
Learning visual policies for building 3D shape categories

Alexander Pashevich∗

Inria†
Igor Kalevatykh∗

Inria‡
Ivan Laptev

Inria‡
Cordelia Schmid

Inria‡

Abstract— Manipulation and assembly tasks require non-
trivial planning of actions depending on the environment and
the final goal. Previous work in this domain often assembles
particular instances of objects from known sets of primitives.
In contrast, we aim to handle varying sets of primitives and to
construct different objects of a shape category. Given a single
object instance of a category, e.g. an arch, and a binary shape
classifier, we learn a visual policy to assemble other instances
of the same category. In particular, we propose a disassembly
procedure and learn a state policy that discovers new object
instances and their assembly plans in state space. We then
render simulated states in the observation space and learn a
heatmap representation to predict alternative actions from a
given input image. To validate our approach, we first demon-
strate its efficiency for building object categories in state space.
We then show the success of our visual policies for building
arches from different primitives. Moreover, we demonstrate (i)
the reactive ability of our method to re-assemble objects using
additional primitives and (ii) the robust performance of our
policy for unseen primitives resembling building blocks used
during training. Our visual assembly policies are trained with
no real images and reach up to 95% success rate when evaluated
on a real robot.

I. INTRODUCTION

Our daily physical activities such as cooking, dressing
or navigation require complex sequences of actions which
people successfully and seamlessly plan based on sensory
input. Action planning typically depends on the goal and
constraints provided by the environment. Despite extensive
prior work, existing autonomous agents are still far from the
human-level planning performance, especially in unknown
and cluttered environments [11], [57].

Action planning is a hard problem due to the large action
spaces, exponential complexity and partial observability [27],
[28]. To simplify the problem, existing work on task plan-
ing [19], [37], [51], [56] typically operates in the state space
assuming the full knowledge of the environment. While such
an assumption can be practical in structured and controlled
environments, full state reconstruction for common scenes
remains a highly challenging problem [20]. Arguably, the
precise recovery of scene parameters such as its geometry,
composition, friction coefficients, etc., is more difficult than
the primary planning task itself. It is therefore desirable to
design sensor-based planning policies that do not rely on
explicit scene geometry and full state estimation.

Vision-based control policies have recently become popu-
lar for robotic manipulation [2], [33], [60] and navigation [6],
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Fig. 1: Primitives on the left are assembled by our learned policy
into arches on the right. We assemble objects of similar shapes in
the simulator and learn visual manipulation policies that can build
real 3D shapes from unseen primitives resembling building blocks
used during training.

[16]. While this line of work shows promise, it has mostly
been applied to the low-level motion planning such as
predicting next motion direction. In our work we aim to learn
visual policies for high-level task planning. Given visual
input, our policies generate sequences of picking, rotating
and placing actions for building 3D shapes.

Object manipulation has a long history in robotics. In
particular, assembling objects from a given set of primitives
has been addressed, for example, in [5], [46]. Prior work in
this domain often aims to build particular object instances
for which the structure is pre-defined [52], specified by
demonstrations [10], [25] or given by a goal image [29].
Here we go further and learn to assemble different objects
of a shape category. Such a task is significantly more com-
plex compared to building particular object instances as it
requires generalization to varying sets of building primitives.
Moreover, we show empirically that our method is able
to generalize to new primitives unseen during training (see
Fig. 1).

Our approach contains two stages as illustrated in Fig. 2.
In the first stage we discover new object instances and learn
their assembling policies in state space. To this end, we
propose a disassembling procedure and generate assembly
trajectories by (a) unbuilding objects and (b) reverting action
sequences. We then learn a value function and apply it to
build new object instances. We iterate the disassembling and
learning steps to obtain a policy assembling a 3D shape.

In the second stage we assemble objects given images of
observed scenes. We render states from assembly trajectories
obtained in the first stage and learn visual assembly policies

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 8073



Input 
object 

instance
+

Shape 
classifier

State space

Unmake 1. Learn state 
policy __ 

2. Generate new 
object instances

●
●
●

●
●
●

Observation space

Learn CNN  
policy    with BC 

and Sim2Real

1. Render states
2. Generate action 

heatmaps

HourGlass
CNN

An arch shape 
built by real 

robot

state-actions 
pairs             for 
building objects

P
ic

k
P

la
ce

Fig. 2: Method overview. Given an example object and a shape classifier on the left, our method generates new objects with similar shape
and discovers action sequences for building these objects in the state space. Using a large set of generated state-actions pairs (si,ai),
we render states si as realistic observations oi. We also generate 2D heatmaps (hpick

i , hplace
i ) encoding source and target locations and

orientations of one or several primitives. Heatmaps can represent multiple hypothesis for the next action when several identical primitives
are used or multiple object instances can be assembled. Positions on our 2D heatmaps correspond to positions on the 2D surface of a table,
hence, the identified local maxima on heatmaps can be used to control the robot. As the last step of our method, we train a Behaviour
Cloning policy π to predict hpick and hplace from observations. We train policies with HourGlass CNN [39] and sim2real augmentation [42].
The learned policy is directly transferred to a real robot which assembles 3D objects from primitives on the table.

with Behaviour Cloning (BC) [45]. To enable predictions
of multiple valid actions at any given time, we propose
a heatmap representation for the output of visual policies.
While all our policies are learned in a simulated environment,
we enable their direct transfer to a real robot using sim2real
augmentation [42].

As main contributions of this work, we (i) propose a
novel disassembly algorithm for building shape categories
in state space, (ii) design and learn visual policies with
heatmap outputs to address multi-modality of predicted ac-
tions, (iii) demonstrate a successful application of the method
to a new task of building shape categories on a real UR5
robot. Moreover, our policies are learned with no human
demonstrations, can re-assemble partially built objects, and
adapt to unseen primitives resembling building blocks used
during training.

II. RELATED WORK

Assembly tasks such as constructing IKEA furniture [52]
remain to be a hard robotics challenge. Learning-based meth-
ods usually address simpler tasks such as cube stacking [40],
[49]. Duan et al. [10] use demonstrations and attention
modules to build a tower instance shown by an expert. Janner
et al. [29] learn an object-centric representation of the scene
to reproduce a tower instance from a goal image with an
MPC-like control. Huang et al. [25] train a Graph Network
to build a tower instance specified by a demonstration. We
go beyond specific object instances and aim to assemble
multiple objects from a given shape category, such as an
arch. Moreover, we learn to build objects from different sets
of possibly unseen primitives. To facilitate the learning, we
propose to use disassembling to generate assembly trajecto-
ries. While the idea of reversible actions has been explored
e.g., in [15], [24], [38], [54], our method differs from the
work on disassembling object instances [59] by computing
multiple disassembly paths and accounting for alternative
valid actions.

Our work is related to methods of Task and Motion
Planing (TAMP) [17], [35], [51], [56]. Long-term task plan-
ning prohibits costly rollouts, hence, TAMP methods deploy

preconditions and postconditions to actions and optimize
symbolic planners [14]. While some of these methods solve
impressive tasks, conditions require manual and task-specific
design [12], [22], [43]. Moreover, TAMP methods typically
operate in state-space [18], hence, their generalization to
sensor-based input in the real world requires non-trivial scene
understanding [9]. In our work we learn visual policies and
directly predict control sequences from image inputs.

Convolutions Neural Networks (CNNs) have significantly
advanced visual recognition [23], [39], [48] and robotics,
for example in tasks such as tossing objects [60], cube
stacking [46], grasping [31] and opening doors [21]. Direct
methods for visual control avoid explicit scene reconstruction
and derive actions directly from image observations. Such
methods typically use Reinforcement Learning (RL) [30]
with auxiliary rewards [49] or Imitation Learning (IL) [4],
[50] relying on large amounts of demonstrations [47], [61].
The complexity of problems addressed by direct methods
is typically limited by the task length and the number of
manipulated objects [47], [49], [61]. Indirect methods first
estimate scene parameters [3], [13] such as object positions
and orientations, and then deploy state-based planning strate-
gies. Scene reconstruction from images, however, might be a
more challenging task than solving a control task itself [20],
[44]. We avoid drawbacks of direct and indirect methods
and first solve the task in the simulated state space. We then
use obtained solutions as automatic supervision for learning
visual policies in the observation space. Inspired by [33],
[36], we render states and train visual policies for a real
robot using BC [45] and sim2real [42], [55].

III. APPROACH

We address the problem of building a 3D object shape
by manipulating a set of available primitives with a robot.
The configuration of the primitives on the table defines the
state, s ∈ S. We assume to have access to a shape classifier
function fC : S → {0, 1}. We define the shape as a subset
of the state space, C = {s ∈ S|fC(s) = 1}. Given fC
and a single shape instance ŝ ∈ C, our method learns a
visual policy π that generates a robot action given a camera
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observation o ∈ O. The resulting sequence of actions is then
used to assemble a shape instance from available primitives.
Our policy operates in the observation space O, i.e., it only
has access to the image of a current scene before deciding on
the next action. Moreover, the policy is expected to build new
object configurations from unseen primitives that resemble
building blocks used during training.

A. Overview of the method
Our method has two stages: (i) generating action se-

quences in the state space and (ii) learning visual policies
in the observation space. We use a simulated environment
for both stages, however, our visual policies are trained with
sim2real data augmentation [42] and directly transfer to the
real robot. The overview of the method is presented in Fig. 2.

The first stage aims to find new shape instances and to
construct action sequences for building them. It takes as
input one 3D shape and a shape classifier. We propose to
use an unmake procedure to generate valid action sequences.
We disassemble the given shape instance and interpret the
resulting sequences as reversed assembly demonstrations. We
disassemble objects in multiple ways to find all assembly
actions that are possible in the same state. We refer to the
shape classifier fC as a sparse reward signal which we use
to learn a state-value function Vk. We generate new shape
instances using a state policy µk which is greedy with respect
to the learned Vk. For a fixed number of iterations, we
repeat the unmake procedure using the new set of instances
and train an updated value function Vk+1. This part of our
approach is described in Section III-B.

In the second stage we learn a visual policy that infers
appropriate actions from image observations. We convert
states si into observations oi = R(si) using a graphics
renderer R and train a CNN policy π with Behaviour Cloning
(BC). Given the assembly trajectories produced by the first
stage, each state is associated with a valid set of actions ai
that we turn into a heatmap hi to predict all possible actions
simultaneously. Then π is trained in a supervised manner
using observation-heatmap pairs (oi, hi). This part of our
approach is described in Section III-C.

B. Building objects in state space
We define the full state of our environment by the vector

s = (x1, . . . , xm)> with x ∈ R12 representing parameters
for m primitive shapes (our building blocks) in the scene.
Each primitive x is defined by three position coordinates,
three orientation angles in the 3D space, three spatial extents
(width, height and depth), and three color channels (the
building order may depend on the color, see Section IV-B).
A robot action a ∈ A corresponds to a high-level skill of
picking, placing and rotation of a primitive: a = (x, p, o)
where x ∈ {x1, . . . , xm} is the primitive to pick, p ∈ R3

is the position to place it, and o ∈ R3 is the orientation
x is placed in. We restrict orientations of primitives to the
three axis-parallel directions and assume that all primitives
are located on the surface of a table or on top of each other.
Assuming access to the simulator T , applying action at in
the state st would result into st+1 = T (st, at).

Building an object from a given set of primitives
requires finding an appropriate sequence of actions

Unmake & Merge Pick location Place locations

Fig. 3: The proposed unmake procedure disassembles objects in
multiple ways (left) and generates set of pick & place actions
available from each state (right). For visual policies, we use the
heatmap representation to predict all the actions simultaneously.

a1:n = {a1, . . . , an} that transforms an initial state s0 into
the desired shape state sn ∈ C. Finding a correct sequence
a1:n is not trivial even in the state space. Given the large
space of possible actions and the exponential growth of the
number of action sequences depending on n, the naive brute-
force search works only for building simple objects.

Making objects by unmaking. For an object example
defined by the state ŝ ∈ C we propose to find valid building
sequences a1:n via disassembling or unmaking ŝ. We first
find a sequence of unmake actions ã1:n = {ã1, . . . , ãn},
where ãi moves a random non-blocked primitive on an
object∗ to a random non-occupied location on the table. If
m is the number of primitives constituting object ŝ, we can
disassemble ŝ by a sequence of n = m− 1 unmake actions.
We call an action invertible if for any action ã such that
T (si, ã) = sj there exists an inverse action a = ã−1 such
that T (sj , a) = si. We assume our unmake actions to be
invertable and obtain a valid sequence of actions for building
ŝ as a1:n = {ã−1n , . . . , ã−11 }.

We use the above randomized unmake procedure to gen-
erate a large and diverse set of valid action sequences. While
each action ai in such sequences is associated with a single
initial state si, there might be multiple correct assembly
actions in the state si. For example, when building an arch,
the same cube could be placed both to the left and to the
right pillars (see Fig. 3). To each state si, we associate a
set of actions ai available in all states which differ only in
positions of primitives located on the table surface (denoted
as ≈), namely, ai = {aj |sj ≈ si}.

Given M action sequences of length N we col-
lect a dataset Dµ with state-actions pairs Dµ =
{(si,ai)}i=1,...,M∗N that can be readily used to train a policy
for assembling an object instance defined by state ŝ.

Finding new object instances. To generalize our policies to
build new objects of the similar shape given any set of prim-
itives, we construct new instances through learning a value
function. The value function Vk : S → R estimates the sum
of discounted rewards r : S → R under an assembly policy
µk : S → A where Vk(s) = Eµk

[∑
j γ

jr(st+j)|st = s
]

and
γ ∈ [0, 1) is the discount factor. We define the reward with
the shape classifier r(st) = fC(st) which makes the value
function learn the actions required to build the shape. Given
a learned value function Vk, we deduce the assembly policy

∗By “non-blocked primitives on objects“ we refer to primitives that are
not on the table surface and that can be freely lifted above their current
positions. Such primitives can be easily derived from s.
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by choosing at+1 as µk+1(st) = argmaxa Vk(T (st, a)). We
sample an initial state s0 with a random set of primitives and
apply µk+1 to choose an action sequence a1:n resulting in
an object of the desired shape: fC(sn) = 1. We record all
instances of the target shape found by assembling is a set
CVk .

Learning value function. The value function Vk is learned
iteratively using instances found with the greedy policy
µk−1. In the first stage of training, we learn V0 using the
input instance ŝ only. We run the unmake procedure for all
discovered instances in CVk , Given a sequence of state-actions
pairs {(s1,a1), . . . , (sn,an)}, the value function estimate
for state si is V̂ (si) = γn−i. We also estimate values of
states obtained by applying random disassembly actions ãj to
trajectory states si: s

j
i = T (si, ãj). The value estimate V̂ (sji )

is known if there exists sj ∈ {s1, . . . , sn} such that sji ≈ sj .
Otherwise, we set the value as V̂ (sji ) = γV̂ (si) which
means that we can reach si from sji using a single assembly
action ã−1j . We record all state-value pairs to the dataset DkV
and learn the value function by minimizing the loss η̂k =
argminη MSE(Vk(si), V̂ (si)), where Vk is implemented as a
fully connected neural network with parameters η̂k and MSE
is the mean square error. Once the training is converged,
we discover new shape instances with µk, unmake them,
recollect Dk+1

V and learn Vk+1. After K phases, we run the
unmake procedure on the set of discovered instances CVK and
record all state-actions pairs to the dataset Dµ. The overview
of our approach in the state space is illustrated by the left
part of Fig. 2 and lines 14-28 of Algorithm 1 of [41].

C. Learning in observation space
We want to learn a visual policy π for assembling objects

from diverse sets of primitives by a real robot. The sole
input of the policy is the camera observation of the scene.
We learn the image-action association with a supervised
learning approach, Behaviour Cloning (BC) [45], where we
obtain supervision with solutions found in the state space.
Given the dataset Dµ with state-actions pairs {(si,ai)},
we use a pybullet [8] graphics renderer R to generate
an RGB-D image oi = R(si) for each state si in Dµ. In
order to allow multiple actions for each observation oi, we
generate an action-heatmap hi ∈ H given the list of actions
ai = {a1i , . . . , ali}. We record the observation-heatmap pairs
to the dataset Dπ . The policy π : O → H is implemented
as a CNN and is trained to predict correct action-heatmaps
π(oi) = hi for all (oi, hi) ∈ Dπ . We show an advantage of
the heatmaps-based architecture over a network that directly
predicts positions and orientations in Section IV-D.1.

For the task of building objects with a real robot, we con-
sider separate pick and place actions that are parameterized
by positions and orientations of primitives on the 2D plane
of a table. For simplicity, we assume that the elevation of
a primitive above the table can be estimated by external
means such as an overhead depth camera or a force-feedback
sensor of the robot arm. We define the output of our policy
by distributions over 2D positions on the table plane and 3
possible orientations of primitives on the table. We represent
such distributions as heatmaps (hpick, hplace) corresponding to
the source and target parameters of primitives. Our heatmaps

Fig. 4: Visualization of predictions of visual policies using Hour-
Glass (green blobs) and ResNet-18 (red crosses) architectures. The
policies are trained to build towers and should start by placing a
yellow cube on the green one. ResNet predicts the correct picking
location when all the cubes have distinct colors (left). Once identical
yellow cubes are introduced to the scene (right), ResNet fails to
choose between them and predicts an averaged location. HourGlass
locates all the cubes correctly in both cases.

are 4-channel images with one channel representing position
distribution and three other channels representing orientation.
The placing positions and orientations might depend on the
picked primitive, hence, we predict pick and place action-
heatmaps sequentially.

We render separate observations (opick, oplace) for pick and
place action-heatmaps (hpick, hplace) respectively. For each
list of pick-place actions ai, we render the observation
opick
i = R(si) and define hpick

i as an image with Gaussian
distributions around positions of all picked objects by ai.
For each picked object, we render the observation oplace

i =
R(si) with the robotic arm picking this object and create
the heatmap hplace

i with all possible placing positions in ai
(see Fig. 3). We record all observation-heatmap pairs in the
dataset Dπ .

Heatmaps are often used as CNN outputs in tasks such
as human pose estimation [39], [58] and segmentation [34].
We follow [39] and use a HourGlass CNN architecture for
heatmap prediction π(o) 7→ h. Given Dπ , we train π by
minimizing the loss θ̂ = argminθ MSE(πθ(oi), hi), where θ̂
are parameters of the HourGlass CNN. We obtain parameters
for the pick and place actions by maximizing the obtained
location heatmaps over the 2D space and then maximizing
orientations over the 3 channels at the selected location. The
overview of our policy learning is illustrated by the right part
of Fig. 2 and lines 30-41 of Algorithm 1 of [41].

IV. EXPERIMENTS

In this section we evaluate our approach both in simulation
and on a real UR5 robot. We start with implementation
details in Section IV-A and present tasks used for evaluation
in Section IV-B. Section IV-C confirms the importance of
learning the state-value function for efficient task solving.
Section IV-D evaluates visual policies trained to solve tasks
in the observation space. We validate our proposed network
architecture and highlight the importance of the disassem-
bling procedure. Additional qualitative results are available
in the Appendix of [41] and on the project web-page [1].
A. Implementation details

We control a 6-DoF UR5 robotic arm with a 3 finger
Robotiq gripper. In simulation, we model the robot and
its environment with the pybullet physics simulator [8].
Given the positions and orientations of primitives to be
manipulated, we use standard path planing methods [32],
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Arch, state space 3U 4U 5U

Random 3.4e3 ± 5.0e3 1.5e4 ± 1.2e4 6.1e4 ± 9.6e4
MCTS [7] 6.3e2 ± 4.7e2 7.0e3 ± 6.2e3 1.6e4 ± 2.4e4
Ours (state policy)∗ 4.0e0 ±±± 0.7e0 5.7e0 ±±± 0.7e0 6.9e0 ±±± 1.8e0

Oracle 4.0e0 ± 0.7e0 5.7e0 ± 0.7e0 6.4e0 ± 1.0e0

TABLE I: Average amount and standard deviation of steps required
to build an arch shape for our method, random exploration and
MCTS. ∗The simulation steps used for training of our method are
not included.

Tower, simulation 3 cubes 5 cubes 7 cubes

ResNet-18 [23] 99.2 1.4 0.0
HourGlass [39] 99.6 97.2 94.8

Tower, real 3 cubes 5 cubes 7 cubes

HourGlass [39] 95.0 90.0 90.0

TABLE II: Success rates of visual policies (in percent) trained to
build tower instances of 3, 5 and 7 cubes. On the real robot, the
policies are evaluated using 20 trials.

[53] to implement the pick and place actions. The elevation
of primitives above the table surface is obtained with a
Microsoft Kinect-2 camera located above the table.

Our observations are depth images recorded with another
Kinect-2 camera placed in front of the robot arm. We use the
same parameters for real and simulation cameras (location
and calibration). Visual policies receive the depth image and
color segmentation masks corresponding to the colors of
primitives. While visual policies in simulation have average
errors of less than 5mm, the sim2real gap increases this value
up to 2-3cm on the real robot. Given that stacking multiple
primitives requires high precision, we apply a correction
procedure using the depth camera as explained in Appendix
of [41].

The neural network Vη for Value Function has five fully-
connected layers with 128 hidden units, ReLU activations
and Batch Normalization [26]. We train Vη for 20 iterations

Arch, simulation 3U 4U 5U
category

Single unmake trajectory 98.6 92.8 69.6
Multiple unmake trajectories 99.0 98.8 95.6

TABLE III: Success rates of visual policies trained to build the
arch shape category of different heights. The policies are trained
on trajectories obtained by disassembling the same object once or
multiple times.

Arch, simulation 3U 4U 5U 3U 4U 5U
instance category

Instance policies 99.4 97.8 96.8 61.4 54.4 32.6
Uni-height policies 99.6 98.2 98.0 99.0 98.8 95.6
Multi-height policy 97.4 96.4 95.4 97.8 95.4 94.0

TABLE IV: Success rates of visual policies trained by disas-
sembling only the input instance (top) and instances found by
state policies. The state policies are trained on arches of the same
height (middle) and arches of heights 3-5U (bottom). The policies
assemble arches given a fixed set of primitives (left) or various
configurations of primitives (right). While instance and uni-height
policies need to be trained for each given arch height, a single
multi-height policy can assemble arches of various heights.

Arch, real 3U 4U 5U 3U 4U 5U
normal scenario re-assembling

Uni-height policies 95.0 80.0 75.0 90.0 75.0 70.0
Multi-height policy 85.0 80.0 75.0 90.0 80.0 80.0

TABLE V: Success rates of visual policies assembling arches of
different heights on a real robot. Over 20 trials, the policies are
evaluated on a normal Arch task and a ”re-assembling” scenario
when the agent needs to adapt to additional primitives introduced
to the scene after the arch had already been built.

Arch, real set 1 set 2 set 3
novel primitives

Detect + MCTS [7] 60.0 35.0 20.0
Our method 90.0 80.0 55.0

TABLE VI: Success rates of our method and an MCTS baseline
for assembling arches using novel primitives on a real robot. The
arches built with primitives from sets 1, 2 and 3 are shown in Fig. 5
(last column, top), Fig. 5 (last column, bottom) and Fig. 1 (bottom)
correspondingly.

of 30 epochs each using Adam and LR=1e-3. The CNN πθ
contains one HourGlass [39] module which we compare to
ResNet [23] in Section IV-D.1. The spatial dimensions of
HourGlass input and output are 256x256 and 64x64 pixels
respectively. We train πθ using Adam and LR=2.5e-4 for 50
epochs. For both value and visual networks, we use datasets
of size 200.000 value-state and heatmap-observation pairs
correspondingly. To enable the transfer of policies to the real
robot, we use sim2real [42] to augment synthetic depth maps
during training. Color segmentation masks are augmented
with Bernoulli noise. During rendering, we also randomize
shapes of primitives by adding noise to spatial coordinates
of points that define cube meshes. We use 500 episodes for
evaluation in simulation and 20 trials on the real robot.

B. Tasks

Tower. The goal of the agent is to stack cubes in a specific
order of colors (see Fig. 4). In the beginning of the task,
green, yellow and red cubes of size 1 unit (1U) are randomly
distributed on the surface of a table. The unit corresponds to
a physical size of 4.5 cm. The lowest cube is always green,
the rest of the tower is defined as alternating yellow and red
cubes. We use the Tower task to compare HourGlass and
ResNet architectures in Section IV-D.1.

Arch. The agent needs to use all primitives available on a
table to build an arch (see Fig. 5). The construction primitives
are cubes of size 1U and beams of length 2U and 3U. The
arch shape category is defined as two symmetrical pillars
with a bar bridging them. For example, pillars of an arch
could be constructed from a 3U beam, three cubes or one
cube and a 2U beam. Initially, all primitives are randomly
distributed on the surface of the table. The beams can have
three axes-parallel orientations. The primitives can have any
color that differ from the color of the table. The location of
pillars on the table is pre-defined. There are 49, 16 and 4
instances for 5U, 4U and 3U arch shapes correspondingly.
We use the Arch task to evaluate the generalization of our
method to the shape category and to show advantages of
unmaking procedure in Sections IV-C and IV-D.
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Fig. 5: Assembling arches of 3-5 units in simulation (first 6 columns, top) and with a real robot (first 6 columns, bottom). Assembling
arches with never-seen primitives resembling cubes and beams on the real robot (last 2 columns). The image pairs correspond to initial
and final states.

Fig. 6: Our visual policies successfully re-build shapes using
primitives added to the table.

C. Learning in state space

This section evaluates how efficient our approach in gen-
eralizing to 3D shapes in the state space. For evaluation, we
use a simulated Arch task. Our approach receives a single
shape instance as an input and learns a state-value function
by unmaking this instance. Given the trained value function
and the simulator, we obtain the state policy by iterating
over all possible actions and taking the one that maximizes
the value function prediction. This state policy is then used
to discover new object instances. We iteratively repeat the
state-value network training after unmaking the discovered
instances during 20 iterations. We compare our approach to
MCTS [7] and random exploration. Similarly to the state
policy, both baselines choose an object for picking and its
placing location on top of other objects. The baselines also
choose the placing orientation among the three axis-parallel
directions. For MCTS, we use a shape matching score which
is defined by a percentage of how much the arch shape is
completed with primitives.

We estimate an average amount of steps required by our
method and the baselines to build an arch, and report results
in Tab. I. We also report the minimum number of steps
required to build an arch (Oracle). Note that the Oracle
has a non-zero variance since arches can be composed from
different numbers of primitives. While the efficiency of our
approach is comparable to Oracle, baselines require orders of
magnitude more steps to find a correct solution. For example,
to build a 5U arch, MCTS and the random exploration require
1.6e4 and 6.1e4 steps respectively while our method solves
the task in 6.9 steps on average. We expect our method to
scale well to more complex tasks where the complexity of

baselines will prohibit their use.
D. Evaluation of visual policies

This section evaluates visual policies trained to solve
tasks given images as input. We validate the HourGlass
architecture in Section IV-D.1, show benefits of the proposed
unmaking approach over prior work in Section IV-D.2,
evaluate generalization of our method to the shape category
in Section IV-D.3 and present an evaluation on the real robot
in Section IV-D.4.

1) Visual policies architecture: We compare our heatmap-
based architecture to a ResNet-18 network that directly out-
puts source and target parameters of manipulated primitives.
Our approach uses HourGlass [39] to predict a multi-modal
distribution of picking and placing actions. The first heatmap
corresponds to 2D locations on the robot workspace, the
three additional heatmaps encode orientations of a primitive.
ResNet-18 [23] predicts five values corresponding to 2D
locations and three orientations of objects.

We train HourGlass and ResNet-18 networks to build
towers of 3, 5 and 7 cubes of green, yellow and red colors.
For ResNet-18, we adapt the learning rate to 1e-3 and the
input image size to 224. Tab. II indicates that both HourGlass
and ResNet policies achieve almost perfect accuracy for
towers of 3 cubes (Fig. 4, left). Given more complex scenes
with multiple primitives of the same color, ResNet fails due
to its unimodal prediction. As illustrated in Fig. 4, it outputs a
mean location of relevant primitives. The HourGlass-based
policy builds towers of 7 cubes with a failure rate of 6%
where the errors are mainly caused by occlusions. On the real
world Tower task with 7 cubes, the HourGlass-based policy
succeeds in 18 trials out of 20. The two failure cases were
caused by an occlusion and misidentifying a cube due to the
sim2real gap. Empirically, we did not find any performance
improvement when using multiple HourGlass modules.

2) Learning by unmaking: This section compares the
proposed approach of unmaking assembled objects with
prior work [59]. While our method disassembles objects in
multiple ways, [59] proposes to use a single disassembly
trajectory. Such disassembly trajectories consist of pairs of
state and corresponding action. However, there could be
multiple correct actions possible in a state as shown in Fig. 3.
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We address this by computing several disassembly paths and
merging actions that correspond to states, where the only
difference comes from positions of primitives located on the
table surface.

We train visual policies on observation-heatmap pairs
obtained with and without multiple unmake trajectories.
Tab. III shows that using multiple unmake paths significantly
improves the performance. The performance difference is
26% on the hardest task of building 5U arches. Using multi-
ple unmake paths make the policy learn multiple hypothesis
of picking and placing locations. This property becomes
critical when multiple identical objects are used or if there
exist several shape instances where identical primitives are
assembled in different configurations.

3) Learning to build a 3D category shapes: This section
evaluates the generalization of our approach to a shape
category. We train visual policies on trajectories of unmaking
3 sets of arch instances: (i) only the input instance, (ii) in-
stances obtained by a state policy trained on arches of the
same height, (iii) instances obtained by a state policy trained
on arches of heights 3-5U. We refer to these policies as (i)
instance, (ii) uni-height and (iii) multi-height. For instance
and uni-height policies, we train separate networks to build
arches of each height. For multi-height policy, the same
network is used to build arches of varying heights.

We evaluate all the policies separately on the set of
primitives corresponding to the input instance (Tab. IV, left)
and on different sets corresponding to the entire category
(Tab. IV, right). In the first case, all the policies assemble
arches with less than 5% of failures. The results of uni–
height policies are higher compared to the instance policies.
We believe that this improvement is due to a higher variation
of the category instances that can be seen as a form of
data augmentation. However, the performance of the instance
policies rapidly drops when they are exposed to unseen sets
of primitives. The uni-height policies have 2-3% higher suc-
cess rates than the multi-height policy. Their success rates on
5U arches are 95.6% and 94.0% correspondingly. However,
we need to train only a single network for the multi-height
policy which is then able to reason about available primitives
on the table and decide which arch height to build.

4) Real robot evaluation: This section evaluates the per-
formance of our method on the real world Arch task using
two scenarios: (i) ”normal” scenario that matches the simula-
tion, (ii) ”re-assembling” scenario. In the ”normal” scenario
the robot has to assemble arches from varying sets of
primitives. Tab. V (left) shows that uni-height policies have
similar performance to the multi-height policy in the stan-
dard scenario except for 3U arches. In the ”re-assembling”
scenario the task starts with an assembled arch and additional
primitives on the table (see Fig. 6). The agent is expected
to re-assemble the arch by using all available primitives on
the table. Our method is able to automatically re-assemble
shapes without additional training due to the presence of
random pick-place actions in the train set. Similarly to the
value function dataset described in Section III-B, we record
observation-actions pairs corresponding to the inverse of
the one-step random actions that include examples of re-

assembling. In the ”re-assembling” scenario (Tab. V (right))
the multi-height policy has higher success rates for 4U and
5U arches. We illustrate the assembly of arches with the
real UR5 robot arm in Figures 5, 6 and on the project web-
page [1]. Failure cases with incorrect assembly are typically
caused by occlusions and the gap between simulated and real
environments.

Finally, we test the generalization of our approach to new
building primitives and compare it to the MCTS baseline. We
use three different sets of primitives that resemble cuboids
used during training. The sets contain (i) 2 jars and a pencil
case (Fig. 5 last column, top), (ii) 4 cans and a juice box
(Fig. 5 last column, bottom), (iii) 5 stones (Fig. 1 bottom).
The input we provide to the MCTS baseline is the state of
primitives in terms of their sizes and locations. Size and
location are determined by clustering 3D points, which are
obtained based on depth image coordinates above the table
similarly to the prediction correction procedure used for our
method (see Appendix of [41]). We estimate the spatial
dimensions of primitives by fitting bounding boxes to depth
points associated to each 3D cluster. Tab. VI shows that our
method significantly outperforms the MCTS baseline with
the performance gap of up to 45%. In all cases the failures
of MCTS are caused by errors in the estimation of size
and location of the primitives. Given the incorrect estimates,
MCTS cannot find an assembly path to build a correct arch.
In contrast, our method relies on position correction based
on direct image input and does not require spatial estimation
of the primitives. Both methods often fail on the third set
of primitives with stones given the substantial difference of
stones to cuboid primitives used during training. Qualitative
results for additional sets of primitives are presented in
Appendix of [41].

V. CONCLUSION

We proposed an approach to build 3D object shapes using
a robotic arm and varying sets of primitives. Our method
efficiently learns to solve the task in the state space and
then uses the obtained solutions as supervision to train visual
policies in the observation space. We demonstrate successful
application of our method to the new task of assembling
shape categories and show promising results on a real robot.

While the disassembling procedure explored in this work
may not be directly applicable to all tasks, we note that it
could generalize even to physically irreversible actions by
learning appropriate backward models in state space. Future
work will explore this direction for a wide range of tasks
including cooking and other more complex assembling tasks.
We also note that the complexity of the proposed unmake
procedure grows exponentially with the number of primi-
tives. To address more complex tasks, it will be interesting to
extend our method to a fixed number of sampled disassembly
trajectories.
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