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Abstract— In a mission with considerable uncertainty due to
intermittent communications, degraded information flow, and
failures, humans need to assess both the current and expected
future states, and update task assignments to robots as quickly
as possible. We present a forward simulation-based alert system
that proactively notifies the human supervisor of possible,
negatively-impactful events, which provides an opportunity for
the human to retask agents to avoid undesirable scenarios.
We propose methods for speeding up mission simulations and
extracting alerts from simulation data in order to enable real-
time alert generation suitable for time-critical missions. We
present the results from a user trial and verify our hypothesis
that the decision making performance of human supervisors can
be improved by introducing forward simulation-based alerts.

I. INTRODUCTION

Multi-robot systems are becoming more adept to serve
alongside humans in real-world missions as researchers make
advancements in fundamental capabilities and resilience
[1]. These types of systems will be especially useful for
dangerous missions in complex environments, e.g., military
operations and disaster response, because of their ability to
increase standoff distances and reduce the risk to humans.
In the context of multi-robot missions, we anticipate that
human teammates will serve in a supervisory role to
manage resources and make critical decisions because of
the gravity of events, including life-or-death situations [2].
At a high-level, human supervisors will ensure that robots
are continuously working on tasks that align with the
mission objectives, and issue commands that account for the
dynamically-changing context.

The events, circumstances, and outcomes of decisions
in humanitarian-assistance and disaster-relief missions are
severely consequential and complex in nature, which has
a direct impact on a human’s ability to supervise a multi-
robot team. Large unstructured environments, restrictive
communications, and the possibility of system- and task-
level failures introduce uncertainty in the availability and
efficiency of agents, and significant delay in the receipt of
mission-critical information. In such missions, it is of the
utmost importance that humans make the best use of the
available information and constantly adapt their strategy and
update task assignments to improve mission performance.
However, perceiving the mission situation correctly from
some incomplete or possibly-outdated information is a
challenging task. Furthermore, these issues are exacerbated
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if humans are cognitively- and emotionally-fatigued, which
could lead to the issuing of slow-paced or ill-conceived
commands to the robotic teammates.

Alerts can serve as an effective means to prevent human-
introduced inefficiency and mistakes, and can speed up
the decision making process. Alerts are already being
used in numerous technologies and application domains
because of they offer measurable value. For example, lane
departure warnings and blind spot detection systems alert
drivers of potential collisions [3], which leads to prudent
decision-making for safe driving. We feel that an intelligent
alert system can provide tremendous benefit to human-
supervised robot teams operating in time-sensitive, safety-
critical scenarios.

Generating useful alerts for real-world, multi-agent
systems requires making predictions on the future states of
a mission, referred to as forward simulation. An obvious
consideration is to use mission simulations, along with
the latest updates from each robot, to make probabilistic
estimations. In a time-critical mission, alerts will be
beneficial only when they are generated in real-time.
Therefore, we need to develop appropriate simulation models
that reduce the computation time for alert generation.

In this work, we introduce an alert generation framework
with a discrete-event, forward simulation model enhanced
with smart features to significantly speed up computation.
The traces from mission simulations are compared with
user-customizable, mathematically-encoded alert conditions
to automatically generate alerts in real-time. We conducted
user tests and verified, with statistical significance, that alerts
can make a significant improvement in the performance of
human decision making.

II. RELATED WORK

User-friendly, man-machine interfaces are important for
communicating commands and information in critical
missions, and ubiquitous computing in real-world
applications is a research goal at present [4]. Researchers
have focused on interface design to control the robots [5],
the associated human factor concerns [6] [7], and system
development [8] specifically for search-and-rescue missions.

There exist several different alert-generating architectures
and interfaces for controlling robots, such as an augmented
reality-based solution for collaborative assembly [9] and
alert systems used by NASA in aviation [10]. There have
also been several alert systems designed specifically for
human-robot teams in the disaster response context [11] [12].
However, all these alerts are purely reactive, where a warning
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appears to the human once an undesirable event has occurred,
e.g., navigation change, obstacle alert, etc. In [13], some
predicted interface designs are depicted, where a trained
neutral net predicts the operator’s evaluation on risk and
relevance of a robot performing some task. Since all these
works are based on small-scale operation where humans are
essentially controlling the robots directly, real-time alerts
are generated solely using current information like sensor
data. In large-scale missions, with intermittent, incomplete
and delayed information flow, a fieldable system must make
future mission predictions based on past or incomplete data.

Here, we seek a proactive approach for providing alerts
based on probabilistic outcomes which can not be known
for certain yet, and might not be immediate from the known
states. Forward simulations can make predictions on possible
future findings, and improve decision-making, which has
been utilized in other applications [14]. In the context
of military and disaster response, researchers are actively
pursuing simulators for environments and applications, and
simulators are getting progressively more accurate in these
harsh environments compared to real-world results [15] [16].
This motivates us to develop forward simulation-based alert
generation for our application, and explore the computational
costs and benefits of the generated alerts.

III. SYSTEM OVERVIEW

We have developed an alert generation framework for
human-supervised, multi-robot teaming applications in large
unstructured environments, e.g., disaster response missions
and military operations. In these scenarios, humans dispatch
a team of robots into the operational environment to
explore the affected regions efficiently, collect mission-
critical information, and perform certain tasks. The humans
provide the robots complete task plans which may include a
nominal task sequence, along with some interrupt tasks, and
contingency task plans. Thus the high-level mission strategy
is crafted by the human supervisors to meet some mission
objectives. Meanwhile, the robots are designed to be capable
of making the low-level decisions for performing the tasks
given by the humans, such as navigation and exploration,
identification and manipulation of objects of interest, and
execution of other mission-specific tasks.

The entire system architecture is depicted in Figure 1,
which includes the alert generation framework from our
earlier work [17]. Humans receive and view mission updates
from the ongoing mission, via a user interface. This mission
update, along with current task plan of robots in the ongoing
mission, and human-specified unwanted situations to trigger
alerts, are then fed into the alert generation framework.
We have outlined in [17] the mathematical framework
and representation of different alert triggering conditions
as Metric Temporal Logic (MTL) formulae, the complex
task description structure of robots, and the state machine
representation of robot behavior to be used in mission
simulation. In the current paper, we focus on mission- and
task-models for forward simulation, computational speed up
techniques, alert extractions, and finally, the usefulness of

humans being notified of the alerts via the interface while
assigning tasks to the robots.

In a large-scale environment, there are usually some
regions of higher importance which we call areas-of-interest
(AoIs). We assume that the human supervisors use their
expertise and protocols to identify these regions and mission
goals are set with priorities given to searching or performing
tasks in the AoIs. We also assume limited communication in
this mission, which causes intermittent or degraded data flow
to humans. The humans can only receive mission updates
in some time intervals depending upon the communication
constraints, instructions given to the robots, and how the
mission progresses. As the robots operate in the complex
mission space, there is a non-zero probability of failure,
which can be due to environmental factors like complex
terrain, or stochastic events like hardware or software
failures. In some cases, if a robot is disabled or immobilized,
we assume that another robot might be able to revive the
disabled robot by providing assistance. We call this task
robot rescue [18] and the difficulty and risk of these rescue
operations depends on the specific situation.

The human supervisors issue task allocations to the robots
from a command center, which is not necessarily co-located
with the robots. We assume that the humans have some
method by which they can effectively communicate with
the robots and monitor mission progress using some display.
Display modalities could include computer monitors, tablets,
augmented or virtual reality displays, or any other interface
by which humans receive mission-relevant updates from the
robots. In order to be most effective, the humans need to
adapt their strategy as they receive information from the
robots. Whenever a robot becomes available to be tasked,
the humans must make informed decisions about how to best
use the asset to accomplish the mission.

For every real-world mission, there is likely a set of
critical situations that a human supervisor is concerned
about. Some of these events may be unwanted situations
that are detrimental to the team or mission performance
and, in the best case, are prevented or mitigated through
improved decision making. However, intermittent data flow
makes this process very challenging because humans will
receive information at a delayed time. Whenever there is new
mission information available it is crucial that humans assess
the mission situation and formulate a mental model for how
the mission has been progressing since the past updates and
how it will progress in near future. This way humans will
be able to allocate available resources appropriately.

We propose a framework to assist the human supervisor
with informed decision making in an effort to overcome
the burden of mission modeling and mitigate the negative
impact of delayed information flow due to intermittent
communication. We introduce forward simulation-based alert
generation, which we believe will be very useful for the
human commanders of multi-robot teams because it will
reduce the cognitive load required to manage teams. The
forward simulation uses updates from the past to predict what
is currently happening outside of communications range, or
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Fig. 1: System architecture proposed in this work that builds on our previous work [17].

what will happen in near future. Human supervisors provide
the mission conditions that they value and want notifications
for as to ensure that the alerts provided to the human are
relevant and not distracting. These conditions are expressed
mathematically in a probabilistic temporal logic framework
[19]. Forward simulations of the mission generate traces of
information, which are compared to the alert conditions set
by the humans. Whenever a condition is evaluated to be true,
an alert message with additional details is provided to the
human commanders. This, in turn, improves the humans’
understanding of mission progression and helps them to
prioritize important issues and resources.

IV. SPEEDING UP FORWARD SIMULATIONS

Forward simulations are needed to estimate how the mission
will progress, and to generate alerts regarding whether any
unwanted situations are likely to occur. Each robot initiates a
simulation using the most up-to-date information they have
received and computes for some simulated time into the
future. Some robots whose latest updates are further into
the past, need to be simulated for a longer period of time
which may be on the order of hours. These simulations will
produce data on the distribution of robot locations over time
and other mission parameters.

A physics-based simulator could be used to perform
Monte-Carlo runs for the mission; however, simulating a
couple of hours of tasks for a team of robots can be
very time-consuming. Available physics engines typically
operate with constant, very small (millisecond) time steps.
For example, 30 simulated minutes of navigation for a single
Husky1 driving in a straight line requires 8.12 seconds using
the PyBullet2 physics-based simulator on an Intel Xeon CPU
E3-1245 v5, 3.50GHz processor. This example assumes the
simplest scenario of one robot on a flat surface using a default
friction model and the largest suggested time step (10 ms)
indicated in the software documentation. Extrapolating this
example to a team of 10 robots in a long-duration mission,
a single run for a navigation task will require more than
4 minutes. A realistic mission will require several kinds of
complex tasks, update many variables, and use hundreds,

1https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
2https://pybullet.org/wordpress/

possibly thousands, of simulations for a single instance
of probabilistic state estimation and mission outcome
prediction. Therefore, conventional simulation techniques
will be prohibitively slow. In the following subsections, we
propose ways to expedite this forward simulation process to
generate alerts within a reasonable amount of time for time-
critical missions.

A. Discrete event based simulation model

We use a discrete event-based simulation paradigm with
fixed-increment time progression for forward simulating the
missions. So, the operation of the system is modelled as a
discrete sequence of events in time. The states of the robots
are updated at every time step according to the instructions
given to the robots and mission updates. To help mitigate
computational cost, we supplement the discrete event
simulation with representative task performance models,
which are generated offline before the actual mission
begins and then used in forward simulations during mission
execution.

The enabling technology in our discrete event simulation
is the task performance models. Because this is a pre-
processing step, these can be constructed from physics-
based simulations or real-world experimentation with robots
performing relevant tasks in similar environments. To
demonstrate the feasibility of this approach, we built
distributions for the normalized completion time and
position-based error of autonomous navigation using data
from a real-world field experiment, described in our earlier
work [20]. Each mission in the experiment consists of a
ground robot autonomously navigating from one precise
location to another, given no a-priori information, through
a variety of terrains in a complex, urban setting (Figure
2 (a)). This navigation task resembles the conditions of
what a robot could encounter in military or disaster relief
operations. For each successful navigation, we computed
the amount of additional time required to complete the
navigation, relative to the Euclidean path, which encapsulates
the uncertainty in the observed speed of the robot in an
unknown environment. We also constructed a distribution of
the position-based error by computing the distance between
the robot’s observed position and the corresponding positions
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(a) Navigation Missions (b) Empirical distributions for
normalized completion time and
position uncertainty

Fig. 2: Generating distributions of navigation parameters for
discrete event simulation using data from field experiments.

in the commanded global plan. The empirical distributions
for normalized completion time and position uncertainty for
autonomous navigation are shown in Figure 2 (b). One could
then use these distributions by sampling each distribution at
each time step of the discrete event simulation to determine
a possible speed and error that produce the next location of
the robot performing the navigation task.

Since discrete event simulation is being done at a
high level, we can use larger time steps without loss of
performance; we typically would not intervals smaller than
30 seconds. We tested alert generation for four representative
scenarios (more details in Sections V and VI). We found
that alert generation using 100 simulations took between
3.95−4.76 seconds with a time step of 30 seconds, which is
at least tens of thousands times faster than running physics-
based simulation. Even though this computation time may
seem small enough for usage, a mission model with higher
complexity might have significantly more computational
cost. Therefore, further improvement in computational time
would be beneficial.

B. Variable time-step

The goal of our discrete event simulation is to explore
the possible ways a mission could progress and identify
when certain situations occur, if at all. Therefore, we need
sufficiently small time steps in order to capture the salient
phenomena. The traditional way of doing discrete event
simulation is to run the simulation using a constant time step,
and identifying an appropriate time step is crucial. Smaller
time steps ensure higher fidelity at the expense of higher
computational cost, while the low-fidelity with larger time
step may cause some events of interest to be overlooked.

We propose a variable time step to reduce the
number of steps in the discrete event simulation, while
generating sufficient, representative mission data. In
applicable missions, there are usually some time intervals
for each robot when it operates in accordance with its
nominal plan with no external events or interactions, and
the interesting phenomena occur during other time periods.
To identify this for each individual robot, we perform 10
initial simulated runs with a small, constant time step to

identify the less-consequential time periods where we can
use a larger time step for updating its status, and other
times where we require smaller time steps. It is important
to identify what the interesting or consequential items are
to be searched in those initial simulations. In some of our
representative mission scenarios, interesting events included
robot-to-robot interactions, robotic failures and rescues,
detection of objects of interest, and any external event. We
produce some preliminary results using a two-tier structure
of time steps, dt (30 seconds) and 10dt (5 minutes), in our
adaptive time simulation. For the four scenarios, the two-tier
adaptive method achieved between (3.15− 5.70)× speed up
in computation process as compared to using constant dt time
step. In the future, we plan to perform hierarchical time steps,
so that we can support multiple different step sizes instead
of only two.

V. EXTRACTING ALERTS FROM SIMULATION DATA

The data generated by forward simulations need to be
compared with the alert triggering conditions to issue alerts.
This section denotes a few potential unwanted situations
and relevant alert conditions, mathematically encoded in a
probabilistic logic framework. One representative mission
scenario is used as an example, and we demonstrate how
simulation data are processed in our scheme. Time-dependent
probability traces for certain mission variables are produced
from a series of forward simulations. Then alerts are issued
by checking whether the associated temporal logic formulas
are found to be true from the traces.

Based on each mission objectives, human commanders
may care about different situations. Some alerts can be
based on whether there are or will be sufficient number of
robots in a region of need. For example, new findings can
make some regions of higher priority than others, which was
not initially known, and still not known to many robots in
the field, so humans may want to track whether the high
priority regions have a sufficient number of robots operating
there. If there are survivors involved, humans may want to
check whether survivors are getting sufficient assistance. If
alerts are given, humans can prioritize those regions early
by allocating new resources. Alerts can be also useful when
humans do not want robots in certain regions any more.
If humans receive information on some risky regions, they
might prefer other robots not to navigate around that region
to avoid potential failures. Another example might be, if one
robot unknowingly plans to explore a region that another
robot has completely explored already, time and energy
will be wasted. These future unwanted situations can be
avoided if humans send an available robot to those robots of
concern, and update their instructions. In some cases, it might
be worthwhile to track different mission parameters, e.g.,
some robot’s status related information like failure, or rescue
operations. The specific situations that humans prioritize will
be dependent on the mission details, objectives, and updates.

One of the example mission scenarios we constructed,
which can be representative of an actual mission, is shown
in Figure 3. There is a few kilometer square sub-urban
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Fig. 3: An example representative mission scenario with some reported information

environment with 12 Areas-of-Interest, and a team of eight
robots, I-VIII. The goal of the mission is to explore all these
AoIs and find as many survivors as possible. The robots also
need to assist each survivor based on the person’s needs.
There are some assumptions for this operation. Firstly, if
there is one survivor found in a region, there is higher
probability to find more survivors. Secondly, one robot may
not be sufficient to provide the necessary aid to a survivor,
and two robots will be needed in such cases. The instructions
given to the robots in the field are in accordance with these
assumptions and mission goals. A robot can get another robot
from the same or nearby region to receive more assistance if
needed. Also, robots need not explore a region if it is already
explored and reported by another robot.

Under these assumptions, we can specify two alert
triggering conditions which are relevant in this mission: (1)
high probability for any survivor found not getting enough
assistance, (2) redundant exploration by a robot. In this
mission, robots are sent out with some initial task plans,
and a couple of hours have passed since the start. In Figure
3 we can see that at current time, 120 minutes, robot VI
has returned to the communication station after finishing
exploration of AoIs 8 and 9, and is ready to receive new
instructions. All other robots are still on the field performing
their tasks based on their instructions and information states.
Each robot has a last update time, and status from that
time. We can also see that one survivor has been found
in regions 2 and 12 separately. Since one survivor means
more survivors will likely be found in a region, and most
survivors need two robots, human commanders would want
at least two robots in AoI 2 and 12. Also, humans would
not want any robot in regions 8 and 9 since they are already
explored. Thus, both the noted alert conditions can be tested
from the number of operating robots in specific regions. The
more precise alert conditions for this scenario can be as
follows: (1) high probability of AoIs 2, 12 (with identified

survivors) having less than 2 operating robots, (2) possibility
of any robot operating in AoIs 8, 9; both conditions for
present time or recent future (time ∈ [120, 140] min). In
our framework, these conditions are mathematically encoded
using the framework provided in our previous work [17].

Our forward simulation uses all the reported information
on initial states of the robots, and given instructions, and
simulates the mission. We have more interest in knowing
about the number of operating robots in regions 2, 8, 9, 12
specifically, due to survivors needs or to prevent redundant
exploration. If we perform 100 runs of forward simulation,
we generate data for 100 possible mission outcomes
throughout the time duration. We aggregate the results for
the mission variables of our interest, in this case the number
of functioning robots in each region. We create a probability
distribution for the number of robots operating in a particular
region at a specific time. The number of robots in a region
can be between 0 to 2. Thus, we generate the plots given in
Figure 4, and the unfavorable situations are marked in red.
We can see that there is high (about 0.8) probability that
region 2 does not have enough robots, which triggers the
first alert. In order to handle this situation, an available robot
can be tasked to that area and relay a retasking message.
Secondly, there is a probability of 0.20 − 0.40 of a robot
operating in AoI 8, which triggers an alert for redundant
exploration. To reflect to this second alert, humans need to
check another mission variable, each robot’s operating area
ID. This is to see which robot goes to AoI 8, so that the
human supervisor can update its instructions by sending the
available robot to it.

VI. USER STUDY

We conducted a preliminary human study to evaluate the
merits of forward simulation-based alert generation. We
identified mission scenarios that could be of interest in the
context of human-supervised robot teams, and built a user
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(a) Regions which should have least 2 operating robots in recent
times, for the survivors

(b) Regions which should not have any robots to avoid redundant
exploration

Fig. 4: Plots generated from forward simulation of mission scenario in Figure 3, showing probability distribution of having
0, 1, 2 operating robot(s) in particular regions at specific times. The discrete times in the figures span from present time to
20 − 30 minutes into the future, as required by the time window in alert conditions. The red markings denote concerning
situations where the number of operating robots are not favorable.

interface for human commanders to view information for
these missions. The participants in our user study were
provided sufficient introduction and training, and then were
asked to assume the role of commander, use the interface,
assess the mission situation, and strategize on new task
assignment for one or two available robots. Each participant
served for four missions and in two of these we offered
alert generation with forward simulation-based prediction
information. The purpose of our human study is to quantify
if, and how effectively, forward simulations might a) help
the humans to understand the mission situations better and
b) guide them to make more informed decisions to facilitate
performance improvement.

A. Hypothesis on Performance Improvement with Alerts

We hypothesize that we can improve performance of
human commanders by providing prediction-based alerts and
information. We believe that there will always be a small
percentage of people who are intellectually sharp enough to
make reasonable decisions using only reported data, without
alerts or forward simulation. But the remaining larger pool
of people will likely be overwhelmed with the interrelated
mission information and stress that they will fail to infer
the data and make the best decisions. We anticipate that
mission prediction information can significantly improve the
performance for a large fraction of this population; while
there will still be a small fraction of people who will be
overloaded, emotionally and cognitively, and hence unable
to make good decisions even with the additional help. Based
on this assumption, we propose Hypothesis 1 with regards to
our human study, and measure statistical significance from
our data to be collected.

Hypothesis 1 (H1): Of the population that are unable to
make any good decision without alert messages, more than
half of the participants will start making all correct decisions
when provided assistance in the form of alerts and forward
simulation-based mission predictions.

B. Preliminaries

We constructed four mission scenarios (an example in Figure
3), where each scenario starts at a particular time instance
of a unique mission comprised of a team of eight to ten

simulated robots. Each mission has progressed considerably,
i.e., several hours have passed since the mission started with
some nominal task plan being executed. One or more robots
have returned with new mission information and are available
for new task assignment. At this point, the participant is
asked to assume the role of the commander. The participant
can now access certain information using our interface,
and decide on issuing commands to the available robots
to facilitate mission progress. The information available to
the human commander includes the instructions previously
given to the currently out-of-communications-range robots
in the field, the latest robot state updates, and other mission
event updates with their corresponding timestamps. The
usefulness of the updates varies because it may have been
reported for an event that took place a few minutes ago
to more than an hour in the past. Each of the scenarios
are constructed such that it has one or two unwanted
situations that may occur in the immediate future. These are
not reported events because they have not been observed
by the robots; rather, they are based on predictions from
forward simulations. If a commander prioritizes certain
tasks and assigns new instructions to the available robots,
these undesirable situations can be prevented or alleviated.
We refer to this new instruction set as the ideal tasking
component, and this intelligent process as a good decision,
for each scenario. This ideal tasking is ultimately compared
with the tasking done by the participants in our human study.

We used two configurations of our interface in this study:
(A) baseline in Round 1 and (B) with smart features
in Round 2. Both versions provided the same reported
information from past to present. However, version B offered
one additional tab in the interface that showed alert messages
generated by forward simulations based on a set of initial
triggering conditions. With this version, the participants
are also provided with all of the robots’ probabilistically-
computed locations and navigation information through out
the forward simulation time period during an expected run
where the alert triggering situation occurs.

C. Study Description
We conducted our study with engineering graduate students
who are over 18 years old, and do not have color vision
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deficiencies. As each participant came in, and was given
introduction to the mission and the system, we randomly
assigned the person two scenarios with version A of the
interface for Round 1. If the person makes any good decision
in this round, they were considered reasonably capable and
excused from the study. This was done in accordance with
our hypothesis. Alternatively, the participants making zero
good decisions moved to Round 2, where they used version
B of the interface for two of the remaining scenarios. In this
second round, we identified the participants who could make
all good decisions, measured the performance improvement
using forward simulation-based information, and verified our
hypothesis with statistical significance.

Each experiment for a single participant in the study
took up to 120 minutes. During the first 20 − 30 minutes,
the participants were given a presentation about the class
of missions in this study, the mission-specific goals and
assumptions, along with an introduction to the interface.
They were also given generic guidelines on specific mission
aspects to assess, and ways to handle relevant situations.
The remaining 60 − 90 minutes of the study consisted
of the two rounds that controlled for the amount of
available information by using a specific configuration of
our custom interface shown on large computer monitors. At
the beginning of each mission, each participant was briefed
on the initial strategy and task plans that were initially
executed, and then given ten minutes time to process the
information using the interface, and decide on a strategy to
task the available robots. After ten minutes, the participants
explained their desired task allocation verbally, we recorded
their responses and compared their instructions to the ideal
tasking for that scenario. If their plan included the key
components from the ideal tasking, it is labeled as good
decision, otherwise it is labeled a failure to make the high
quality decision.

D. Data Collection

In each round, there were a total of two or three good
decisions to make, depending upon the two randomly-
assigned scenarios that the participant was evaluated in. Only
three out of the 13 participants made at least one good
decision in the first round and were removed from the data
set to be used in hypothesis testing. The re 10 participants,
failed to make a single good decision in the first round with
only the reported information and no alerts, so they continued
on to the second round. We observed that 9 people, i.e. all
except one, made all correct decisions in the second round.
We terminated conducting our user study at this point since
we had obtained enough data for claiming our hypothesis
with significant statistical confidence.

Table I presents the performance of the 10 participants
during Round 2, where they had access to forward simulation
based alerts and information from predictions. For each user
in this round, there were 2 or 3 decisions to be made, and
we note the number of decisions the person made correctly.
Thus, we calculate the percentage of good decisions each
participant made which is also given in the table.

TABLE I: Performance of participants in Round 2, who were
provided with forward simulation-based alerts and mission
predictions.

User # of Decisions # of Good % Correct
to be made Decisions Decisions

1 3 3 100%
2 2 2 100%
3 2 2 100%
4 2 2 100%
5 2 1 50%
6 3 3 100%
7 3 3 100%
8 2 2 100%
9 3 3 100%

10 2 2 100%

E. Findings

We use one-sample hypothesis testing to test our Hypothesis
1 given in Section VI-A. If a participant can make all of
the good decisions in the second round, it is considered
a success, otherwise it is labeled a failure. We model the
outcome for each participant in the second round as a
Bernoulli random variable, X , that can take two values, 1
if there is success, and 0 otherwise, with probabilities P
and 1−P respectively. We construct hypothesis tests for the
Bernoulli parameter P where the null hypothesis H0 is that
P has some value P0. The alternate hypothesis Ha is that the
true value of P less or greater than P0. We have a sample
size of N = 10 corresponding to the number of participants
in Round 2, who could not make a single good decision in
Round 1. According to our hypothesis 1, we perform one-
sided hypothesis testing for P > P0, where P0 = 0.5.

We compute the number of successes, Y =
∑N

i=1Xi,
where Xi denotes success or failure of the ith participant.
By definition Y has a Binomial distribution with parameters
N and P , defined as PY (K) =

(
N
K

)
PK(1− P )N−K . For

significance level α ∈ (0, 1), let bn,p(α) denote the
quantile of order α for Binomial distribution with parameters
n, p. Since the Binomial distribution is discrete, only
certain (exact) quantiles are possible. Our hypothesis
testing is then, reject H0 : P ≤ P0 versus Ha : P > P0 iff
Y ≥ bN,P0

(1− α).
We consider the significance level α = 0.05 corresponding

to 95% confidence. We calculate b10,0.5(0.95) = 9. Table I
shows that the total number of successes in our ten trials is
9. Therefore, we can reject the null hypothesis and claim
our Hypothesis 1 to be true. In fact, we can say with
95% confidence that the percent of people making all good
decisions with alerts, who could do zero without, is actually
greater than 60%.

F. Discussion

The three participants who were dismissed from Round 1
could make exactly one correct decision, and thus scored
between between 33.33 − 50.00% correct decisions. The
remaining 10 participants, comprising of 76.92% of the
total population, failed to make even a single good decision
without predictive assistance features. This poor performance
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in the first round indicates the inherent difficulty for humans
in assessing a mission without any aid from forward
simulation based predictions. We aggregated participants’
answers in the questionnaires which asked about the
challenges that they faced in each scenario. According to the
participants, the main challenge was that they felt overloaded
with information. Therefore, it was not possible for them
to deduce how the mission will progress by assessing so
many different variables. It is to be noted that the scenarios
were designed in such a way that a reasonable human would
be inclined to do some different tasking if they can not
foresee the mission progression. This was done in an effort to
minimize the possibility of participants arriving at the ideal
tasking randomly.

In Round 1, after the participants made their decisions, we
verbally provided the alert message and the robot navigation
information, and asked for their revised answer. We found
that 88.97% of the revised decisions given by the participants
during this conversation included the ideal tasking. This high
percentage can verify further that our chosen good decisions
are indeed the superior choices, according to most people,
when provided enough information.

In the second round, nine out of ten participants
could make every good decision as they were given alert
messages and predicted location data of the robots for
the corresponding situation in version B of the interface.
Collectively, the participants successfully made 95.83% of
the good decisions, which is a substantial increase compared
to Round 1 without alerts. This performance is also better
than the revised decisions from the after-study conversation
in Round 1. This indicates the usefulness of presenting
forward simulation information up front in a structured
way. Lastly, the participants were asked to provide free
responses which revealed that the participants found the
forward simulation-based prediction information very useful.

VII. CONCLUSIONS

We have shown that alerts can be extracted from forward
simulations of the mission. We have demonstrated speeding
up these simulations by more than three orders of
magnitude, as compared to using physics-based simulations.
We have verified that forward simulations based prediction
information helps humans to make better decisions. In the
future, we would like to explore smarter features for further
speed up in forward simulations. We also want to assess
the usefulness of different alert conditions from mission
performance and how they are perceived by humans.
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