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Abstract— Tracking the 6D pose of objects in video sequences
is important for robot manipulation. This task, however, in-
troduces multiple challenges: (i) robot manipulation involves
significant occlusions; (ii) data and annotations are troublesome
and difficult to collect for 6D poses, which complicates machine
learning solutions, and (iii) incremental error drift often accu-
mulates in long term tracking to necessitate re-initialization
of the object’s pose. This work proposes a data-driven opti-
mization approach for long-term, 6D pose tracking. It aims
to identify the optimal relative pose given the current RGB-D
observation and a synthetic image conditioned on the previous
best estimate and the object’s model. The key contribution
in this context is a novel neural network architecture, which
appropriately disentangles the feature encoding to help reduce
domain shift, and an effective 3D orientation representation via
Lie Algebra. Consequently, even when the network is trained
only with synthetic data can work effectively over real images.
Comprehensive experiments over benchmarks - existing ones
as well as a new dataset with significant occlusions related to
object manipulation - show that the proposed approach achieves
consistently robust estimates and outperforms alternatives, even
though they have been trained with real images. The approach
is also the most computationally efficient among the alternatives
and achieves a tracking frequency of 90.9Hz. 1

I. INTRODUCTION

Robotic tasks, such as object manipulation, often require
to track the pose of an object. Pose estimation from a
single snapshot can initiate a manipulation pipeline and has
been studied extensively [1]–[9]. Purposeful manipulation,
however, such as placement and especially within-hand re-
orientation [10], critically depends on online tracking [11].
Some pose estimation approaches are relatively fast and can
re-estimate pose from scratch for every frame [6], [7], [12],
[13]. This can be redundant, however, and often leads to
less coherent estimations over consecutive frames, which
negatively impact manipulation.

Temporal tracking of object poses over sequences of
images can greatly improve speed while maintaining or
even improving pose quality [14], [15]. Nevertheless, many
traditional methods, which depend on hand-crafted likelihood
functions and features, require extensive hyper-parameter
tuning when adapt to novel object categories or environ-
ments. On the other hand, data-driven techniques [16], [17]
require real-world training data, which are difficult to acquire
and label in the context of 6D poses.

Work by the authors has been supported by NSF awards 1723869 and
1734492. The authors are with the Computer Science Department of Rutgers
University in Piscataway, New Jersey, 08854, USA. Email: {bw344,
cm1074, kb572}@rutgers.edu

1Code, data and supplementary video for this project are available at
https://github.com/wenbowen123/iros20-6d-pose-tracking
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Fig. 1. Top: Performance w.r.t. computation time evaluated on the YCB-
Video dataset according to the area under the curve (AUC) metric for the
ADD and ADD-S objectives [1]. The proposed approach is able to perform
more accurate tracking while being significantly faster than alternatives.
Bottom: Pose predicted by the se(3)-TrackNet without any re-initialization,
which is able to recover from complete occlusion.

This work proposes a data-driven optimization strategy to
keep long-term track of an object’s pose robustly, as shown
in Fig. 1. The contributions are the following:
1. A novel deep neural network that learns to predict the rel-
ative pose between the current observation and the synthetic
model rendering at the previous prediction. A smart feature-
encoding disentanglement technique enables more efficient
sim-to-real transfer.
2. A Lie Algebra representation of 3D orientations, which
allows effective learning of the residual pose transforms
given a proper loss function.
3. A training pipeline over synthetic data that employs
domain randomization [18] in the context of pose tracking.
Automatic training data generation significantly reduces the
manual effort in collecting and labeling videos for tracking
6D poses.
4. A novel benchmarking dataset for 6D pose tracking in the
context of multiple different robotics manipulation tasks. It
was collected with various robotic end-effectors and YCB
objects, where 6D object pose annotations are provided in
every frame of the video.

Experiments indicate that the proposed network achieves
state-of-art results on the YCB-Video benchmark without re-
initialization in contrast to prior work [2], [16]. It is also
significantly faster at 90.9Hz. This allows use in real-time
scenarios such as robot manipulation.
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II. RELATED WORK

Data-driven 6D Pose Estimation: Learning-based tech-
niques have shown promise in directly regressing the 6D
object pose from image data [1], [7]. Nevertheless, given
the complexity of the 6D challenge, a large amount of pose
annotated training data is required to achieve satisfactory
results in practice. This is often more challenging than
labeling for object classification or detection. Some data-
driven techniques combine deep learning with traditional
approaches like PnP [12]. Although more data-efficient, this
could be problematic under severe occlusions, and often
requires precisely calibrated camera parameters for the PnP
step. Given that a pose is re-estimated in every frame,
estimation techniques often trade-off speed for accuracy [1].
This might not be desirable for manipulation. In contrast,
the current work exploits temporal information to achieve
higher accuracy and faster response than state-of-art single-
image pose estimation methods while using only synthetic
data for training.
6D Pose Tracking: For setups where CAD object models
are available, the approaches can be generally categorized to
probabilistic and optimization-based. Probabilistic Tracking:
An efficient particle filtering framework [19] harnesses the
computational power of GPU, where likelihood is computed
based on color, distance and normals. Nevertheless, the hand-
designed likelihood functions can hardly generalize to dif-
ferent lighting conditions or scenes with challenging clutter.
An alternative [14] explicitly models occlusions and shows
success in terms of robustness but the pose accuracy is not
precise enough for certain manipulation tasks. To ameliorate
this problem, follow up work [5] applied Gaussian Filtering
and achieves promising pose accuracy but introduces more
frequent tracking loss. Recent work [2] proposed a Rao-
Blackwellized particle filter, which decouples the transla-
tional and rotational uncertainty, achieving state-of-art 6D
pose tracking performance on the YCB Video benchmark. In
the case of severe occlusions, however, re-initialization of the
pose estimation is required. Optimization-based Tracking:
A number of methods proposed objective functions, which
capture the discrepancy between the current observation and
the previous state. They compute relative transformations
based on the minima of the residual function [15], [20]–
[23]. In particular, methods combine the optical/AR flow and
point-to-plane distance to solve tracking in a least-squares
sense [15], [20]. SIFT features and optical flow noise, how-
ever, limit performance and often require extensive hyper-
parameter tuning to adapt to new scenarios. The most related
effort to the current paper leverages the FlowNetSimple
network [24] to refine pose outputs of any 6D object pose
detection approach and can also be extended to tracking [16].
It requires, however, occasional re-initialization and has to
be trained at least partially with real data.
Simulation to Reality: Training on synthetically generated
datasets allows faster, more scalable, and lower-cost data
collection [18]. The discrepancy between the synthetic and
real data, however, often results in significant performance

drop. Domain adaptation techniques like Gradient-reversal
[25] and utilizing Generative Adversarial Networks (GANs)
for input space domain alignment [26] help bridge this gap.
These methods, however, often assume the source domain
already resembles the target domain to certain extent, which
could not be trivially satisfied in practice. Advancements in
computer graphics, [27], [28] have shown the benefits of per-
forming photo-realistic renderings on tasks. Achieving such
photo-realism, however, often introduces another source of
human involvement and expert domain knowledge. Domain
randomization efforts impose that the rendering settings of
the simulator are randomized and certain transferability to
real world has been demonstrated [18]. This work inherits
the idea of domain randomization but also pursues physical
plausibility. Together with feature encoding disentanglement,
the proposed network can be trained exclusively over syn-
thetic data and is shown to generalize to the real world.

𝔰𝔢 3 TrackNet 𝔰𝔢 3 TrackNet

Δ𝜉

𝜉 𝜉 𝜉

Δ𝜉

𝑂 𝑂 𝑂
O
bs
er
va
tio

ns
Re

nd
er
ed

 im
ag
es 𝑅

Predicted Pose

𝑅 𝑅

Depth RGBDepth RGBDepth RGB

Fig. 2. Overview: At any given time t the current observation Ot and the
rendering Rt−1 of the object model based on the previously computed pose
ξt−1 are passed to the se(3)-TrackNet. The network computes the relative
pose ∆ξt , which is then propagated forward to compute ξt .

III. APPROACH
The objective of this work is to compute the 6D pose of

an object Tt ∈ SE(3) at any time t > 0, given as input:
• a 3D CAD model of the object,
• its initial pose, T0 ∈ SE(3), computed by any single-

image based 6D pose estimation technique, and a
• sequence of RGB-D images Oτ ,τ ∈ {0,1, ..., t−1} from

previous time stamps and the current observation Ot .
This work proposes a data-driven optimization technique to
track the object pose over RGB-D image sequences. The
cost function for the optimization is encoded and learned
by a novel neural network architecture, trained with only
synthetically generated data. In every time step, the proposed
approach, computes a residual over the pose computed for the
object model in the previous frame as indicated in Fig. 2. The
details of this formulation, the neural network architecture
and the data generation pipeline are provided below.

A. Tracking on SE(3) Manifolds with Residuals

Optimization in this domain operates over cost functions
defined for the object poses ξ̄ ,ξ that measure the discrepancy
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Fig. 3. Proposed se(3)-TrackNet architecture: It takes as input RGB-D images corresponding to the current observation and a rendering of the object
model at the previous timestamp, into two separate feature encoders φB and φA respectively. Both inputs are synthetic during training while at test time,
the input to φB is a real image. The encoders’ outputs are concatenated and used to predict the relative pose between the two images, with decoupled
translation and rotational.

ε between the features extracted from the images:

ε = ρ(φI1(ξ̄ )−φI2(ξ )),

where ρ is a predefined robust loss function, and φ(·) can be
direct pixel intensity values, such as in [29], point-to-point
discrepancy or its variations [30], pre-designed features [31]
or the combinations from any of the above [20].

Given the current observation Ot , and the pose computed
in the previous timestamp ξt−1, the goal of this work is to
find a relative transformation ∆ξ that takes the object from
ξt−1 to the pose captured by the current observation. This
can be formulated as an optimization problem. Let R denote
the image corresponding to the object model’s rendering at
the given pose. Then, the optimal relative transform is:

∆ξ
∗ = argmin

∆ξ

{ρ(φOt (ξt)−φR(ξt−1 �∆ξ ))}

A general approach to solve this is to perform Taylor
expansion around ξ , which reformulates the equation as
φR(ξt−1 �∆ξ ) = φR(ξt−1)+ J(ξt−1)∆ξ , where J is the Ja-
cobian matrix of φR w.r.t. ξ . Now ξ is locally parametrized
in its tangent space, specifically ξ = (t,w)T ∈ se(3), such
that its exponential mapping lies in the Lie Group ∆T =

exp(∆ξ ) =

[
R t
0 1

]
∈ SE(3), where R= I3×3+

[w]×
|w| sin(|w|)+

[w]2×
|w|2 (1− cos(|w|)) and [w]× is the skew-symmetric matrix.

In the case of L2 loss function without loss of generality:

∆ξ = (JT J)−1JT ||(φOt (ξt)−φR(ξt−1 �∆ξ ))||.
Solving the expression by explicitly deriving the Jacobian
matrix and iteratively updating often requires a formalized
cost function or the features extracted from the observations
to be differentiable w.r.t. ξ , and appropriate choice of a
robust cost function and hand-crafted features. Another prob-
lem arises when different modalities are involved. In such
cases, another hyper-parameter controlling the importance of
each modality (e.g., RGB-D) has to be introduced [20] and
could become non-trivial to tune for all different scenarios.

Instead, this work proposes a novel neural network archi-
tecture that implicitly learns to calibrate the residual between
the features extracted from the current observation and the
rendered image conditioned on previous pose estimate to
resolve the relative transform in the tangent space ∆ξ ∈ se(3).

B. Neural Network Design

The proposed neural network is shown in Fig. 3. The
network takes as input a pair of images, It−1: rendered
from the previous pose estimation, and It : the current ob-
servation. The images are 4-channel RGB-D data. Depth
is often available in robotics. Nevertheless, it complicates
learning due to the additional domain-gap between synthetic
and real depth images. In addition, not all neural network
architectures are well suited to encode RGBD features, such
as the FlowNetSimple architecture [24] used in [16].

During training, both inputs are synthetically gener-
ated images φ(It−1

syn,train; It
syn,train), while for testing the

current timestamp input comes from a real sensor,
φ(It−1

syn,test ; It
real,test). The se(3)-TrackNet uses two separate

input branches for It−1 and It . The weights of the feature
encoders are not shared so as to disentangle feature en-
coding. This is different from related work [16], where the
two images are concatenated into a single input. A shared
feature extractor worked in the previous work when both
real and synthetic data are available during training. The
property of the latent space φ(It−1

syn,train; It
real,train) could still

be partly preserved when tested on real world test scenarios
φ(It−1

syn,test ; It
real,test). This representation, however, does not

generalize to training exclusively on synthetic data.
The latent space features trained on purely synthetic

data are denoted as φA(It−1
syn,train) and φB(It

syn,train). When
tested on real world data, the latent space features are
φA(It−1

syn,test) and φB(It
real,test). By this feature encoding disen-

tanglement, domain gap reduces to be between φB(It
syn,train)

and φB(It
real,test), while φA(It−1

syn,train) and φA(It−1
syn,test) can be

effortlessly aligned between the training and test phase
without the need for tackling the domain gap problem.

A relative transform can be predicted by the network via
end-to-end training. The transformation is represented by Lie
algebra as ∆ξ = (t,w)T ∈ se(3), where the prediction of w
and t are disentangled into separate branches and trained by
L2 loss: L = λ1||w− w̄||2 +λ2||t− t̄||2
where λ1 and λ2 has been simply set to 1 in experiments.
Given ∆ξ , the current pose estimate is computed as T t =
exp(∆ξ ) ·T t−1, as described in Sec. III-A.
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(a) (b)

Fig. 4. Comparison of Domain Randomization (DR) against Physically
Plausible Domain Randomization (PPDR). (a) DR directly renders using
a sampled object pose. Notice the penetration between objects, which can
introduce undesired bias to depth data. (b) In PPDR, a randomly sampled
pose serves as initialization for physics simulation. Rendering is performed
over the stable object pose. The domain invariant, penetration-free property
can then help to effectively align the synthetic and real domains.

C. Synthetic Data Generation via PPDR

The purpose of domain randomization is to provide
enough simulated variability at training time, such that at test
time, the model is able to generalize to real-world data [18].
Prior work implements the idea of domain randomization by
randomly changing the number of objects, poses, textures,
lighting, etc, where object poses are usually directly sam-
pled from some predetermined distribution [1], [12], [18].
Although it is non-trivial to align some complex physical
properties between the simulator and real world, such as
lighting and camera properties, certain physical properties,
for instance gravity and collision can be effortlessly pre-
served [32], [33]. This makes domain invariant features more
tractable to be captured by the neural network. It is especially
important in the current framework when depth modality
is additionally employed and unrealistic object penetration
which never occurs in real world introduces undesired bias
to depth data distribution during learning.

This work therefore leverages the complementary at-
tributes of domain randomization and physically-consistent
simulation for the synthetic data generation process. The goal
is to combine the two ideas such that the synthetic training
data holds a diverse distribution for the network to generalize
to the target domain with different environments, while being
more data-efficient. We refer to this idea as PPDR (Phys-
ically Plausible Domain Randomization). More concretely,
object poses are initialized randomly where collision between
objects or distractors could occur, which is then followed
by a number of physics simulation steps so that objects
are separated or fall onto the table without collision. Other
complex or intractable physical properties such as lighting,
number of objects, distractor textures are randomized. A
comparison between Domain Randomization against PPDR
is illustrated in Fig. 4.

Once the synthetic image is generated for the entire scene,
paired data It−1

syn,train and It
syn,train are extracted and utilized as

the input to the network. It
syn,train is obtained by cropping

the image given the target object’s dimension and zoomed
into a fixed resolution 176× 176 before feeding into the
network - similar to prior work [16]. It−1

syn,train is obtained
by randomly sampling a perturbated pose T t

t−1 where its
translation’s direction is uniformly sampled and its norm
follows a Gaussian distribution |t| ∼ |N(0,σt)| . The rotation
is locally parameterized in the tangent space w ∈ so(3) as
discussed above and the direction of w is also uniformly

sampled, while its norm is sampled from a Gaussian distri-
bution |w| ∼ |N(0,σw)|,w ∈ R3, similar to t.

The next step within this context is to bridge the domain
gap of depth data via bidirectional alignment. Similar to the
case of RGB, sim-to-real gap also arise in terms of the depth
data, especially for those captured by a commercial-level
depth sensor. However, there has been less evidence about
how the depth domain gap could be resolved in a general
way, especially that it could be partly dependent on the
specific depth sensor. In this work, a bidirectional alignment
is performed between the synthetic depth data during training
time and real depth data during test time. Specifically, during
training time, two additional data augmentation steps are
applied to the synthetic depth data Dt

syn,train at branch B.
First, random Gaussian noise is added to the pixels with
a valid depth value, which is then followed by a depth-
missing procedure by randomly changing part of pixels with
valid depth into invalid so as to resemble a real corrupted
depth image captured by commercial-level depth sensors. In
contrast, during test time, a bilateral filtering is carried out
on the real depth image so as to smooth sensor noise and fill
holes to be aligned with the synthetic domain.

IV. EXPERIMENTS

This section evaluates the proposed approach and com-
pares against state-of-the-art 6D pose tracking methods as
well as single-image pose estimation methods on a public
benchmark. It also introduces a new benchmark developed
as part of this work, which corresponds to robot manipulation
scenarios. Extensive experiments are performed over diverse
object categories and various robotics manipulation scenar-
ios (moving camera or moving objects). Both quantitative
and qualitative results demonstrate the advantages of the
proposed method in terms of accuracy and speed, while
using only synthetic training data. Except for training, all
experiments are conducted on a standard desktop with Intel
Xeon(R) E5-1660 v3@3.00GHz processor. Neural network
training and inference are performed on a NVIDIA RTX
2080 Ti GPU and NVIDIA Tesla K40c GPU respectively.

The synthetic data generation pipeline is implemented in
Blender2. To render images, the camera’s pose is randomly
sampled from a sphere of radius between 0.6 to 1.3 m, fol-
lowed by an additional rotation along camera z-axis sampled
between 0 to 360◦. The number of external lighting sources
(lamps) is sampled within 0 to 2 with varying poses. The
strength and color of the environment and the lights are
randomized. Object poses are randomly initialized, followed
by physics simulation, which is terminated after 50 steps
to ensure objects have been separated without collisions
or fallen onto the table. For YCB-Video, table textures are
randomly selected from [34]. For YCBInEOAT, tables are
removed and background is replaced by images captured in
the same location, where the data were collected. For each
pair It−1

syn,train and It
syn,train, their relative transformation T t

t−1
is sampled following a Gaussian distribution as described

2https://www.blender.org/
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in Sec. III-B, where σt and σw are empirically set to 2 cm
and 0.262 rad (= 15◦) respectively. 200k data points (image
pairs) are used for training the training set. The network is
trained with Adam optimizer for 300 epochs with a batch
size of 200. Learning rate starts from 0.001 and is scaled
by 0.1 at epochs 100 and 200. Input RGB-D images are
resized to 176× 176 before sending to the network. Data
augmentations including random HSV shift, Gaussian noise,
Gaussian blur are added only to It

syn,train. Additional depth-
missing corruption augmentation is applied to Dt

syn,train as
described in Sec. III-B by a missing percentage between 0
to 0.4. For both training and inference, rendering of It−1 is
implemented in C++ OpenGL.

A. Datasets

YCB-Video Dataset This dataset [1] captures 92 RGB-D
video sequences over 21 YCB Objects [35] arranged on
table-tops. Objects’ groundtruth 6D poses are annotated in
every frame. The various properties of different objects ex-
hibit challenges to both RGB and depth modalities. The eval-
uation closely follows the protocols adopted in comparison
methods [1], [2], [7], [16] and reports the AUC (Area Under
Curve) results on the keyframes in 12 video test sequences
evaluated by the metrics of ADD = 1

m ∑x∈M ||Rx+T − (R̂x+
T̂ )|| which performs exact model matching, and ADD-
S = 1

m ∑x1∈M minx2∈M ||Rx1 + T − (R̂x2 + T̂ )|| [1] designed
for evaluating symmetric objects, of which the matching
between points can be ambiguous for some views.

Although this dataset contains pose annotated training and
validation data collected in real world, the proposed approach
does not use any of them but is trained only on synthetic data
generated by aforementioned pipeline.
YCBInEOAT Dataset There have been several public
benchmarks [1], [19] where videos are collected by placing
the objects statically on a table-top while a camera is moved
around to imitate a 6D object pose tracking scenario. This
can be limiting for evaluating 6D pose tracking since in a
static environment, the entire image can be leveraged to solve
for the trajectory of the camera, from which object pose
can be inferred [36], [37]. Additionally, in such scenarios,
extreme object rotations, such as out-of-image-plane flipping
are less likely to happen than a free moving object in front
of the camera. Thus, exclusive evaluation on such datasets
cannot entirely reflect the attributes of a 6D object pose
tracking approach. Other datasets [5], [38] collected video
sequences where objects are manipulated by a human hand.
Nevertheless, human arm and hand motions can greatly vary
from those of robots.

Therefore, in this work a novel dataset, referred to as
”YCBInEOAT Dataset”, is developed in the context of
robotic manipulation, where various robot end-effectors are
included: a vacuum gripper, a Robotiq 2F-85 gripper, and a
Yale T42 Hand [39]. The manipulation sequences consider 5
YCB objects, given that they are widely accessible. The data
collection setup and objects are shown in Fig. 5. Each video
sequence is collected from a real manipulation performed
with a dual-arm Yaskawa Motoman SDA10f. In general, there

vaccum gripper Robotiq 2F-85 Yale T42
Azure Kinect 

Fig. 5. Left: The dataset collection setup, where manipulation task is
performed on a Yaskawa Motoman SDA10f. Right: Different end-effector
modalities and YCB objects that have been used for manipulation.

are 3 types of manipulation tasks performed: (1) single arm
pick-and-place, (2) within-hand manipulation, and (3) pick
to hand-off between arms to placement. RGB-D images are
captured by an Azure Kinect sensor mounted statically on the
robot with a frequency of 20 to 30 Hz. Similar to the YCB-
Video, ADD and ADD-S metrics are adopted for evaluation.
Ground-truth 6D object poses in camera’s frame have been
accurately annotated manually for each frame of the video.
The extrinsic parameters of the camera in the frame of the
robot has been obtained by a calibration procedure. This
dataset is available for future benchmarking.3

B. Results on YCB-Video

Table I and Fig. 1 present the evaluation over the YCB-
Video dataset. The proposed approach is compared with
other state-of-art 6D object pose detection approaches [1],
[7], [12], [16] and 6D pose tracking approaches [2], [5],
[14], [16], where publicly available source code4 is used to
evaluate [5], [14], while other results are adopted from the
respective publications. All the compared tracking methods
except PoseRBPF are using ground-truth pose for initial-
ization. PoseRBPF [2] is the only one that is initialized
using predicted poses from PoseCNN [1]. For fairness,
two additional experiments using the same initial pose as
PoseRBPF5 are performed and presented in the rightmost
two columns of Table I, one is without any re-initialization,
and the other allows re-initialization by PoseCNN twice
(same as in PoseRBPF) after heavy occlusions. The prior
work [16] was originally proposed to refine the pose output
from any 6D pose estimation detection method, but also
extends to RGB-based tracking. It has to be re-initialized by
PoseCNN when the last 10 frames have an average rotation
greater than 10 degrees or an average translation greater
than 1 cm, which happens every 340 frames on average as
reported [16]. The initial pose is from ground-truth.

In practice, re-initialization can be quite expensive in
robotics applications given the slower running speed of 6D
pose detection approaches, which can interrupt and adversely
affect other components of the system, such as planning and
control. It can also introduce new source of error. In contrast,

3https://github.com/wenbowen123/iros20-6d-pose-tracking
4https://github.com/bayesian-object-tracking/dbot
5We thank the authors for providing the initial pose they used in the

original paper [2]
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DOPE [12] DenseFusion [7] PoseCNN+ICP+DeepIM [16] DeepIM tracking [16] RGF [5] Wüthrich’s [14] se(3)-TrackNet PoseRBPF [2] se(3)-TrackNet se(3)-TrackNet
Modality RGB RGBD RGBD RGBD Depth Depth RGBD RGBD RGBD RGBD

Type detection detection detection tracking tracking tracking tracking tracking tracking tracking
Initial pose from - - - groundtruth groundtruth groundtruth groundtruth PoseCNN PoseCNN PoseCNN

Re-initialization (Total) No No No Yes (290) No No No Yes (2) No Yes (2)
Train data Syn Real+Syn Real+Syn Real+Syn - - Syn Syn Syn Syn

Objects ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S
002 master chef can - - 96.40 78.00 96.30 89.00 93.80 46.23 90.17 55.60 90.68 93.86 96.29 90.50 95.10 93.84 95.92 93.84 95.92

003 cracker box 55.90 69.80 - 95.50 91.40 95.30 88.50 93.00 56.95 72.26 96.38 97.19 96.52 97.20 88.20 93.00 96.42 97.12 96.42 97.12
004 sugar box 75.70 87.10 - 97.5 97.60 98.20 94.30 96.30 50.38 72.65 97.14 97.94 97.58 98.14 92.90 95.50 97.56 98.13 97.56 98.13

005 tomato soup can 76.10 85.10 - 94.60 90.30 94.80 89.10 93.20 72.44 91.60 64.74 89.55 94.96 97.17 90.00 93.80 94.81 97.10 94.81 97.10
006 mustard bottle 81.90 90.90 - 97.20 97.10 98.00 92.00 95.10 87.71 98.19 97.12 97.95 95.76 97.37 91.90 96.30 95.73 97.36 95.73 97.36
007 tuna fish can - - - 96.60 92.20 98.00 92.00 96.40 28.67 52.93 69.14 93.32 86.46 91.09 91.10 95.30 86.46 91.08 86.46 91.08
008 pudding box - - - 96.50 83.50 90.60 80.10 88.30 12.69 17.98 96.85 97.89 97.93 98.39 85.80 92.00 97.90 98.37 97.90 98.37
009 gelatin box - - - 98.10 98.00 98.50 92.00 94.40 49.10 70.72 97.46 98.37 97.81 98.42 96.30 97.50 97.74 98.46 97.74 98.46

010 potted meat can 39.40 52.40 - 91.30 82.20 90.30 78.00 88.90 44.09 45.57 83.71 86.69 77.81 84.16 68.70 77.90 36.45 60.28 74.51 82.38
011 banana - - - 96.60 94.90 97.60 81.00 90.50 93.33 97.74 86.27 96.07 94.90 97.18 74.20 86.90 40.04 78.81 84.62 95.15

019 pitcher base - - - 97.10 97.40 97.90 90.40 94.70 97.93 98.18 97.30 97.74 96.75 97.45 86.80 94.20 96.71 97.43 96.71 97.43
021 bleach cleanser - - - 95.80 91.60 96.90 81.70 90.50 95.87 97.28 95.23 97.16 95.94 97.25 86.00 93.00 95.89 97.23 95.89 97.23

024 bowl - - - 88.20 8.10 87.00 38.80 90.60 24.25 82.40 30.37 97.15 80.91 94.46 25.50 94.20 39.12 95.56 39.12 95.56
025 mug - - - 97.10 94.20 97.60 83.20 92.00 59.99 71.18 83.15 93.35 91.53 96.88 90.90 97.10 91.56 96.88 91.56 96.88

035 power drill - - - 96.00 97.20 97.90 85.40 92.30 97.94 98.35 97.09 97.82 96.42 97.40 93.90 96.10 96.38 97.38 96.38 97.38
036 wood block - - - 89.70 81.10 91.50 44.30 75.40 45.68 62.51 95.48 96.87 95.16 96.70 20.10 89.10 33.91 95.92 33.91 95.92

037 scissors - - - 95.20 92.70 96.00 70.30 84.50 20.94 38.60 4.17 16.20 95.68 97.55 76.10 85.60 95.67 97.54 95.67 97.54
040 large marker - - - 97.50 88.90 98.20 80.40 91.20 12.17 18.90 35.58 53.02 92.15 95.99 92.00 97.10 89.01 94.23 89.01 94.23
051 large clamp - - - 72.90 54.20 77.90 73.90 84.10 62.84 80.12 61.25 72.35 94.71 96.93 48.50 94.80 71.60 96.88 71.60 96.88

052 extra large clamp - - - 69.80 36.50 77.80 49.30 90.30 67.48 69.65 93.73 96.58 91.74 95.76 40.30 90.10 64.58 95.80 64.58 95.80
061 foam brick - - - 92.50 48.20 97.60 91.60 95.50 69.99 86.55 96.76 98.11 93.65 96.71 81.10 95.70 40.66 94.67 40.66 94.67

ALL - - - 93.10 80.70 94.00 79.30 91.00 59.18 74.29 78.01 90.21 93.05 95.71 80.80 93.30 84.46 93.87 87.81 95.52
Speed (fps) 4.31 16.67 0.09 12.00 11.76 12.93 90.90 5.00 90.90 90.90

Table I: Comparing the performance of se(3)-TrackNet (Gray) with state-of-the-art techniques on the YCB Video. The approach significantly outperforms the
competing approaches over the ADD metric, which considers semantic information during pose evaluation. It also achieves the highest success rate over the
ADD-S metric both in cases of initialization with the ground-truth pose and when initialized with the output of PoseCNN [1] (rightmost two columns).
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Fig. 6. Left: Qualitative results for tracking the ”large-clamp” object in the YCB-Video dataset. Right: Tracking results for ”bleach-cleanser” being
manipulated by a vacuum gripper in the YCBInEOAT dataset.

Objects RGF [5] Wüthrich’s [14] se(3)-TrackNet
ADD ADD-S ADD ADD-S ADD ADD-S

003 cracker box 34.78 55.44 79.00 88.13 90.76 94.06
021 bleach cleanser 29.40 45.03 61.47 68.96 89.58 94.44

004 sugar box 15.82 16.87 86.78 92.75 92.43 94.80
005 tomato soup can 15.13 26.44 63.71 93.17 93.40 96.95
006 mustard bottle 56.49 60.17 91.31 95.31 97.00 97.92

ALL 29.98 39.90 78.28 89.18 92.66 95.53

Table II: Results evaluated on YCBInEOAT-dataset by AUC (Area Under
Curve) for ADD and ADD-S.

the proposed network performs long-term, accurate tracking
with less frequent or even no re-initialization while trained
using only on synthetic data. Additionally, the proposed
method generalizes to different lighting conditions and a
variety of objects with different properties, such as scissors,
and clamps, which are challenging to alternatives. Another
important aspect is that the proposed approach is able to
achieve 93.05% on ADD metric, outperforming all compar-
ison methods by a large margin. This can be attributed to its
implicitly learnt residual estimator, which not only captures
the discrepancy of geometry but also semantic textures by
considering both the RGB and Depth modalities.

C. Results on YCBInEOAT-Dataset

Table II shows the quantitative results evaluated by the
area under the curve for ADD and ADD-S on the devel-
oped YCBInEOAT dataset. On this benchmark, the tracking
approaches with publicly available source code could be
directly evaluated [5], [14]. Pose is initialized with ground-

truth in the first frame and no re-initialization is allowed.
Forward kinematics are not leveraged in order to solely
evaluate tracking quality. Example qualitative results are
demonstrated by Fig. 6 where a vacuum gripper is per-
forming a pick-and-place manipulation task. Abrupt motions,
extreme rotations and slippage within the end-effector are in-
troduced, which are challenging for 6D object pose tracking.
Nevertheless, the proposed approach is sufficiently robust to
provide long-term reliable pose estimation until the end of
the manipulation.

D. Ablation Study

Criteria ADD ADD-S
Proposed 94.71 96.93

No physics 91.88 95.76
No depth 75.65 87.22

Shared encoder 0.28 0.28
Quaternion 93.58 96.39

Shape-Match Loss 1.93 5.48
Ablation study on critical components of
our framework.

An ablation study inves-
tigates the importance of
different modules of the
proposed approach. It is
performed for the large
clamp object from the
YCB-Video dataset and is
presented in the accompanying table. The initial pose is
given by ground-truth and no re-initialization is allowed. No
physics implies that domain randomization is employed dur-
ing synthetic data generation without any physics simulation.
For No depth, the depth modality is removed in both training
and inference stage to study its importance. Shared encoder
means the two feature encoders for It and It−1 share the same
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architecture and weights. This corresponds to the one used
for It−1 in the original setup. Quaternion implements the
rotation via a quaternion representation q = (x,y,z,w), where
w =

√
1− x2− y2− z2 is forced to be non-negative so as to

avoid the ambiguity of q and −q. The network is trained
by L2 loss over the representation. Shape-Match Loss is a
popular loss function in 6D pose estimation task that does
not require the specification of symmetries [1]. It loses track,
however, of the object very early in the current setting.

V. CONCLUSION

This work presents a framework for efficient and robust
long-term 6D object pose tracking. A novel neural network
architecture se(3)-TrackNet is proposed that allows training
on synthetic datasets that transfers robustly to real world data.
A combination of design choices for the network and the
Lie Algebra representation for learning residual poses during
pose tracking result in highly desirable performance vali-
dated by extensive experiments. The pose tracking process
operates at approximately 90.90 fps, which is significantly
higher than alternatives. An additional dataset is proposed
to address the lack of an object tracking benchmark in the
robotics manipulation context. se(3)-TrackNet is shown to
be robust under large occlusions and sudden re-orientations
introduced in the dataset, which challenge competing ap-
proaches. Despite these desirable properties for the proposed
network, a limitation is that an object CAD model is required.
The future objective is to achieve similar performance for
category-level 6D pose tracking.
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