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Abstract— In this paper, we present an optimal control
approach using Linear Matrix Inequalities (LMIs) for tra-
jectory tracking control of a three-wheeled omnidirectional
mobile robot in the presence of external disturbances on the
robot’s actuators and noise in the robot’s sensor measurements.
First, a state-space representation of the omnidirectional robot
dynamics is derived using a point-mass dynamic model. Then,
we propose an LMI-based full-state feedback H∞-optimal
controller for the tracking problem. The robot’s tracking
performance with the H∞-optimal controller is compared to
its performance with a classical full-state feedback tracking
controller in simulations with circular and bowtie-shaped ref-
erence trajectories. In order to evaluate our proposed controller
in practice, we also implement the H∞-optimal and classical
controllers for these reference trajectories on a three-wheeled
omnidirectional robot. The H∞-optimal controller guarantees
stabilization of the robot motion and attenuates the effects of
frictional disturbances and measurement noise on the robot’s
tracking performance. Using the H∞-optimal controller, the
robot is able to track the reference trajectories with up to
a 47.8% and 45.8% decrease in the maximum pose and twist
errors, respectively, over a full cycle of the trajectory compared
to the classical controller. The simulation and experimental
results show that our LMI-based H∞-optimal controller is
robust to undesired effects of disturbances and noise on the
dynamic behavior of the robot during trajectory tracking and
can outperform the classical controller in attenuating their
effects.

I. INTRODUCTION

Mobile robots are robotic systems that are capable of mov-
ing in their environment, such as Unmanned Aerial Vehicles
(UAVs) [1], Autonomous Underwater Vehicles (AUVs) [2],
legged mobile robots [3], and Wheeled Mobile Robots
(WMRs) [4]. WMRs in particular are widely used in different
applications, such as autonomous driving [5], mining and
inspection [6], and space exploration. Depending on the
application, WMRs may be designed with different types
of wheeled drive systems such as two-wheeled differential-
drive, car-like, and omni-directional. The kinematics of two-
wheeled and car-like robots are described by the unicycle
model [4]. In this model, there exists a constraint along the
direction of wheels’ axis, which is called a nonholonomic
constraint and does not allow the robot to produce controlled
motions along this direction. Due to this nonholonomic
constraint, WMRs whose model conforms with the unicycle
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model are not linearly controllable and cannot be stabilized
to the origin by a continuous smooth time-invariant feed-
back control law [7]. Given the complexity of designing
controllers for nonholonomic WMRs, there has been con-
siderable attention to the use of holonomic WMRs such
as three- or four-wheeled omnidirectional mobile robots.
The design of omnidirectional robots’ wheels (omni and
Mecanum wheels) provide these type of WMRs with the
capability of moving from any arbitrary configuration to any
other arbitrary configuration [8]. This in turn enables the de-
sign of linear time-invariant control laws for omnidirectional
WMRs.

A linear time-invariant state-feedback control law could
be a promising control strategy for an omnidirectional WMR
only when an exact dynamical model of the robot is available
and no disturbances or sensor noise are present. However,
disturbances and noise, known as undesired exogenous in-
puts, can significantly affect the controlled performance of
the robot in practice. These exogenous inputs can originate
from different sources, such as the friction force between
the robot’s wheels and the ground, actuator inaccuracy, and
noise in sensor measurements. Therefore, a proper control
design for real-world applications should be robust enough to
reject or at least attenuate the undesired effects of exogenous
inputs. Optimal control approaches, such as H2 and H∞
controllers, employ properties of Linear Matrix Inequali-
ties (LMIs) in order to produce control laws with these
characteristics. Moreover, these optimal controllers guarantee
asymptotic stability of the closed-loop system [9], with a
robustness margin that depends on the type and magnitude of
parametric uncertainties. By minimizing the H2-norm and/or
H∞-norm of the closed-loop system, these controllers reduce
and potentially minimize the effects of disturbances and
noise on the robot’s performance [10], [11]. Several control
approaches that employ the properties of LMIs have been
recently developed for the control of WMRs, e.g. [12], [13].

In order to achieve a desired closed-loop behavior, an
exact dynamic model of the omnidirectional WMR and the
environment in which it is moving is of significant impor-
tance [14], [15]. Although it is possible to derive an inexact
dynamic model of the robot and environment, the resulting
controller often fails to produce the desired performance in
real-world implementations due to uncertainties in the model.
These uncertainties include inaccuracies in identification of
the aforementioned friction forces, parameters of the driving
motors, the robot’s inertia matrix, and the position of the
robot’s center of mass, all of which are necessary to account
for in dynamic modeling of the robot [16], [17].
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In this paper, we propose an LMI-based control approach,
in the form of a full-state feedback H∞-optimal controller,
for trajectory tracking control of a three-wheeled omni-
directional WMR that is subject to frictional disturbances
and sensor noise. In order for the control approach to be
implementable on any three-wheeled omnidirectional WMR,
we design the controller using a point-mass model of the
robot dynamics. Our proposed control approach (1) does not
require a rigid-body dynamical model of the omnidirectional
robot, and (2) is robust to uncertainties originating from
undesired exogenous inputs on the robot. In Section II, we
first derive the state-space representation of the dynamic
model based on a point-mass model of the robot. Then, we
convert this model into the standard LMI framework required
for designing a full-state feedback H∞-optimal controller. In
Section III, we describe both a classical full-state feedback
controller and a full-state feedback H∞-optimal controller
for the trajectory tracking problem. In Section IV, we present
results from simulations of a three-wheeled omnidirectional
robot that tracks circular and bowtie-shaped reference tra-
jectories using both the classical and H∞ controllers while
experiencing the effects of disturbances and measurement
noise. We also implement the classical and H∞ controllers
on a real three-wheeled omnidirectional robot in order to val-
idate the effectiveness of our proposed controller in practice.
In Section V, we describe the odometry, twist, and torque
calculations required for implementation of the controller and
provide experimental results on the robot’s performance at
tracking the circular and bowtie trajectories.

II. STATE-SPACE MODEL OF ROBOT DYNAMICS

Figure 1 shows a schematic of a three-wheeled omni-
directional robot equipped with omni wheels, which allow
the robot move at any direction at each time instant. This
holonomic WMR can be modeled as a point-mass with
double-integrator dynamics as follows, without including
disturbances and noise:

Mẍ = u, (1)

where M3×3 = diag(m,m, I) is a diagonal mass matrix
in which m and I are defined as the robot’s mass and
moment of inertia about the axis perpendicular to the ground,
respectively. We assume that m is a known constant and I
can be calculated as the moment of inertia of a solid cylinder
with radius d as I = 1

2md
2. As shown in Fig. 1, the variables

Gx and Gy are the position coordinates of the robot’s center
of mass along the x̄-axis and ȳ-axis, and ϕ is the robot’s
heading angle. The vector x = [Gx, Gy, ϕ]T ∈ R3,
which is defined in the global coordinate frame x̄ − ȳ,
indicates the pose of the robot in a planar configuration.
Moreover, u = [Gfx,

Gfy,
Gτz]T ∈ R3 is the control

input vector, which is interpreted as the wrench (forces and
torque) applied to the robot’s body. We define the state
variables as follows:

x1 = [Gx Gy ϕ]T, x2 = [Gẋ Gẏ ϕ̇]T. (2)

+
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Fig. 1: Schematic of a three-wheeled omnidirectional WMR,
illustrating the driving and free-sliding directions of the
robot’s wheels.

Then, one can readily write the state-space representation of
the robot dynamics in Eq. (1) as:

ẋ1 = x2, ẋ2 = M−1u. (3)

The vectors X6×1 := [xT
1 xT

2]T ∈ R6 and Ẋ6×1 :=
[ẋT

1 ẋT
2]T ∈ R6 are defined to characterize the state-space

representation of the robot’s dynamics as:

Ẋ = ApX + Bpu

yp = CpX + Dpu,
(4)

where yp denotes the output and the four matrices Ap, Bp,
Cp, and Dp for the trajectory tracking control problem are
given by:

Ap =

[
03×3 I3×3
03×3 03×3

]
, Bp = M−1

[
03×3
I3×3

]
Cp = I6×6, Dp = 06×3.

(5)

Since we are designing a full-state feedback controller, the
output yp is defined as the state vector X. Note that I denotes
the identity matrix and 0 denotes a matrix of zeros.

Figure 2 shows the block diagram of the proposed tracking
controller when actuation disturbances and output measure-
ment noise are included in the robot model [18]. The plant
in Fig. 2 consists of the state-space model of the robot’s
dynamics without undesired exogenous inputs, described in
Eq. (4). We can expand the state-space model to include
the undesired effects of disturbances on the robot, arising
from the friction force between the omni wheels and the
ground, and noise in the sensor measurements. To do so, we
formulate the model as a tracking control problem in the LMI
framework, using the notation described in [11]. We start
by defining the reference trajectory, r6×1, the disturbance
input, d3×1, and the output measurement noise, n6×1. The
error, e6×1, between the tracked trajectory and the reference
trajectory is defined as z1. In addition, y1 and y2 are the
reference trajectory and the noisy output, respectively. Thus,
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we have that:

w := [rT dT nT]T, z1 := e = r− yp, z2 := u

y1 := r, y2 := n + yp.
(6)

As a result, the state-space representation of the robot
dynamics for the trajectory tracking problem, including dis-
turbances and sensor noise, can be written as:

Ẋ = ApX + [0 Bp 0]w + Bpu

z1 = −CpX + [I −Dp 0]w −Dpu

z2 = 0X + [0 0 0]w + Iu

y1 = 0X + [I 0 0]w + 0u

y2 = CpX + [0 Dp − I]w + Dpu.

(7)

The realization in Eq. (7) results in the following 9-matrix
representation for the LMI-based tracking controller:

A := Ap, B1 :=
[
0 Bp 0

]
, B2 := Bp

C1 :=
[
−Cp 0

]T
C2 :=

[
0 Cp

]T
D11 :=

[
I −Dp 0
0 0 0

]
D12 :=

[
−Dp I

]T
D21 :=

[
I −0 0
0 Dp −I

]
D22 :=

[
0 Dp

]T
.

(8)

III. TRAJECTORY TRACKING CONTROLLER DESIGN

In the trajectory tracking control problem, the three-
wheeled omnidirectional robot should follow predefined
reference trajectories that are described by desired poses
(position and orientation) and twists (linear and angular
velocities) of the robot with respect to time. In this section,
we first describe a classical full-state feedback controller for
this problem, and then propose a full-state feedback H∞-
optimal controller.

A. Classical Full-State Feedback Controller

Given the point-mass dynamic model for the omnidirec-
tional robot in Eq. (1), define K ∈ R6×6 as a positive definite
gain matrix and ẍr as the desired acceleration of the refer-
ence trajectory, including linear and angular accelerations.
Referring to [19], the control law for the classical controller
is described by:

u = −S + ẍr, (9)

where S ∈ R6×1 is defined as follows:

S = Kė + Λe, (10)

in which Λ ∈ R6×6 is a positive definite gain matrix.
Here, the vector e ∈ R6×1 denotes the error between the
measured pose of the robot, x, and the reference pose, xr.
In addition, the vector ė ∈ R6×1 denotes the error between
the measured twist of the robot, ẋ, and the reference twist,
ẋr. Accordingly, we have that:

e = x1 − xr, ė = x2 − ẋr. (11)

Substituting Eq. (10) into Eq. (9) and using the fact that
ë = ẍ−ẍr, we can obtain the equation of the error dynamics

𝐀p 𝐁p
𝐂p 𝐃p

𝒖 = 𝐊[𝒆𝐓 ሶ𝒆𝐓]𝐓+
u +𝒅 u

𝒅

𝐲𝟏 = 𝒓

+

𝒏

𝒚𝒑

𝐲𝟐 = 𝐲𝒑 + 𝒏

+
𝐳𝟏 = 𝒆

− Robot Dynamics Controller

: state vector𝐗

Fig. 2: Block diagram of the tracking controller, including
disturbances and sensor noise as input signals.

for the closed-loop system as a second-order differential
equation with positive definite matrix coefficients:

ë + Kė + Λe = 0. (12)

In [20], it was proved that a differential equation of the form
Eq. (12) is stable if both matrix coefficients are positive
definite. This proves that the pose and twist errors will
converge to zero.

B. Full-State Feedback H∞-Optimal Controller
The input-output equations in the state-space model of the

robot dynamics in Eq. (7) can be written in an abbreviated
form as follows [9], where z := [zT

1 zT
2]T:

Ẋ = AX + B1w + B2u

z = C1x + D11w + D12u.
(13)

We propose the following control law for the H∞-optimal
controller:

u = −KH∞ [eT ėT]T + ẍr (14)

where the controller gain matrix, KH∞ , is determined such
that the H∞-norm of the closed-loop system is minimized
when the exogenous inputs are applied to the robot. The
closed-loop system represented in state-space form and its
transfer function, T(s) = z(s)/w(s), are described by:

Ẋ = (A + B2KH∞)X + B1w

z = (C1 + D12KH∞)X + D11w

T(s) = (C1 + D12KH∞)(sI− (A + B2KH∞))−1B1

+ D11

(15)

Using the Bounded Real Lemma [9], [11], it can be shown
that γ is the minimum value of the H∞-norm of the closed-
loop system if there exist a positive definite matrix P and a
matrix F which satisfy the LMI in the following optimization
problem (here, “∗” represents a symmetric element of a
matrix):

min γ

P > 0AP + B2F + (AP + B2F)T B1 (C1P + D12F)T

∗T −γI DT
11

∗T ∗T −γI

 < 0

(16)

Given such matrices P and F, we can calculate the H∞-
optimal controller gain matrix as KH∞ = FP−1.
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Fig. 3: Trajectory of a simulated three-wheeled omnidirec-
tional robot that tracks the circular reference trajectory using
(a) the classical full-state feedback controller; (b) the full-
state feedback H∞-optimal controller.

IV. SIMULATION RESULTS

In this section, we implement the controllers described
in Section III on a simulated three-wheeled omnidirectional
robot in MATLAB R©. We compare the performance of
the H∞-optimal controller and the classical controller for
two reference trajectories: a circular reference trajectory
described by:

xr,c = [2 + cos(t) 2 + sin(t) 0]T

ẋr,c = [− sin(t) cos(t) 0]T

ẍr,c = [− cos(t) − sin(t) 0]T,

(17)

Norm of pose error (m)

Norm of velocity error (m/s)

0.62 m

0.27 m/s

(a)

Norm of pose error (m)

Norm of velocity error (m/s)

0.1 m

0.2 m/s

(b)

Fig. 4: Norm of the pose and twist errors over 50 s of
the simulations in which the robot tracks the circular ref-
erence trajectory using (a) the classical full-state feedback
controller; (b) the full-state feedback H∞-optimal controller.

and a bowtie-shaped reference trajectory described by:

xr,b = [0.5 cos(t) 0.5 sin(t) cos(t) 0]T

ẋr,b = [−0.5 sin(t) 0.5 cos(2t) 0]T

ẍr,b = [−0.5 cos(t) − sin(2t) 0]T.

(18)

In addition, we simulate the disturbance input d and output
measurement noise n as the following sinusoidal functions:

d =[0.05 sin(t/2) 0.15 sin(t/4) 0]T

n =[0.15 sin(2t) 0.1 sin(3t) 0 ...

0.25 sin(4t) 0.25 sin(2t) 0]T.

(19)

Note that the first three elements of the noise signal are ap-
plied to the measurement of the robot’s pose, [Gx Gy ϕ]T,
and the last three elements affect the twist measurements,
[Gẋ Gẏ ϕ̇]T.

For the classical controller, we tuned the gain matrices
to K = 0.25I3×3 and Λ = 0.5I3×3, which produce the
best tracking performance in terms of the lowest values of
||e(t)||2 and ||ė(t)||2, the 2-norms of the pose error and twist
error. In order to find the controller gain for the H∞-optimal
controller, we solve the LMI in Eq. (16) using YALMIP [21],
which employs SeDuMi [22] for this purpose. The optimal
controller gain matrix of the H∞ controller is obtained as:

KH∞ =

5.01 0 0 12.33 0 0
0 5.01 0 0 12.33 0
0 0 35.31 0 0 39.54


(20)
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Fig. 5: Trajectory of a simulated three-wheeled omnidirec-
tional robot that tracks the bowtie reference trajectory using
(a) the classical full-state feedback controller; (b) the full-
state feedback H∞-optimal controller.

Figures 3a and 3b show the trajectory of the simulated
omnidirectional robot over 50 s as it tracks the circular
reference trajectory using the classical and H∞-optimal
controllers, respectively, in the presence of the disturbances
and noise defined in Eq. (19). For these simulations, Figs. 4a
and 4b each plot the time evolution of ||e(t)||2 and ||ė(t)||2.
Similarly, Figs. 5a and 5b plot the trajectory of the sim-
ulated robot over 50 s as it tracks the bowtie reference
trajectory using both controllers, and Figs. 6a and 6b plot
the corresponding time evolution of ||e(t)||2 and ||ė(t)||2.
In the plots of the error norms over time, the black and
blue dashed horizontal lines indicate the maximum values of
||e(t)||2 and ||ė(t)||2, respectively, over one complete cycle
of the robot around the reference trajectory after the robot’s
initial transient behavior as it approached this trajectory.
We will refer to these maximum values as ||e||max

2 and

Norm of pose error (m)

Norm of velocity error (m/s)

0.3 m
0.18 m/s

(a)

Norm of pose error (m)

Norm of velocity error (m/s)

0.1 m 0.22 m/s

(b)

Fig. 6: Norm of the pose and twist errors over 50 s of
the simulations in which the robot tracks the bowtie ref-
erence trajectory using (a) the classical full-state feedback
controller; (b) the full-state feedback H∞-optimal controller.

||ė||max
2 . Figs. 4a and 4b show that for the circular reference

trajectory, the H∞ controller reduces ||e||max
2 from 0.62 m

for the classical controller to 0.1 m, and reduces ||ė||max
2

from 0.27 m/s for the classical controller to 0.2 m/s. Figs. 5a
and 5b show that for the bowtie reference trajectory, the H∞
controller reduces ||e||max

2 from 0.3 m to 0.1 m, and slightly
raises ||ė||max

2 from 0.18 m/s to 0.22 m/s.
These results demonstrate that the LMI-based full-state

feedback H∞-optimal controller can significantly improve
the tracking performance of the robot in simulation compared
to the classical full-state feedback controller. This is because
the H∞-optimal controller attenuates the undesired effects
of the exogenous inputs, d and n, whereas the classical
controller cannot mitigate the effects of these undesired
inputs.

V. EXPERIMENTAL IMPLEMENTATION AND RESULTS

In this section, we implement the classical and H∞
trajectory tracking controllers described in Section III on
the three-wheeled omni-directional robot shown in Fig. 7.
This robot has three omni wheels connected to Dynamixel
DC motors that are spaced 120◦ apart. The rollers around the
rims of the omni wheels allow the robot to move freely to any
arbitrary configuration. The Dynamixel motors can measure
the omni wheels’ rotation angles, θi (i = 1, 2, 3), and their
angular velocities, θ̇i (i = 1, 2, 3), using embedded encoders.
The parameters r and d denote the radius of the omni wheels
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Fig. 7: (a) Isometric and (b) overhead views of the three-
wheeled omnidirectional WMR used in the experiments. The
global coordinate frame is defined as in Fig. 1.

and the distance between the center of each wheel and the
origin of the body-fixed coordinate frame, defined as x̂− ŷ.

A. Odometry, Twist, and Torque Calculations

The twist of the omnidirectional robot, ẋ =
[Gẋ Gẏ ϕ̇]T, represented in the global coordinate
frame x̄ − ȳ, can be expressed in terms of the angular
velocities of the omni wheels. We first define the rotation
matrix, R−ϕ(z), that describes rotation of the body-fixed
coordinate frame, x̂ − ŷ, by an angle −ϕ about the z̄-axis.
To calculate the robot’s twist in the global coordinate frame,
we pre-multiply the robot’s twist in the body-fixed frame,
bẋ = [bẋ, bẏ, ϕ̇]T, by this rotation matrix as follows [4]:Gẋ
Gẏ
ϕ̇

 =

cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1


︸ ︷︷ ︸

R−ϕ(z)

 2r
3

−r
3

r
3

0 −
√
3r

3

√
3r
3−r

3d
−r
3d

−r
3d

θ̇1θ̇2
θ̇3


︸ ︷︷ ︸

bẋ

(21)

This equation can be used to compute the robot’s twist
error, ė, in Eq. (11). Odometry to estimate the robot’s pose,
[Gx Gy ϕ]T, is possible using the rotational feedback
provided by the Dynamixel motors. This can be done by
assuming that the wheels’ angular velocities remain constant
during the time step ∆t between readings, such that θ̇i =
∆θi/∆t. Regardless of the units used to measure time, we
can set ∆t = 1 without loss of generality, which results
in θ̇i = ∆θi [4]. Thus, the robot’s velocity in the global
frame x̄− ȳ can be computed in terms of the rotation angles
of the omni wheels measured by the encoders. In turn, we
can calculate the robot’s pose error, e, in Eq. (11) given the
odometry information of the robot.

We calculate the control input vector, u, by substituting
the robot’s pose and twist errors into the control laws of the
classical and H∞ controllers, defined in Eqs. (9) and (14), re-
spectively. We set the classical controller gains to the values
used in the simulations, and the gains of the H∞ controller
were set according to Eq. (20). The control inputs are defined
as the desired wrench of the robot, F = [Gfx

Gfx
Gτz]T,

represented in the global coordinate frame x̄−ȳ. This wrench
should be produced by the Dynamixel motors. We first
transform this desired wrench from the global frame to the
body-fixed coordinate frame of the robot by pre-multiplying
the wrench in the global frame by the rotation matrix Rϕ(z).
Then, the wrench in the body-fixed frame can be converted
to the desired torques that should be produced by the motors
on the omni wheels, T = [τ1 τ2 τ3]T, as follows:τ1τ2
τ3

 =


2r
3 0 −r

3d
−r
3

−
√
3r

3
−r
3d

−r
3

√
3r
3

−r
3d


 cos(ϕ) sin(ϕ) 0
− sin(ϕ) cos(ϕ) 0

0 0 1

Gfx
Gfy
Gτz


(22)

The torques applied by the Dynamixel motors are controlled
by the Raspberry Pi computer through the U2D2 board,
which are both powered by the OpenCR board. We pro-
grammed both controllers on the robot in the C++ language
based on the Robot Operating System (ROS) platform.

B. Experimental Results

In our experiments, the three-wheeled omnidirectional
robot attempted to track the circular and bowtie reference
trajectories defined in Eq. (17) and (18) in the presence of
unknown disturbances arising from the friction force between
the omni wheels and the ground, as well as noise in the
output measurements. We compared the robot’s tracking
performance with both the classical and H∞-optimal con-
trollers. Snapshots of the robot’s trajectory over one full
cycle of the circular and bowtie reference trajectories for both
controllers are plotted using in MATLAB R© in Figs. 8a, 8b
and in Figs. 10a, 10b. As in the simulations, the H∞ con-
troller is able to attenuate the undesired effects of exogenous
inputs on the tracking performance of the robot, yielding
lower tracking errors than the classical controller. Figs. 9a
and 9b show that for the circular reference trajectory, the
H∞ controller reduces ||e||max

2 from 0.4 m for the classical
controller to 0.11 m, and reduces ||ė||max

2 from 0.24 m/s for
the classical controller to 0.13 m/s. Figs. 10a and 10b show
that for the bowtie reference trajectory, the H∞ controller
reduces ||e||max

2 from 0.23 m to 0.12 m, and ||ė||max
2 from

0.12 m/s to 0.07 m/s. These experimental results validate
the effectiveness of our proposed control approach. Video
recordings of the experiments are online at [23].

VI. CONCLUSION

In this paper, we proposed a full-state feedback H∞-
optimal controller based on the LMI framework for trajectory
tracking control by a three-wheeled omnidirectional robot.
First, a point-mass dynamic model of the robot represented
in state-space form was derived, and then the effects of
disturbances on its actuators and noise in its output measure-
ments were incorporated into the model. Along with the H∞-
optimal controller, we also described a classical full-state
feedback controller for this control problem. We simulated a
three-wheeled omnidirectional robot and implemented both
controllers in simulation for tracking of circular and bowtie
reference trajectories. Furthermore, we experimentally tested
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Fig. 8: Snapshots of the trajectory of a three-wheeled omni-
directional robot during an experiment in which it tracks the
circular reference trajectory using (a) the classical full-state
feedback controller; (b) the full-state feedback H∞-optimal
controller.

the classical and H∞ controllers on a real three-wheeled
omnidirectional robot for the same reference trajectories. We
compared the tracking performance of the robot with both
controllers in terms of the norms of the robot’s pose and twist
errors. The simulation and experimental results demonstrate
that our proposed full-state feedback H∞-optimal controller
can significantly improve the robot’s tracking performance
compared to the classical controller by attenuating the effect
of undesired exogenous inputs on the robot. Future work
includes the extension of this control approach to multiple
WMRs that must perform tasks such as flocking and target

Norm of pose error (m)

Norm of velocity error (m/s)

0.24 m/s

0.4 m

(a)
Norm of pose error (m)

Norm of velocity error (m/s)

0.13 m/s 0.11 m

(b)

Fig. 9: Norm of the pose and twist errors over 25 s of
an experiment in which the robot tracks the circular ref-
erence trajectory using (a) the classical full-state feedback
controller; (b) the full-state feedback H∞-optimal controller.

tracking while avoiding collisions with each other and with
objects in the environment. Moreover, the state-space model
of the closed-loop system can be modified to include weights
on the reference, output, disturbance, and noise signals,
which can be tuned to improve the robot’s trajectory tracking
performance.
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[5] D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A review of mo-
tion planning techniques for automated vehicles,” IEEE Transactions
on Intelligent Transportation Systems, vol. 17, no. 4, pp. 1135–1145,
2015.

[6] A. H. Reddy, B. Kalyan, and C. S. Murthy, “Mine rescue robot system–
a review,” Procedia Earth and Planetary Science, vol. 11, pp. 457–462,
2015.

[7] R. W. Brockett et al., “Asymptotic stability and feedback stabilization,”
Differential Geometric Control Theory, vol. 27, no. 1, pp. 181–191,
1983.
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[12] H. X. Araújo, A. G. Conceição, G. H. Oliveira, and J. Pitanga, “Model
predictive control based on LMIs applied to an omni-directional
mobile robot,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 8171–
8176, 2011.

[13] G. Rigatos and P. Siano, “An H-infinity feedback control approach to
autonomous robot navigation,” in IECON 2014-40th Annual Confer-
ence of the IEEE Industrial Electronics Society. IEEE, 2014, pp.
2689–2694.

[14] J. Vázquez and M. Velasco-Villa, “Path-tracking dynamic model
based control of an omnidirectional mobile robot,” IFAC Proceedings
Volumes, vol. 41, no. 2, pp. 5365–5370, 2008.

0.23 m
0.12 m/s

Norm of pose error (m)

Norm of velocity error (m/s)

(a)

0.12 m0.07 m/s

Norm of pose error (m)

Norm of velocity error (m/s)

(b)

Fig. 11: Norm of the pose and twist errors over 10 s
of an experiment in which the robot tracks the bowtie
reference trajectory using (a) the classical full-state feedback
controller; (b) the full-state feedback H∞-optimal controller.

[15] C. Ren, Y. Ding, X. Li, X. Zhu, and S. Ma, “Extended state observer
based robust friction compensation for tracking control of an omnidi-
rectional mobile robot,” Journal of Dynamic Systems, Measurement,
and Control, vol. 141, no. 10, 2019.

[16] C. Ren and S. Ma, “Trajectory tracking control of an omnidirectional
mobile robot with friction compensation,” in 2016 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2016, pp. 5361–5366.

[17] R. L. Williams, B. E. Carter, P. Gallina, and G. Rosati, “Dynamic
model with slip for wheeled omnidirectional robots,” IEEE Transac-
tions on Robotics and Automation, vol. 18, no. 3, pp. 285–293, 2002.

[18] C. Scherer, “Theory of robust control,” Delft University of Technology,
pp. 1–160, 2001.

[19] J.-J. E. Slotine, W. Li et al., Applied nonlinear control. Prentice Hall
Englewood Cliffs, NJ, 1991, vol. 199, no. 1.

[20] N. Sreedhar and S. Rao, “Stability of a system of linear differential
equations,” IEEE Transactions on Automatic Control, vol. 13, no. 3,
pp. 307–308, 1968.

[21] J. Lofberg, “YALMIP: a toolbox for modeling and optimization in
MATLAB,” in 2004 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2004, pp. 284–289.

[22] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization
over symmetric cones,” Optimization Methods and Software, vol. 11,
no. 1-4, pp. 625–653, 1999.

[23] “H-infinity optimal tracking controller for three-wheeled omnidirec-
tional mobile robots with uncertain dynamics,” Autonomous Collec-
tive Systems Laboratory Youtube channel, https://www.youtube.com/
watch?v=vgaU4Yk6X5s.

7594


