ ⊗B =
(
A∗
r +

ε

2
(A∗

r ⊗ Z∗)
)
⊗
(
Br +

ε

2
(Z⊗Br)

)

= A∗
r ⊗Br +

ε

2
(A∗

r ⊗ Z∗ ⊗Br + A∗
r ⊗ Z⊗Br)

= A∗
r ⊗Br +

ε

2
(A∗

r ⊗ (Z∗ + Z)⊗Br)

= A∗
r ⊗Br, since Z + Z∗ = 0 (3)

∴ (A∗ ⊗B)
τ

= (A∗
r ⊗Br)

τ
= D (say) (4)

Note that D is a pure rotation with dual part 0.

∴ C(τ) = A⊗ (A∗ ⊗B)
τ

= A⊗ (A∗
r ⊗Br)

τ

=
(
Ar +

ε

2
(Z⊗Ar)

)
⊗D

= Ar ⊗D +
ε

2
Z⊗ (Ar ⊗D) (5)

From (5), Cr(τ) = (Ar ⊗D) and Ct(τ) = Z, ∀ τ ∈ [0, 1].

Lemma 3: Let (A,B) and (C,D) be unit dual quater-
nions representing two pairs of initial and goal configurations
such that the relative configurations between starts and goals
are the same, i.e., C ⊗ A∗ = D ⊗ B∗ = G. Let E(τ) =
A⊗ (A∗ ⊗B)

τ and F(τ) = C⊗ (C∗ ⊗D)
τ be two poses

on the path between (A,B) and (C,D) respectively at
the same value of the interpolation parameter τ . Then the
relative configuration between E(τ) and F(τ) is G, i.e.,
F(τ)⊗E∗(τ) = G, ∀ τ ∈ [0, 1].

Proof: Let A = Ar + εAd, B = Br + εBd, C =
Cr + εCd, and D = Dr + εDd. Since C⊗A∗ = D⊗B∗,
by pre-multiplying by C∗ and post-multiplying by B, we get
A∗⊗B = C∗⊗D. Therefore, (A∗ ⊗B)

τ
= (C∗ ⊗D)

τ
=

Z (say). Thus, E(τ) = A⊗ Z and F(τ) = C⊗ Z. Thus

F⊗E∗ = C⊗ Z⊗ (A⊗ Z)
∗

= C⊗ Z⊗ Z∗ ⊗A∗

= C⊗A∗ = G (6)

Therefore the relative configuration between E and F is same
as that of A and C (or B and D).

V. SCLERP BASED MOTION PLANNING

A. Jacobian-based Inverse Kinematics

Let p denote the position of the end-effector and Q be
the unit quaternion representing the orientation of the end-
effector. We know that the spatial angular velocity, ωs and
the spatial linear velocity vs is related to ṗ and Q̇ as

ωs = 2J1Q̇, (7)
vs = ṗ− ω̂sp = ṗ + p̂ωs = ṗ + 2p̂J1Q̇ (8)

In the above equation, the .̂ operator, converts any 3 × 1
vector to a 3×3 skew-symmetric matrix form, which is used
to represent the cross product of vector ωs and vector p. J1

is the representation Jacobian that maps rate of change in
rotation quaternion into angular velocity. Writing the above
equations in matrix form, we obtain:[

vs
ωs

]
=

[
I 2p̂J1

0 2J1

]
︸ ︷︷ ︸

J2

[
ṗ

Q̇

]
= J2︸︷︷︸

6×7

[
ṗ

Q̇

]
(9)

We know that V = [vs ωs]T = JsΘ̇, where Θ̇ is the
vector of joint velocities and Js is the spatial Jacobian of
the manipulator. Therefore

Θ̇ = JT
s

(
JsJ

T
s

)−1
[
vs
ωs

]
= JT

s

(
JsJ

T
s

)−1
J2

[
ṗ

Q̇

]
(10)
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Let γ = [p Q]T, γ̇ = [ṗ Q̇]T,B = JT
s

(
JsJ

T
s

)−1
J2.

Therefore, from Equation (10), we can have

Θ̇ = Bγ̇ (11)

Equation (11) can be used for both kinematics based motion
planning and inverse kinematics (or redundancy resolution)
for redundant manipulators. Let Θt and Θt+h be the joint
angles at time t and t + h respectively, where h is the
interpolation time-step. Using a Euler time-step to discretize
the Equation (11) and simpifying, we obtain

Θt+h = Θt + B(Θt)
(
γt+h − γt

)
(12)

B. Steps in Motion Planning Algorithm

Input: Initial configuration of manipulator Θ(0) (and there-
fore, initial configuration of end-effector, g0) and desired
configuration, gd.
Output: A sequence of n×1 joint-angle vectors, Θ(0), . . . ,
Θ(m) where n is number of degrees of freedom of arm.

1) Convert g0 and gd to a dual quaternion representation
A0, Af . Initialize t = 0.

2) For t = 0, At = A0, otherwise At is known
from the previous iteration. Perform a dual quaternion
interpolation between At and Af by choosing a value
of the interpolation parameter (say, τ = 0.01) to obtain
the next configuration At+h.

3) Compute γt+h from At+h and γt from At. Recall that
γ is a 7× 1 array of numbers with the first 3 denoting
the position of the end-effector frame in the world
coordinates and the last 4 denoting the unit quaternion
representation of the tool frame with respect to the
world frame. Compute Θt+h using Equation (13).

Θt+h = Θt + βB(Θt)
(
γt+h − γt

)
(13)

where β ≤ 1 is a step length parameter for how far
one is moving from Θt.

4) Use forward kinematics to compute the actual config-
uration that the robot would reach, ḡt+h.

5) Check if ḡt+h is close enough to gd. If yes, then stop,
and return output. Otherwise, set t ← t + h, convert
ḡt+h to the dual quaternion representation At+h, set
At ← Āt+h, set Θt ← Θ̄t+h and go back to step 2.

In the supplementary document [26] we have presented the
above steps in algorithmic format for the ease of implemen-
tation.

VI. RESULTS AND DISCUSSIONS

In this section we provide simulation and experimental
results obtained by using the proposed motion planner.
We use the Baxter robot from ReThink Robotics as our
experimental platform. The tasks that we consider are (a)
turning a door handle (shown in Figure 2), (b) moving a
glass of liquid from one position to another and pouring it
into another container, and (c) moving a tray with a glass of
water by using two hands. We have done multiple simulations
and experiments for all the three cases. Because of space
constraints, we provide simulation results for the example

Fig. 4: Simulated Baxter arm executing circular end-effector
path generated using ScLERP based proposed planner.

(a) and experimental results for (b) and (c). In scenario (b),
the end-effector has to maintain the constraint that the motion
should be pure translation so that the liquid is not spilled.
Also, in example (b), part of the motion should be pure
translation and part should be pure rotation. In example (c),
both arms have to perform pure translation while also main-
taining the same relative configuration between each other.
As stated earlier, we do not put in any of these constraints
explicitly, but just specify the start and goal end-effector
configurations. The resulting paths automatically satisfies the
task level constraints. Please see the supplementary video file
of this paper demonstrating the proposed planner working in
practice.

1) Planning for end-effector path when position and
orientation of the end-effector changes simultaneously:
The objective of this example is to compute a plan for
the end-effector to turn a door handle to open a door.
As discussed earlier, ScLERP based pose interpolation to
generate intermediate poses has the advantage of naturally
maintaining end-effector constraints as opposed to indepen-
dent interpolation of the position and orientation methods
(see Figure 3). So this example also serves as a case where
ScLERP can only produce poses respecting desired circular
nature of the desired end-effector path whereas other pose
interpolation techniques cannot. The initial joint angle vector
and intial and goal end-effector poses used to compute the
plan using Algorithm V-B can be found in the supplementary
document [26]. In Figure 4 we have shown the arm motion
while executing the plan obtained using Algorithm V-B with
a simulated Baxter robot. Notice that although we did not
explicitly mention the task constraint, that the intermediate
end-effector poses should lie on an arc.

2) Transferring and pouring a glass of liquid: In this
example the robot transfers a glass of liquid and pours it
into another container (see Figure 5). In this task the robot’s
position or orientation does not remain fixed during the entire
task. However, it can be decomposed into two sub-tasks,
where, in the first sub-task the robot moves the glass keeping
its orientation fixed, and in the second sub-task, it pours the
liquid by rotating the glass while keeping the position of its
end-effector fixed. Note that the first sub-task is same as the
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Fig. 5: From right to left: (1) Initial pose for the liquid transfer (sub-task-1) and pouring (sub-task-2). (2) Intermediate
poses for sub-task-1 with fixed orientation of the end-effector as motion constraint. (3) Intermediate poses for sub-task-1
with fixed position of the end-effector as motion constraint. (4) Achieved Goal pose after successful completion of the task.

Fig. 6: From right to left: Baxter robot transferring glass of water (red) by moving a tray (white) held between left and right
end-effectors from the initial to the goal pose. During the entire motion the rigidity constraint between the left and right
gripper is maintained and glass stays upright.

previous example. We will call the first sub-task the transfer
task and the second sub-task the pouring task. The initial
and goal end-effector poses of the task and the corresponding
values of the sub-tasks are given in [26]. We computed the
plan for both the first and second sub-tasks. The obtained
sequence of joint angles are then executed in Baxter robot
and the motion is shown in Figure 5. Panel 1 shows the
initial configuration and panel 2 shows some intermediate
configurations to the end of the transfer. Panel 3 shows some
intermediate configurations for pouring and panel 4 shows
the goal configuration. The attached video submission also
shows the full motion for this example along with couple of
other instances of this task.

In Figure 7 we have plotted the path of all the 7 joints of
Baxter robot while executing transfer and pouring tasks. The
pouring task started at time corresponding to iteration 440
in Figure 7. Note that beyond this time stamp value, only
the 7th joint angle changes, which generates the rotational
motion for pouring. All other joints have almost no change
in values. Notice again that we have not explicitly mentioned
the task constraints while computing the plan yet those
constraints were satisfied by the proposed planner. This also
corroborates the claim in Lemma 2.

3) Transferring a glass of liquid on a tray using dual
arm manipulator: In this example, we consider a dual-armed
manipulation task where the robot has to carry a tray with a
glass of liquid from one position to another using both hands.
There are two constraints here, (a) the orientation of the tray
should not change during motion and (b) the relative pose
between the two hands should not change during motion.
The objective of this example is to show that for this dual-
armed manipulation task, the plan for both the arms can be
obtained independently using the proposed algorithm, as long
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Fig. 7: Joint space path during the transfer and pouring task.

as we perform ScLERP with a common parameter τ for both
hands. The resulting path for the end-effectors of both arms
will implicitly satisfy constraints (a) and (b) above, at any
intermediate point of the path.

We compute joint paths for left and right arms, that
satisfy the task constraints, independently once with in-
put tuple (ΘL(0),gL0,gLd) and once with input tuple
(ΘR(0),gR0,gRd) respectively where subscript L and R
denote respective quantities of left and right arms. The actual
values used in the experiment are given in a supplementary
document [26], due to space constraints. In Figure 6, we have
shown the snapshots of the plan execution with Baxter robot.
Please note the paths of the left and right end-effectors have
been computed independently, but the relatives pose between
the end-effectors is always fixed to the initial (or goal)
relative poses at any intermediate time instant. It’s worth
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emphasizing that planning on a single arm and performing
rigid body transformation between the end-effectors will
provide us the relative pose of the second arm. However,
we have to perform inverse kinematics on the second arm
followed by forward kinematics. Thus, there will be an error
between the actual pose of the second end-effector and the
computed pose from the rigid body transformation. The error
will accumulate over time and the relative configuration
constraint between the two end-effector will not be properly
maintained.

VII. CONCLUSION

In this paper, we have proposed a novel method for
task-space based path planning by combining screw linear
interpolation in SE(3) with resolved motion rate control to
convert SE(3) paths to the joint space. The key advantage
of our method is that it makes motion planning problems
with task space constraints quite simple and efficient when
the end effector motion is constrained to be in a subgroup of
SE(3). The manipulation of many human designed objects
with joints, like opening a door, opening a drawer, naturally
fits into this category, since joints restrict the relative motion
of two objects to a subgroup of SE(3). Furthermore, if the
motion is constrained to be in a sequence of subgroups or
combination of subgroups of SE(3), our method can be
used. Since our method for satisfying constraints is task
space based, it is insensitive to the number of DoF of the
manipulator. This is in contrast to joint space based methods
where the motion subgroup constraints leads to nonlinear
equations that the joint angles must satisfy during the mo-
tion, which increases the complexity of planning. We have
presented theoretical proofs to show that ScLERP generates a
path that satisfies motion subgroup constraints, given that the
initial and final poses are in the same subgroup. The motion
generated is coordinate invariant, i.e., it does not depend
on choice of reference frames. We also presented multiple
simulation and experimental results that demonstrate our
algorithm.

Future Work: Although, the planner can be used even
when the motion constraints do not lie in a subgroup of
SE(3) by selecting intermediate waypoints, we are currently
performing this manually. We believe that the geometry
of the screw motion can allow us to develop automated
algorithms to select the waypoints and this is our future
research. We also plan to integrate collision avoidance within
this task space based motion planning scheme and some
advances in this direction is reported in [24].
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