
Uncertainty-aware Self-supervised 3D Data Association

Jianren Wang1, Siddharth Ancha1, Yi-Ting Chen2 and David Held1

Abstract— 3D object trackers usually require training on
large amounts of annotated data that is expensive and time-
consuming to collect. Instead, we propose leveraging vast
unlabeled datasets by self-supervised metric learning of 3D
object trackers, with a focus on data association. Large scale
annotations for unlabeled data are cheaply obtained by au-
tomatic object detection and association across frames. We
show how these self-supervised annotations can be used in
a principled manner to learn point-cloud embeddings that
are effective for 3D tracking. We estimate and incorporate
uncertainty in self-supervised tracking to learn more robust
embeddings, without needing any labeled data. We design em-
beddings to differentiate objects across frames, and learn them
using uncertainty-aware self-supervised training. Finally, we
demonstrate their ability to perform accurate data association
across frames, towards effective and accurate 3D tracking.
Project videos and code are at https://jianrenw.github.
io/Self-Supervised-3D-Data-Association/.

I. INTRODUCTION

3D object tracking is the problem of detecting and as-
sociating objects in multiple frames of a sequence of 3D
point cloud data. For example, autonomous vehicles must
continually sense their environment via sensors such as
LIDARs. These sensors generate sequences of 3D data, from
which the vehicle must estimate the locations of objects in
the environment surrounding the vehicle. Further, in order
to safely navigate in its surroundings, perception algorithms
must be able to track dynamic objects, such as cars, vehicles
and pedestrians. 3D tracking involves simultaneously detect-
ing objects in the current frame, as well as associating them
with objects seen in previous frames.

State-of-the-art tracking algorithms employ convolutional
neural networks for 3D tracking [1], [2]. However, a major
problem with such approaches is that they require vast
amounts of labeled data because they are trained using
supervised learning. Obtaining large-scale, human-annotated
labeled data, which includes bounding box annotations and
associations across frames, can be expensive and time-
intensive. On the contrary, vast amounts of unlabeled data
is cheaply available. For example, LIDAR sensors fitted on
vehicles continuously collect and store data streams without
requiring any human processing.

In this work, we propose to leverage unlabeled data via
self-supervised learning of 3D trackers without the need
for any labeled data. The idea is to first run a learned
object detector on large unlabeled datasets in an automated

1Jianren Wang, Siddharth Ancha, David Held are with the Robotics Insti-
tute, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213,
USA jianrenw, sancha, dheld@andrew.cmu.edu

2Yi-Ting Chen is with the Honda Research Institute, 375 Ravendale Dr,
Mountain View, CA 94043, USA ychen@honda-ri.com

Fig. 1: Example of a triplet during self-supervised training.
We use a fully automatic pipeline to generate training pairs
and learn in an uncertainty-aware manner from unlabeled
data.

fashion, as well as to automatically associate detections
across frames. These labels are then used as “pseudo-ground
truth” in a supervised way to learn 3D embeddings of objects.
Since detection and association is automated, it is trivial
to obtain large quantities of pseudo-ground truth labels on
unlabeled datasets. This data can then be used to train deep
neural network embeddings suitable for data association for
3D tracking.

We demonstrate a technique to learn 3D embeddings
of point clouds of objects that capture the 3D geometric
properties unique to that object instance. These embeddings
are designed to be similar for detections of the same object
observed at different time instants (different frames) but
dissimilar for detections of different objects. The embeddings
can then be used to perform associations of bounding boxes
for 3D tracking – detections with similar embeddings can
be associated with each other as they likely come from
the same object. We show that self-supervised learning on
unlabeled data can learn 3D embeddings that are effective for
associating bounding boxes across frames while performing
3D tracking.

A potential limitation with learning using labels gener-
ated by automated techniques is that these labels are not
necessarily reliable. The detection system or the automated
association algorithm may produce mistakes, and learning
on these mistakes may lead to inferior 3D embeddings. We
propose to explicitly tackle this problem by incorporating
uncertainty into self-supervised learning. Specifically, we
propose a method for estimating how uncertain the self-
supervised association algorithm is during training. We then
weight the supervised loss using this uncertainty – if the un-
certainty on a training example is high, its contribution to the
loss will be small, and vice versa. This helps avoid learning
a poor embedding due to incorrectly labeled examples. We
show that incorporating uncertainty estimates during self-

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 8125

supervised learning helps learn more robust 3D embeddings
that produce superior tracking performance.

We summarize our contributions as follows:
• We propose using self-supervised learning on large

unlabeled datasets to learn 3D embeddings for object
tracking, without any labeled data.

• We show that self-supervised 3D embeddings can ef-
fectively be used to associate objects across frames

• We show that it is possible to leverage uncertainty
estimates during self-supervised tracking to learn more
robust 3D embeddings.

II. RELATED WORK

A. Self-Supervised Learning

One form of self-supervised learning deals with predicting
a subset of data from another subset. Prior works perform
such self-supervised learning via applying transformations
for data augmentation [3], predicting transformations that
were applied such as rotation [4], predicting relationship
between patches of an image [5], [6] or frames of a video [7],
[8], colorization [9], [10], autoencoding and generating im-
ages [11], [12].

Another form of self-supervised learning employs self-
generated labels and trains on them. Our method falls in
this latter category [13], [14]. The most closely related work
is that of Wang et al. [15] which tracks objects in unlabeled
videos and trains using a triplet loss and hard negative
mining. However, this work considers visual tracking in 2D
while we consider self-supervised 3D tracking. Additionally,
it randomly samples from millions of class-agnostic patches
for negative examples. However, we only use detections
of the same object class obtained from an object detector;
negative examples from such detections are likely to be
harder and more useful for learning.

B. 3D Embeddings for Tracking

Prior work has used neural network embeddings from
point clouds for tracking. Zhang et al. [16] uses a combina-
tion of 2D image embeddings and point cloud embeddings,
via a min-cost flow graph technique. Giancola et al. [17]
use 3D point cloud embeddings in a single-object tracking
setting. Zarzar et al. [18] builds on top of Giancola et
al. [17] using 2D birds-eye view for proposal generation and
3D PointNet based shape-completion encoder for matching.
However, in these approaches, training is fully supervised.
In contrast, we train in a self-supervised manner using an
uncertainty-aware loss, which enables our method to scale
to large amounts of unlabeled training data.

III. APPROACH

A. Overview

We propose using self-supervision for 3D data associa-
tion to leverage large amounts of unlabeled data. In this
section, we describe our method, which consists of running a
detector on unlabeled data, performing self-supervised data
associations, and finally learning a point cloud embedding

using triplet loss [19], such that embeddings are similar
for detections of the same object in different views, but
are dissimilar for detections of different objects. We also
describe how we use uncertainty-aware loss weighting and
hard negative mining to obtain a more robust embedding.

B. Obtaining Detections by Pre-trained Detector

We run a pre-trained 3D object detector on unlabeled
data to obtain detections; in this work, we consider 3D
tracking of cars in urban driving scenarios. We assume that
we have an unlabeled dataset U that consists of sequences
of point clouds, such as those obtained from LIDAR sensors
mounted on cars as they drive in urban environments. The
pre-trained detector estimates the locations of 3D bounding
boxes around cars in each frame of each sequence in U .
Although some of these detections may be incorrect, we
treat these estimates as pseudo-ground truth labels for the
purposes of self-supervision.

C. Obtaining Associations by Self-Supervision

To obtain tracks of individual cars, we need to associate
3D bounding boxes of cars across multiple frames such that
all associated boxes correspond to a unique car instance.
We do not have access to ground truth associations in our
unlabled dataset U . Instead, we adopt a Kalman Filter based
method for multi-object association as proposed by Chiu et
al. [20]. Each object’s state is modeled by a tuple of 11 vari-
ables: st = (x, y, z, a, l, w, h, vx, vy, vz, va), where (x, y, z),
represents the 3D object center position, a represents the ori-
entation of the object’s bounding box, (l, w, h) represent the
length, width, and height of the object’s bounding box, and
(vx, vy, vz, va) represent the linear and angular velocity. The
pre-trained object detector models each object’s observation
with a tuple of 7 variables: ot = (x, y, z, a, l, w, h).

Using the Kalman filter, we can associate bounding boxes
in consecutive frames based on the distance between each
pair of predicted object state and observed object state.
Specifically, we adopted Mahalanobis distance ([21], [20]) to
measure the distance between predictions and detections, and
employ a greedy algorithm with an upper bound threshold
value to solve this problem. This is common practice in the
tracking-by-detection approach of multi-object tracking [22].
Using the Mahalanobis distance relies on the assumption
that objects in consecutive frames don’t move very far,
and prediction-detection pairs that have small Mahalanobis
distance are likely to be of the same object. Although this
assumption will sometimes be incorrect, we will show how
we can use uncertainty to make our method more robust to
errors in association.

D. Metric Learning via Triplet Loss

Given a set of estimated detection and associations, we
wish to learn a 3D embedding for an arbitrary point cloud
inside a bounding box. We define two properties that the
embedding must satisfy:

1) Embeddings of bounding boxes of the same object
across frames must be similar.

8126

Fig. 2: Left: Triplet example during self-supervised training. For any anchor detection in frame t, we select the hardest
negative example from the same frame whose embedding produces the largest cosine similarity with the anchor detection. A
positive example is picked from a detection in another frame that is associated with the same track as the anchor detection.
A confidence of association is estimated and used to weight this example during self-supervised training. We train the
embedding network to maximize the agreement between associated pairs. Right: At test time, self-supervised embeddings
are extracted from each candidate detection in a frame. We use cosine similarity of embeddings extracted from each pair of
objects to represent their appearance similarity, which is further used to perform accurate data association across frames.

2) Embeddings of bounding boxes of different objects
across frames must be dissimilar.

The similarity can be measured using cosine distance of the
embedding i.e.

cos(e1, e2) =
e1 · e2

||e1|| · ||e2||
(1)

where e1, e2 are 3D embeddings of two different point
clouds. Such embeddings will be used to associate detected
3D bounding boxes at test time for 3D tracking.

In order to learn such an embedding, we use the triplet
loss. This is defined as follows. Let eta be the embedding of
an ‘anchor’ detection in frame t, and et+kp be the embedding
of the same object in another frame t + k. Let etn be the
embedding of a different object in frame t (why we choose
the different object from the same frame t will be discussed
shortly). We shall refer to (eta, e

t+k
p) as a positive pair and

(eta, e
t
n) a negative pair. Then the triplet loss is defined as:

L(eta, e
t+k
p , etn) = max

(
cos(eta, e

t
n)−cos(eta, e

t+k
p)+M, 0

)
(2)

where M is a margin hyperparameter (we found M = 0.2
to work well in practice). The triplet loss is zero when the
cosine similarity between the positive pair is at least M
more than the cosine similarity between the negative pair.
The triplet loss encourages embeddings of positive pairs to
be more similar to each other than embeddings of negative
pairs.

An illustration of positive and negative pairs in the triplet
loss of our self-supervised learning framework is shown in
Figure 1. Given our estimated tracklets (i.e. detections and
correspondences), we pick a tracklet at random and then we
pick a pair of frames at random. Consider the frames at times
t and t + k. We use the detections of the tracked object in
these frames as the positive pair in the triplet loss (shown in
red in Figure 1). It is possible that this estimated association
is incorrect and they do not correspond to the same object;
we will describe how these errors can be overcome by
incorporating an uncertainty-aware loss function.

For the negative pair, we pick any other detection from
frame t (shown in blue in Figure 1). Since this detection is
in the same frame as the anchor detection (also from frame t),
it is guaranteed to be a different object. We shall treat this as
the negative pair. Next, we crop and align point clouds inside
the positive and negative pairs and train a 3D embedding
using the triplet loss, as defined above.

E. Incorporating Uncertainty

One of the most prominent challenges in training on labels
generated via self-supervision is that the self-supervised data
associations are not guaranteed to be accurate. Training on
such erroneous labels may result in learning a 3D embedding
that doesn’t properly distinguish between the same object
and different objects, reducing downstream tracking perfor-
mance.

Our solution is to leverage uncertainty in the self-
supervised association labels. For examples with high un-
certainty, we discount the contribution of the corresponding
example during training. This is intended to reduce the effect
of incorrect labels in self-supervised training.

1) Estimating Association Uncertainty: We propose a
method for estimating the amount of uncertainty in the
estimated data associations during training time. Given a set
of previous tracks {T t−1i } in frame t − 1, and detections
{Dt

i} in frame t, we need to first associate each track with
a detection. We predict the future state µ̂ti for each track
T t−1i in frame t using the Kalman filter, as well as the pre-
diction uncertainty Σti. Then the Mahalanobis distance mij

is computed for every possible association pair (T t−1i , Dt
j).

The greedy algorithm defined in [20] is used for performing
data association. The algorithm is illustrated in Figure 3 and
proceeds as follows. First, the track T t−1i that corresponds to
the smallest Mahalanobis distance mij is greedily associated
with the respective detection Dt

j . Then, all pairs mkl with
k = i or l = j are discarded, since T t−1i and Dt

j have
already been associated to each other; we assume that each
track can be associated to at most one detection, and vice
versa. The greedy algorithm proceeds similarly until all

8127

Fig. 3: Illustration of estimating association uncertainty.
We look at the Mahalanobis distances between all possible
pairwise associations, greedily assign detections to tracks
based on the lowest distance, and compute uncertainty by
comparing with the lowest un-associated distance if we were
to choose a different track or detection.

tracks or all detections have been associated. Once a given
association (T t−1i , Dt

j) has been performed, we can define
the confidence AC of the associated pair as following:

AC = 1−exp

(
−min

(mink 6=jmik

mij + ε
,

mink 6=imkj

mij + ε

))
(3)

The quantity mij denotes the Mahalanobis distance between
the prediction of the associated track T t−1i and detection Dt

j

(red cell in Figure 3). The ratio mink 6=j mik

mij
captures the confi-

dence of associating track T t−1i to detection Dt
j as opposed

to associating with another detection Dt
k. In other words,

the quantity mink 6=jmik denotes the smallest distance of
associating the track T t−1i with another candidate detection
in frame t that is not Dt

j (yellow square with a circle in
Figure 3). Thus, we are comparing the scores of associating
track i with detection j compared with associating track i
with any other detection k. The ratio mink 6=j mik

mij
will be

large if the distance between i and j is much closer than
the distance between i and k. In such a case, one would be
more confident that the association between i and j is correct,
and our association confidence AC will be close to 1. On
the other hand, if the distance between i and j is similar to
or greater than the distance between i and k, then the ratio
mink 6=j mik

mij
will be low and the association confidence AC

will be smaller.
Similarly, the ratio mink 6=imkj

mij
captures the confidence of

associating detection Dt
j with track T t−1i as opposed to asso-

ciating with another track T t−1k . In order to be conservative,
we consider the minimum of these two confidences to be the
overall confidence. In order to normalize this value to lie in
[0, 1], we apply the monotonic operator f(x) = 1−exp(−x),
that maps [0,∞) to [0, 1]. To avoid division by 0, we add
ε = 10−4 to mij in practice .

The above described how we compute an association con-
fidence between successive frames; we now describe how we
compute such a confidence for more distant frames. Consider
predicted detections in frames t and t+k that are arbitrarily

far apart in time. Our confidence of these detections being
correctly associated depends on how confident we are about
the correctness of individual associations between successive
frames (t, t + 1), ..., (t + k − 1, t + k). This is because
if we are unsure about the association at any intermediate
step, then our confidence of association across the k frames
should reduce. Hence, we define the cumulative association
confidence (CAC) across frames t and t+ k to be

CAC(t, t+ k) = Πt+k
i=tAC(t) (4)

where AC(t) is the association confidence between frames
t and t+ 1, defined as in equation 3.

2) Uncertainty Weighted Triplet Loss: Consider a triplet
of embeddings (eta, e

t+k
p , etn) from frames t and t+ k. Since

the negative pair (eta, e
t
n) comes from the same frame, we can

be reasonably sure that they correspond to different objects.
However, there is uncertainty in association of the positive
pair (eta, e

t+k
p) across k frames. In particular, we estimated

this certainty to be CAC(t, t + k) ∈ [0, 1], as shown in
Equation 4. While training, we weight the triplet loss of each
example by its association certainty:

Lweighted(e
t
a, e

t+k
p , etn) = L(eta, e

t+k
p , etn)× CAC(t, t+ k)

(5)
The total loss is given by the sum of losses from Equa-
tion 5 for each example. Thus, for examples with a lower
confidence of association, such examples will have a lower
contribution to the total loss. Hence, the examples with
highest certainty will end up contributing most to the loss.
This is illustrated in Figure 2 (left) where we compute the
confidence of a positive pair and use that to weight the triplet
loss for that training example.

F. Hard Negative Example Mining

Hard negative example mining [23], [24] has shown to
help improve accuracy and speed up training for object
detection systems. In this technique, the hardest negative
examples are first mined and then used to compute the
optimization loss.

We use hard negative mining to select the negative ex-
ample etn in our triplet loss. Specifically, given an anchor
embedding eta in frame t, we compute the cosine similarity
between eta and the embedding et of every other detection in
frame t. We choose the detection that has the highest cosine
similarity with eta since that is the hardest negative example:

etn = arg max
et

{
cos(eta, e

t)
}

(6)

This is illustrated in Figure 2 (left), in frame t. Multiple
possible negative pairs in frame t are shown; the one whose
embedding has the highest similarity with the anchor em-
bedding is chosen for training. The algorithm is described in
detail in Algorithm 1.

Note that our method does not require any annotated
bounding box labels or association labels for the dataset U on
which the embedding is learned. Instead, we use a pre-trained
detector to predict bounding boxes and we use a Kalman
filter to estimate associations. Due to potentially erroneous

8128

associations, we use uncertainty weighting to downweight
the loss of uncertain examples. Thus, the embedding can
be learned on a large unlabeled dataset; in this sense, we
refer to our training procedure for the embedding as “self-
supervised,” despite the fact that the detector itself was
trained in a supervised manner.

Algorithm 1: Self-supervised 3D Data Association
initialization: Embedding Function (fθ),
Estimated Tracks {T}Ki=1;
while not converged do

sample a track T ∼ {T}Ki=1

sample two detections Dt
a, D

t+k
p ∼ T

compute association uncertainty between
Dt
a, D

t+k
p using Eqn. 4

Dt
n ← Hard Negative Mining (Dt

a) using Eqn. 6
Train fθ with loss defined by Eqn. 5

end

IV. EXPERIMENTS

In this section, we evaluate our approach on two tasks:
single object tracking on the KITTI [25] dataset, and multi-
object tracking on the NuScenes [26] dataset. We also verify
the effectiveness of each component of our system by eval-
uating our proposed uncertainty estimation and performing
ablation analysis.

A. Self-supervised training of appearance embeddings

a) Datasets: For self-supervised training, we use the
NuScenes [26] dataset. To obtain estimated detections, we
evaluate the CBGS car detector [27] on all frames in
NuScenes. For evaluation, we use the KITTI [25] dataset
in a single object tracking framework as described in the
next section.

b) Training Details: During training, we generate
triplets of training detections as our training instances, as
described in Section III. The cropped point clouds are
centered and aligned using the bounding box’s location and
pose. We use the PointNet [28] architecture for extracting
an embedding from a point cloud. We use the global feature
of the PointNet as the learnable embedding, whose dimen-
sionality is set to 1024. We use the Adam optimizer [29] for
training the network with a batch size of 64 and a learning
rate of 2 × 10−5. We train the network for 100 epochs and
report performance on the test set.

B. Evaluation of Single Object Tracking

We evaluate the learned self-supervised 3D embeddings
in a single-object tracking framework, similar to [17], [18],
where only one object is tracked at a time.

We adapt the training set of the KITTI tracking
dataset [25] for single object tracking, similar to [17], [18].
We use the same test set as [17] i.e. scenes 19-20 in KITTI.
Tracklets are generated for each instance of a car appearing
in each scene. Each tracklet consists of frames in a scene in

which a given car appears. Only the first frame is provided
with the ground truth 3D bounding box.

We wish to evaluate the quality of the learned 3D em-
beddings for the association task. Thus, for our evaluation,
we assume that ground truth detections of all cars in the
scene are provided. This allows us to avoid confounding
errors between detection and data association and allows
us to evaluate the improvements in data association in an
isolated manner.

However, we additionally wish to evaluate how robust the
learned embedding is to noisy detections. Thus, we perform
a separate evaluation in which we add random noise to the
location, size and orientation of the ground-truth detections.
The location and size noise are uniformly sample from±10%
of the bounding box size, while orientation noise is uniformly
sample from ±5◦.

As is typical in single-object tracking, we assume that
the ground-truth bounding box of the object to be tracked
is provided in the first frame of the point cloud sequence.
We use this bounding box as the anchor to be matched to in
subsequent frames. In the t-th frame, the embedding for each
of the candidate ground truth bounding boxes is computed.
The candidate whose embedding has the highest cosine
similarity score with the anchor embedding is selected. This
process is illustrated in Figure 2 (right). Note that this is
essentially a classification task: exactly one of the candidate
bounding boxes corresponds to the correct car being tracked.
We thus evaluate the embedding using the classification
accuracy of associating the correct bounding box. A 3D
embedding that is able to discriminate between the same
object in future frames versus different objects will produce
a high classification score.

a) Results: Table I shows the classification accuracy of
association for various approaches to learning an embedding.
We evaluate two different versions of our method:
• Ours (Weakly supervised): First, we assume that ground

truth detections are available during training (GT Detec-
tion), but association labels are not available and must
be self-supervised (SS Association) using our method,
along with uncertainty-weighting and hard negative
mining. This corresponds to row 2 of Table I.

• Ours (Self supervised): Second, we assume that neither
ground truth detections not ground truth associations
are available on the dataset on which the embedding
is learned. In this setting, detections must be estimated
using pre-trained detector (Est. Detection) and associ-
ations are self-supervised (SS Association) using our
method with uncertainty-weighting and hard negative
mining. This corresponds to row 3 in Table I.

We compare our results to the following baselines:
• ShapeNet: This is the global feature of PointNet trained

to classify shapes in ShapeNet [28], including cars.
• ShapeCompletion3DTracking [17]: This embedding

was trained on KITTI [25] in a fully supervised manner
with ground-truth detections and ground-truth associa-
tions using a combination of reconstruction loss and
cosine similarity loss.

8129

Method Type Training Scheme Accuracy without Noise (%) Accuracy with Noise (%)
Oracle (Fully supervised) Ours (GT Detection + GT Association) 42.9 39.4

Ours (Weakly supervised) Ours (GT Detection + SS Association) 42.7 38.9
Ours (Self supervised) Ours (Est. Detection + SS Association) 42.4 39.5

Baseline (Fully supervised) ShapeCompletion3DTracking 42.3 36.8
Baseline ShapeNet 33.7 32.0
Baseline Randomly Initialized Network 38.8 38.4
Baseline Random classification 25.3 25.3

TABLE I: Main Results. GT: ground truth, Est.: estimation, SS : self-supervised. Oracle performance is using ground truth
detections and ground-truth associations during self-supervised training. Accuracy is shown for evaluation without and with
noise added to candidate ground-truth detections during test time.

Self-Sup. Training Scheme Uncertainty Hard Negative Mining Accuracy (%)

Weakly supervised:
GT Detection + SS Tracking

7 7 40.3
3 7 41.9
7 3 41.4
3 3 42.7

Self-supervised:
Est. Detection + SS Tracking

7 7 39.7
3 7 41.4
7 3 41.3
3 3 42.4

TABLE II: Ablation experiments removing one component of our method at a time. Table shows that incorporating
uncertainty, hard negative example mining, gives the best performance in both the self-supervised training schemes.

• Randomly Initialized Network Embedding: As a sanity
check, we randomly initialize the weights of the Point-
Net architecture.

• Random Classification: As another sanity check, we
randomly pick one of the candidate ground-truth de-
tection in frame t. An accuracy of about 25% suggests
that there are four candidates on an average per frame.

As shown in Table I, our method, trained on unlabeled
data, outperforms all of these baselines and is especially
robust to detection noise. The method of ShapeComple-
tion3DTracking [17] has performance near to that of our
method; however their approach was trained on fully su-
pervised data with ground-truth detections and ground-truth
data associations. On the other hand, our method (row 3)
was trained on unlabeled data with estimated detections and
estimated data associations, using uncertainty-weighting and
hard negative mining. We will show below that these are
crucial components for our method.

It should be noted that ShapeCompletion3DTracking [17]
was trained on KITTI [25], whereas our method was trained
on NuScenes [26] so these results are illustrative but not
directly comparable. Regardless, the purpose of our work is
to demonstrate that we can successfully train an embedding
without requiring bounding box or association labels, which
we have demonstrated.

To provide an upper bound on our performance, we also
compare against using full supervision, i.e. training with
ground-truth detections and ground-truth associations avail-
able in the NuScenes [26] dataset. This is the ideal case for
self-supervised learning and achieves the oracle performance
of our method. As shown in the table, the performance of
our proposed method is very close to this oracle. However,
because our method can be used to train an embedding on
an unlabeled dataset, we could potentially obtain even better

performance than this Oracle given a larger unlabeled dataset
on which to train our method.

b) Ablations: We perform an ablation analysis to quan-
tify the performance of each component of our system.
The results are shown in Table II. We perform ablations
under each training regime: (1) Weakly supervised, using
ground truth detections + self-supervised tracking, and (2)
Self supervised, using estimated detections + self-supervised
tracking. In both cases, we remove one component of our
training procedure at a time. During evaluation, we do not
add any noise to candidate ground truth bounding boxes. We
note that either not incorporating uncertainty, or removing
hard negative mining, consistently reduces performance. This
shows that both these components are useful for our method.

c) Qualitative Analysis: In Figure 4(a), we show exam-
ples where the embedding obtained by estimated detection
and self-supervised association selects the correct detection
box in frame t, whereas the baseline ShapeNet embedding
fails. The first column shows the exemplar anchor box. This
denotes the car that is to be tracked. The middle column
shows the bounding box of the same object in frame t that
is selected by our method. The right column shows bounding
boxes of distractor objects in frame t that the ShapeNet
embedding deems to be more similar to the tracked object.
These examples show that the embedding learned using a
triplet loss via self-supervision is able to correctly match
point clouds of the same object even if the distractor object’s
point cloud is only subtly different (Figure 4(a) rows 1 and
2).

C. Evaluation of Multi-object Tracking

a) Combining 3D appearance with motion and detec-
tion scores: We use the learned 3D embedding to improve
multi-object tracking (MOT), which aims at performing data

8130

(a)

Tracked Object Ours ShapeNet

(b)

Fig. 4: (a): Qualitative Analysis. Left: First frame of the tracklet, which defines the object to be tracked, Middle: Bounding
box selected by our embedding, trained using self-supervised detections and self-supervised tracking, while incorporating
uncertainty and hard negative mining, Right: bounding box selected by the baseline ShapeNet embedding. Boxes in the
middle and right column are candidates from the same frame. In these examples, our embedding is able to select the correct
bounding box, whereas the ShapeNet embedding selects another distractor object. (b): Evaluating uncertainty estimation.
Frequency of positive and negative association pairs as a function confidence. Correct association are correlated with high
confidence and incorrect detections are correlated with low confidence.

associating for multiple targets. The dominant strategy to
this problem, i.e., tracking-by-detection breaks MOT into
two steps: 1) the detection step, where detections are first
obtained by running an object detector on each frame (see
Sec. III-B). These detections are inputs to an MOT algorithm.
2) the association step, where detections in new frames are
assigned to the existing trajectories. The trajectories may be
created and terminated during the tracking process, which are
the outputs of the MOT association algorithm. For example,
Chiu et. al. [20] use the Mahalobis distance from a Kalman
filter as a basis for association; the detection pairs that
have a smaller Mahalanobis distance get associated, based
on a greedy algorithm that achieves state-of-the-art tracking
performance. We propose to improve the association by
combining the Mahalanobis distance with our self-supervised
3D embedding. We also show benefit by integrating the
detection scores into the association metric. For a track Ti
that has been tracked until frame t, the Kalman filter forecasts
a bounding box D̂t+1

i in the next frame (t + 1). Then, the
overall association score Aij between D̂t+1

i and a candidate
detection Dt+1

j in the next frame is expressed as a linear
combination of m, a, d, logm, log a, log d, where m is the
Mahalanobis distance between D̂t+1

i and Dt+1
j , a is the

cosine between the 3D embeddings of D̂t+1
i and Dt+1

j , and
d is the detection score of and Dt+1

j . The coefficients of
the linear function are estimated via logistic regression which
classifies whether Dt+1

j belongs to the track Ti. The logistic
regression only needs a very small supervised dataset since
the dimensionality of the feature space (only 6 features) is
relatively small. At test time, we use the greedy algorithm
for association as specified in [20], where we use the logistic
output Aij instead of only using the Mahalanobis score as
in past work.

b) Dataset and setting: We adopt the PanoNet3D [30]
detection results and train a separate 3D embedding for
each category using 90 scenes from the NuScenes [26]
validation set. We estimate the logistic function parameters
using 30 scenes from the NuScenes [26] validation set.
We evaluate the performance of multi-object tracking on

the remaining 30 scenes from the NuScenes [26] validation
set. We follow the evaluation procedure of the NuScenes
Tracking Challenge [26] and report the Average Multi-Object
Tracking Accuracy (AMOTA) [31] as the main evaluation
metric.

c) Results: The results for multi-object tracking are
shown in Table III. We use the following notation:
• Motion: using only the Mahalanobis distance in the

association score.
• Motion + Detection Score: using the Mahalanobis dis-

tance and the detection confidence as the association
score.

• Motion + Detection Score + Appearance: using the
Mahalanobis distance, detection confidence, and ap-
pearance similarity based on our self-supervised 3D
embeddings as the association score.

Table III shows that using our self-supervised 3D embed-
dings consistently improves the performance of multi-object
tracking, across almost all object classes.

D. Evaluation of Uncertainty Estimation

We also verify the effectiveness of our proposed method
for estimating association uncertainty. A useful association
uncertainty metric is one that is uncertain for incorrect
association pairs (association pairs with different ground
truth identity), but is confident for correct association pairs
(association pairs with same ground truth identity). We eval-
uate our uncertainty by observing how correlated it is with
the correctness of associations. Figure 4(b) shows histograms
of the frequencies of association pairs in the nuScenes
validation set, with respect to their estimated confidence.
We can see that correct association are correlated with high
confidence (low uncertainty) and wrong associations are cor-
related with low confidence (high uncertainty). In the ground
truth detection and self-supervised association regime, the
mean confidence for correct associations is 0.80, whereas it
is only 0.39 for incorrect associations (Figure 4 (b, left)).
In the estimated detection and self-supervised association
regime, the mean confidence for correct associations is 0.40,

8131

Method Bicycle Bus Car Motorcycle Pedestrian Trailer Truck Overall
Motion 30.3 72.8 74.5 56.4 75.6 45.3 54.2 58.4

Motion + Detection Score 29.3 74.8 74.3 56.5 75.9 45.9 54.7 58.8
Motion + Detection Score + Appearance 32.4 75.0 75.0 57.1 76.4 45.3 54.9 59.4

TABLE III: AMOTA scores for Multi-object tracking based on Probabilistic Tracking [20] with different association scores.

whereas it is only 0.16 for incorrect associations (Figure 4
(b, right)). The correlation between our estimated uncertainty
and the correctness of association indicates that it is useful
for suppressing the contribution of incorrect associations
during self-supervised training.

V. CONCLUSION

In conclusion, we propose a self-supervised representation
learning method for 3D tracking. We show that by incorpo-
rating tracking uncertainty and hard negative mining, our
learned point-cloud embeddings are effective for 3D associ-
ation and tracking without using any human annotation, for
both single-object and multi-object tracking. We hope that
our work points towards moving away from spending exces-
sive efforts annotating labeled data and instead redirecting
them to self-supervised learning on large unlabeled datasets.

VI. ACKNOWLEDGEMENTS

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. IIS-1849154, by
the United States Air Force and DARPA under Contract No.
FA8750-18-C-0092, and by the Honda Research Institute
USA.

REFERENCES

[1] W. Luo, B. Yang, and R. Urtasun, “Fast and furious: Real time
end-to-end 3d detection, tracking and motion forecasting with a
single convolutional net,” in Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, 2018, pp. 3569–3577.

[2] B. Yang, W. Luo, and R. Urtasun, “Pixor: Real-time 3d object
detection from point clouds,” in Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, 2018, pp. 7652–7660.

[3] A. Dosovitskiy, P. Fischer, J. T. Springenberg, M. Riedmiller, and
T. Brox, “Discriminative unsupervised feature learning with exemplar
convolutional neural networks,” IEEE transactions on pattern analysis
and machine intelligence, vol. 38, no. 9, pp. 1734–1747, 2015.

[4] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised repre-
sentation learning by predicting image rotations,” arXiv preprint
arXiv:1803.07728, 2018.

[5] M. Noroozi and P. Favaro, “Unsupervised learning of visual repre-
sentations by solving jigsaw puzzles,” in European Conference on
Computer Vision. Springer, 2016, pp. 69–84.

[6] M. Noroozi, H. Pirsiavash, and P. Favaro, “Representation learning
by learning to count,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 5898–5906.

[7] B. Fernando, H. Bilen, E. Gavves, and S. Gould, “Self-supervised
video representation learning with odd-one-out networks,” in Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 3636–3645.

[8] D. Wei, J. J. Lim, A. Zisserman, and W. T. Freeman, “Learning and
using the arrow of time,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 8052–8060.

[9] R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,”
in European conference on computer vision. Springer, 2016, pp.
649–666.

[10] C. Vondrick, A. Shrivastava, A. Fathi, S. Guadarrama, and K. Murphy,
“Tracking emerges by colorizing videos,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 391–
408.

[11] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros,
“Context encoders: Feature learning by inpainting,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2016, pp. 2536–2544.

[12] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature learn-
ing,” arXiv preprint arXiv:1605.09782, 2016.

[13] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H.
Torr, “Fully-convolutional siamese networks for object tracking,” in
European conference on computer vision. Springer, 2016, pp. 850–
865.

[14] X. Dong and J. Shen, “Triplet loss in siamese network for object
tracking,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 459–474.

[15] X. Wang and A. Gupta, “Unsupervised learning of visual repre-
sentations using videos,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 2794–2802.

[16] W. Zhang, H. Zhou, S. Sun, Z. Wang, J. Shi, and C. C. Loy, “Robust
multi-modality multi-object tracking,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 2365–2374.

[17] S. Giancola, J. Zarzar, and B. Ghanem, “Leveraging shape completion
for 3d siamese tracking,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 1359–1368.

[18] J. Zarzar, S. Giancola, and B. Ghanem, “Efficient tracking pro-
posals using 2d-3d siamese networks on lidar,” arXiv preprint
arXiv:1903.10168, 2019.

[19] G. Chechik, V. Sharma, U. Shalit, and S. Bengio, “Large scale online
learning of image similarity through ranking,” Journal of Machine
Learning Research, vol. 11, no. Mar, pp. 1109–1135, 2010.

[20] H.-k. Chiu, A. Prioletti, J. Li, and J. Bohg, “Probabilistic 3d
multi-object tracking for autonomous driving,” arXiv preprint
arXiv:2001.05673, 2020.

[21] P. C. Mahalanobis, “On the generalized distance in statistics.” Na-
tional Institute of Science of India, 1936.

[22] L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler,
“MOTChallenge 2015: Towards a benchmark for multi-target
tracking,” arXiv:1504.01942 [cs], Apr. 2015, arXiv: 1504.01942.
[Online]. Available: http://arxiv.org/abs/1504.01942

[23] A. Shrivastava, A. Gupta, and R. Girshick, “Training region-based
object detectors with online hard example mining,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2016, pp. 761–769.

[24] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part-based models,”
IEEE transactions on pattern analysis and machine intelligence,
vol. 32, no. 9, pp. 1627–1645, 2009.

[25] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[26] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr-
ishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal
dataset for autonomous driving,” arXiv preprint arXiv:1903.11027,
2019.

[27] B. Zhu, Z. Jiang, X. Zhou, Z. Li, and G. Yu, “Class-balanced grouping
and sampling for point cloud 3d object detection,” arXiv preprint
arXiv:1908.09492, 2019.

[28] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 652–660.

[29] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[30] X. Chen, “Combining semantic and geometric understanding for
modern visual recognition tasks,” Master’s thesis, Pittsburgh, PA, April
2020.

[31] X. Weng, J. Wang, D. Held, and K. Kitani, “3D Multi-Object Tracking:
A Baseline and New Evaluation Metrics,” IROS, 2020.

8132

