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Abstract— A hierarchical algorithm involving two-layer
optimization-based control policies with varying degrees of
abstraction is proposed, including upper layer task scheduling
and lower layer local path planning. A scenario with two robot
arms performing cooperative pick-and-place tasks for moving
objects is specifically addressed. The main focus of the paper lies
on the bottom layer of the hierarchical control scheme, more
precisely on the online generation of the synchronous robot
trajectories using distributed minimum-time model predictive
control (DMPC) algorithms. To this end, we introduce a
decelerating coupling term in the cost functions of the individual
distributed optimization algorithms to synchronize the overall
robot motion. The performance of the algorithm is illustrated by
extensive simulations with high-fidelity robot dynamic models.

I. INTRODUCTION

The flexible and scalable use of multiple robot manip-
ulators on packaging or production lines is continuously
increasing. Due to the constantly growing space requirements
and the high diversity of products and goods, more and
more robots are used which share a common workspace and
perform cooperative operations. Especially cooperative pick-
and-place tasks involving multiple objects are frequently
encountered. The aim is to optimally perform these repetitive
tasks by using robots in order to maximize the throughput
and reduce costs. One way of addressing this problem is
by splitting it into the tasks of scheduling and trajectory
planning. The research on robot task scheduling has been pri-
marily focused on minimizing the cycle time by determining
the optimal sequence of a set of unordered static task points
in the 3D space. Similar problems are mainly modeled as
an extension to the traveling salesman problem (TSP) and
rely on approximate methods like genetic algorithms (GA),
see [1]. In [2] a GA based method is introduced, which is
adapted to take into account the multiple solutions of the
inverse kinematics. [3] extends this idea to the case of a two-
robot work cell. Another idea involving two robots sharing a
common workspace is presented in [4]. Timed Petri nets and
the uniform cell decomposition approach are used to model
the robot task allocation and ensure collision-free operation.

The online point-to-point trajectory planning is a problem
that is often encountered in the field of robotics. For this
purpose, planning algorithms based on model prediction
control (MPC) methods are increasingly used, especially in
research projects. [5] proposes an MPC based approach for
point-to-point trajectory generation, in which the deviation
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of states and control inputs are penalized. Another MPC
approach is proposed in [6] in combination with an integral
sliding mode control. In [7] the generation of a collision-
free trajectory is formulated as a parameter optimization
problem. A hierarchical control scheme for optimal task
allocation and minimum-time trajectory planning involving
two robots is proposed in [8]. The scheduling task leads
to an integer optimization problem with linear constraints
and a bilinear cost function. For the point-to-point trajectory
planning a centralized MPC algorithm is introduced. Within
this paper, the MPC-based planning algorithm is arranged in
a distributed manner, leading to distributed model predictive
control (DMPC) algorithms with coupled cost functions and
constraints. The used DMPC approach offers certain advan-
tages with regard to a scalable and flexible robot deployment.
DMPC methods have already been successfully used several
times for point-to-point trajectory generation of multi-agent
systems, such as in the area of UAVs in [9] and [10] or
in vehicle platoons in [11]. However, to the best of our
knowledge, this paper presents the first results on the online
synchronous trajectory planning for robot manipulators using
distributed model predictive control.

This paper is organized as follows: The problem for-
mulation along with the proposed hierarchical control ar-
chitecture is addressed in Section II. Section III describes
the modelling of the robot dynamics and the scheduling
tasks. The synchronous distributed minimum-time MPC is
presented in Section IV, followed by the simulation results in
Section V. The paper is finalized by brief concluding remarks
in Section VI.

II. PROBLEM FORMULATION AND CONTROL CONCEPTS

In a narrow workspace with several closely operating
robots performing cooperative pick-and-place tasks, the co-
ordinated workflow should be organized in such a way that
the robots perform their tasks optimally. Therefore, two
main tasks are of fundamental importance. Firstly, a resource
allocation problem is raised by questioning how the task
allocation for the robots is going to take place. Secondly,
in order to accomplish the assigned time-depending tasks,
an online trajectory planning should be employed. A highly
non-convex mixed-integer nonlinear programming problem
would be the result if the discrete scheduling decisions
and the dynamics of the robots were to be included in a
monolithic optimization framework, which would severely
limit its practical online applicability. In order to cope with
these difficulties, a hybrid control algorithm, as shown in
Fig. 1, is employed, consisting of two layers. The upper
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Fig. 1. Schematic illustration of the used control concept.

layer solves a scheduling problem, while on the lower layer
local DMPC planning algorithms are executed. The scheduler
computes the optimal task allocation by minimizing the total
traversed distance. It provides the position set-points to the
underlying DMPC layer, which computes the robots’ optimal
trajectories by minimizing the execution time of the tasks.
For the considered application, the authors presented in
the previous work [8] a similar control architecture with
a centralized MPC layer resulting in synchronous robot
task execution. While cooperatively executing pick-and-place
tasks, a synchronous robot operation appears to be use-
ful in the coordination of the robot movements. On the
one hand, this simplifies the scheduling problem, since the
rescheduling for both robots takes place simultaneously and
thus less frequently. On the other hand, robot coordination
and collision avoidance are less elaborate and require less
computing power compared to an unsynchronized approach.
Of course, synchronization also entails a loss of performance,
since one of the robots may work slower than it eventually
could. Compared to the centralized MPC approach, time
synchronization is not inherently given in the distributed
case, since each robot plans its trajectory locally. Therefore,
coupling in the cost functions of the distributed optimization
algorithms is introduced to synchronize the robot movements
in order to reach their targets simultaneously. Additionally,
coupling in the constraints is introduced to impose collision
avoiding restrictions. This leads to DMPC algorithms of
decoupled systems with coupling in the cost functions and
the constraints. For each MPC iteration, the controllers share
the calculated minimum time and their predicted trajectories.

III. MODELLING

A. Robot dynamic model

The dynamic model of the considered robot manipulator
is derived by means of the Lagrange formalism [12]. The
robot equation of motion in matrix form can be written as

M(q)q̈ + C(q, q̇)q̇ + g(q) + τR(q̇) = τ , (1)

where τ ∈ Rn denotes the vector of generalized torques,
q ∈ Rn denotes the vector of generalized coordinates (i.e. the
joint angular position), M(q) ∈ Rn×n is the inertia matrix,

C(q, q̇) ∈ Rn×n represents the coefficients of the centrifugal
(proportional to q̇2

i ) and Coriolis (proportional to q̇iq̇j , i 6= j)
forces, g(q) ∈ Rn is the vector of gravitational torques and
τR(q̇) ∈ Rn×n the vector of Coulomb and viscous friction
torques. For the considered robots n = 6 holds. Additionally,
a dynamic simulation model in SIMSCAPE has been devel-
oped using the CAD data. The SIMSCAPE model is mainly
used for the simulation of the forward dynamics, whereas
the analytically derived equations of motion are used in
feedback control to implement a nonlinear dynamic inversion
based controller τ = f(q, q̇, t) in order to compensate the
nonlinear dynamics. The nonlinear feedback law is chosen
such that, the combined control system results in a linear
closed loop system of n double integrators q̈ = u, with the
new input u ∈ Rn. The resulting model

ẋ = Ax + Bu , with

x =

[
q
q̇

]
, A =

[
0n×n In×n

0n×n 0n×n

]
and B =

[
0n×n

In×n

]
,

(2)

is used in the distributed MPC algorithms for cooperative
generation of collision-free robot trajectories.

B. Modelling of the scheduling task
The goal of the scheduling layer is to allocate a set of

objects n∈N={1,· · · ,N} to a set of slots s∈ S={1,· · ·, S}
while minimizing the total distance covered by the robots
r ∈ R = {1, · · · , R} to execute all necessary tasks. It is
assumed that the number of slots is smaller than the number
of objects S ≤ N , and they are uniformly distributed on a
set of classes p ∈ P = {1, · · · , P}, i.e. S1 = {1, · · · , S/P}
and S2 = {S/P + 1, · · · , 2S/P} denote the set of slots
located to class 1 and 2 respectively. Hence, it is necessary
that both S and P are even numbers. To solve the scheduling
problem, the optimization algorithm presented in [8] is used.
The algorithm is based on the well established travelling
salesman problem (TSP), and includes the binary variables
zb =

[
wT
b xTb

]T
, with the binary robot to class

wb = [W11 · · ·W1P W21 · · ·WRP ]
T
, (3)

and object to slot allocation variables

xb = [X11 · · ·X1S X21 · · ·XNS ]
T
. (4)

In the following, the constraints and the cost function of the
discrete optimization problem described in [8] are presented
in matrix notation without going into much detail, and thus
transformed into the standard form of a static optimization
problem.

The robot-class assignment must ensure that each robot
serves a single class and each class can only be served by a
single robot. This can be expressed by the following P +R
equality constraints∑
∀r∈R

Wrp = 1, ∀p ∈ P ,
∑
∀p∈P

Wrp = 1, ∀r ∈ R , (5)

which can be expressed as[[
IP×P ⊕ 11×R] 0P×N ·S

]
zb = 1P×1 (6)[[

11×P ⊕ IR×R
]

0R×N ·S
]
zb = 1R×1 . (7)
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Each slot in the classes has to be filled with exactly one
object, but not necessarily all objects can be placed in the
slots since the number of objects is assumed to be larger
than the number of available slots. The first condition can be
modeled by S equality and the second one by N inequality
constraints∑
∀n∈N

Xns = 1, ∀s ∈ S ,
∑
∀s∈S

Xns ≤ 1, ∀n ∈ N , (8)

leading to[
0S×R·P

[
IS×S ⊕ 11×N ]] zb = 1S×1 (9)[

0N×R·P
[
11×S ⊕ IN×N

]]
zb ≤ 1N×1 . (10)

The proposed synchronous approach to accomplish pick-
and-place tasks involving dynamic objects implies that the
robots simultaneously pick-and-place the objects. The se-
quence in which the slots are filled is fixed such that
the robots maintain a safety distance to each other while
placing the objects. However, when picking up the objects,
an additional constraint should be imposed to ensure that
a similar safety distance dmin is maintained. This can be
enforced by the following constraint

dnn′ + (2−Xns −Xn′s′) · dmin ≥ dmin,

∀n, n′ ∈ N , n 6= n′, s ∈ S, s′ ∈ Scs . (11)

Scs denotes the subset of slots being filled at the same time
as slots s ∈ S . Assuming that the first S/P and the next
S/P slots from S are filled simultaneously, the constraint
can be written asXn1

...
XnS


︸ ︷︷ ︸

xnS

+


0

S
P ×

S
P I

S
P ×

S
P

I
S
P ×

S
2 0

S
P ×

S
P

⊕ I(P−1)×(P−1)


︸ ︷︷ ︸

Ic

Xn′1

...
Xn′S


︸ ︷︷ ︸

xn′S

≤
(

1 +
dnn′

dmin

)
1S×1 , (12)

with dnn′ denoting the euclidean distance between two
objects. For any n ∈ N and ∀n′ ∈ N , (12) can be written
as [

xnS ⊕ 1(N−1)×1
]
+ [Ic ⊕ In] xb≤1(N−1)S×1

+
1

dmin

[
1S×1 ⊕ In

]
dnN , (13)

with dnN = [dn1 dn2 · · · dnN ]T and the matrix I
(N−1)×N
n

resulting from the identity matrix IN×N by removing the
first row and shifting the first column vector to the column
n. By this the case n = n′ is excluded. For instance, n = 2
results in

I2 =


1 0 0 · · · 0

0 0 1
. . . 0

: : 0
. . . 0

0 · · · 0 · · · 1

 .

Finally, with the identity vector eN×1
n the equation (13) can

be represented as[
0(N−1)S×RP

[[
IS×S ⊕ eTn

]
⊕ 1(N−1)×1+ [Ic ⊕ In]

]][wb

xb

]
≤1(N−1)S×1 +

1

dmin

[
1S×1 ⊕ In

]
dnN (14)

depending linearly on the binary optimization variables.
The cost function representing the total distance covered

by the robots can be expressed as

f(zb) =
∑
∀r∈R

∑
∀p∈P

Wrp

( ∑
∀n∈N

Xnŝp dnr

)

+
∑
∀n∈N

∑
∀s∈S

Xns dns (15)

+
∑
∀n′∈N

∑
∀p∈P

∑
∀s∈Sp

Xn′,s+1 dn′s .

The bilinear part of f(zb) representing the initial movements
of the robots can be written as

wT
b



dT1N ⊕ IP×P

...
dTrN ⊕ IP×P

...
dTRN ⊕ IP×P


︸ ︷︷ ︸

DRN



X1ŝ1
...

XNŝ1

X2ŝ2
...

XNŝP


= zTb Qzb , (16)

where

Q =

[
DRN

0NS×NP

]
[
0N×RP

[
eTŝ1 ⊕ IN×N

]]
...[

0N×RP
[
eTŝP ⊕ IN×N

]]
 ,

ŝp being the slot to be filled first in class p, and the vector
drN = [dr1 dr2 · · · drN ]T of the distances between robot r
and the objects n ∈ {1, · · · , N}. The linear part of the cost
function representing the movement from the objects to the
assigned slots and back to the next selected objects can be
expressed as

cT zb =
[[

01×RP dTNS
]

+
[
01×RP dTNSp

]]
zb . (17)

Finally, the discrete optimization problem can be given in
this form

min
zb

zTb Qzb + cT zb

s.t. Aezb = 1

Aizb ≤ 1

Aszb ≤ b(dmin)

(18)

with the equality constraints (6)-(9), the inequality con-
straints (10) and the safety related inequality constraints (14).
The vector b ∈ RN(N−1)S represents the right hand side of
the equation (14) ∀n ∈ N .
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IV. SYNCHRONOUS DISTRIBUTED MINIMUM-TIME MPC
According to the proposed hierarchical control scheme

in Sec. II, the objective of the local model predictive con-
trollers is the online planning of optimal robot trajectories
to reach the final configuration provided by the scheduler in
a minimum possible time. When generating the minimum-
time robot trajectories, the final time tf is not known a priori,
resulting in a free terminal time optimization problem with
the goal to minimize the final time subject to various robot-
relevant kinematic and dynamic constraints. By introducing
the time scaling

τ =
t− t0
tf − t0

, (19)

the time interval t ∈ [t0, tf ] is mapped to τ ∈ [0, 1]
transforming the free terminal time optimization problem
into a fixed terminal time problem in the scaled time τ . With
q(t) = q(τ),

d

dt
q(t) =

1

∆tf

d

dτ
q(τ), and

d2

dt2
q(t) =

1

(∆tf )2

d2

dτ2
q(τ) ,

(20)
where ∆tf = tf − t0, the system dynamics equation (2) is
expressed as

d

dτ
x(τ) = Ax(τ) + (∆tf )2Bu(t0 + τ∆tf ) . (21)

A subsequent discretization of the continuous time system

x(∆τ) =(I + ∆τA)x0 +

(∆tf )2

∫ ∆τ

0

(I + A(∆τ − s))Bu(t0 + s∆τ)ds

=(I + ∆τA)x0 +

∆tf

∫ t0+∆τ∆tf

t0

(
I + A

(
∆τ − s− t0

∆tf

))
Bu(s′)ds′,

(22)

yields discrete time dynamics

xk+1 =(I + ∆τA)xk + ∆τ(∆tf )2

(
I +

∆τ

2
A

)
Buk , (23)

with uk = const for τ ∈ [k∆τ, (k + 1)∆τ), i.e. for
t ∈ [tk, tk+∆τ∆tf ). In the following, tf is used instead of
∆tf for simpicity’s sake. The main feature of the proposed
DMPC is that each of the local controllers optimizes its cost
function, i.e. the local robot transition time tf , while addi-
tionally taking into account the previously achieved optimal
value of the local cost function of the other controller. By
coupling the cost functions, it is possible to coordinate the
movements of the robots in time, so that they perform their
tasks simultaneously following the synchronous approach.
The time synchronization can be ensured by choosing the
cost function for Robot 1 as

J1(t1f ) =

(
t1f − t̂1fδ

(
t̂2f

t̂1f

))2

, (24)

with the switch function

δ

(
t̂2f

t̂1f

)
=

2

1 + exp
−α

(
t̂2f

t̂1f
−1

) − 1 . (25)

0 0.5 1 1.5 2 2.5 3

−1

0

1

t̂2f/t̂1f

δ

Robot 1
Robot 2

Fig. 2. Switch functions for α = 20 to coordinate the robots movements
ensuring that they reach their targets simultaneously. The switch functions
show a symmetrical behavior to each other since only one of the robots,
the faster one, should be slowed down without any influence on the other.

Here t1f describes the optimization variable and t̂1f , t̂2f are
the previously calculated optimal values of the cost functions
of the respective controllers. The cost function for Robot 2
is defined analogously. If Robot 1 requires less time to reach
its target than Robot 2, i.e., t̂2f > t̂1f , then δ becomes
positive for the Robot 1 and negative for Robot 2, see Fig. 2.
In the current optimization step, δ > 0 implies that the
minimum point of the cost function (24) is shifted to t̂1fδ.
Consequently, depending on δ, the faster robot is required to
have a minimum time t∗1f that is not far from the minimum
time t̂1f of the preceding optimization step. The faster robot
is thus slightly slowed down in each optimization step as long
as the optimal values of the cost functions do not converge
towards the same point. On the other hand, δ < 0 in the
cost function J2(t2f ) of the second robot does not influence
the optimization, therefore, Robot 2 continues its attempt to
reach the target as quickly as possible.

Note that in the proposed distributed approach, the con-
trollers exchange the optimal values of their cost functions
and the resulting optimal trajectories at each optimization
step. While the calculated optimal times are needed in the
cost functions, the predicted trajectories are used in the
constraints to establish the conditions for avoiding collisions
between the robots. This results in a DMPC algorithm
of the decoupled systems with coupled cost functions and
constraints. At each iteration k of the optimization, each con-
troller optimizes its own set of inputs keeping the information
needed from the other controller constant as previously
received.

The optimization problem for Robot 1 reads:

min
u1

J1(t1f )

s.t. x1(j + 1 | k) = f(x1(j | k), u1(j | k), t21f )[
qmin

q̇min t1f

]
≤ x1(j + 1 | k) ≤

[
qmax

q̇max t1f

]
umin ≤ u1(j | k) ≤ umax

dfr(x1(j | k), x̂2(j | k − 1)) ≥ rmin

dz1(x1(j | k)) ≥ hz1,min

x1(0 | k) =

[
q10

q̇10 t1f

]
x1(Np | k) =

[
q1f (k)

q̇1f (k) t1f

]

(26)
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where j ∈ {0, . . . , Np−1} is the iteration index, and Np the
prediction horizon. The optimization problem for Robot 2
is defined analogously. The sampling time of the scaled
discrete time dynamics x1(j + 1 | k) from (23) is chosen
as ∆τ = 1/Np.

Due to the recurrent trajectory planning, the introduced
time transformation (19) is applied in each optimization itera-
tion k, mapping the time interval t ∈ [tk,0, tk,f ] to τ ∈ [0, 1].
The scaled time τ is accordingly divided into equidistant
intervals, i.e., τ ∈ {0, 1/Np, 2/Np, . . . , (Np − 1)/Np, 1}.
Moreover, the control inputs u1(j | k) are uniformly dis-
tributed over τ by ∆τ , and are therefore constant over the
time interval ∆t = t∗1f∆τ , see (23), where t∗1f refers to the
underlying optimal solution of (26). As time tk propagates,
the ∆τ intervals are mapped to increasingly tighter ∆t-
intervals because t∗1f reduces with each optimization step.
The closer the robot approaches the target, the smaller the
solution t∗f gets, while the number of control points remains
the same. This leads to a finer prediction towards the end,
which, at some point, leads to the case ∆τt∗f < Ts, in
which there is more than one control input per sample Ts
(robot control sampling period). It is possible to provide only
the first control input to the plant when ∆τt∗f ≥ Ts. Once
the sample time has been undercut (i.e. ∆τt∗f < Ts), an
equivalent input is calculated by weighted averaging of all
input variables occurring within the sampling period. For this
purpose, the weights

ηF =

⌊
Ts

∆τt∗1f

⌋
and ηR =

Ts − ηF∆τt∗1f
∆τt∗1f

(27)

are calculated first. Herein ηF is the number of inputs
occurring within Ts and ηR the remaining value, i.e., the
length of the last input, which is not entirely within Ts.
b·c denotes the integer (floor) operator. For ηF < Np the
equivalent input can be calculated as follows

u1,eq(k) =
1

ηF + ηR

(
ηF∑
i=1

u∗1(i | k) + ηRu∗1(ηF + 1 | k)

)
.

(28)

The desired final state x1(Np | k) in (26), which, according
to the time optimal setting, has to be reached in each
optimization step k, i.e. at τ = 1, is calculated from the
information provided by the scheduler. Since the scheduler
operates in a global Cartesian coordinate system, the position
of the target spt (objects or slots) has to be transformed
into the local robot coordinates using the homogeneous
transformation [

rpt
1

]
= Ts

r

[
spt
1

]
. (29)

The obtained position vector rpt relative to the origin of
the base frame of robot r is subsequently used to calculate
the desired robot end configuration. To describe the target
orientation relative to the robots base frame, Euler angles
rΨt = [φ, θ, ψ]T are used. The pose of the end effector to

reach the desired target is then given by

%r(qf ) =

[
rpt
rΨt

]
. (30)

Using (30) and the robot’s forward kinematic equations, the
final robot configuration qf is calculated by analytically
solving the inverse kinematic problem [13]. The desired final
robot configuration qf (k) changes over time as the targets,
which have to be reached, move along the y−axis with a
constant velocity svt = [0 vb 0]T (w.r.t. the global coordinate
frame), with vb denoting the velocity of the conveyor belt.
Therefore, in each optimization step, the desired position of
the end effector is updated depending on the target (object
or slot) position. At the first optimization step, the desired
position of the end effector is required to be equal to the
initial target position, i.e.

qf (k) = %−1
r

([
rpt(k)

rΨt

])
. (31)

For this, the minimum transition time t∗f is computed, which
will be used in the following step to have a better estimation
of the target’s position

qf (k) = %−1
r

([
rpt(k) + t∗f (1−∆τ)rvt

rΨt

])
. (32)

The conveyor belt movements do not affect the orientation
rΨt of the target relative to the robot’s base coordinate sys-
tem. To finally compute the desired robot’s joint velocities,
the end effector Jacobian Jre(q) is used. Thus, the joint
velocities are then found via the inverse Jacobian

q̇f (k) =Jre(q1f )−1

[
rvt

03×1

]
. (33)

It should be noted that the proposed algorithm is only
simultaneously investigated and validated within the scope
of this paper. If implemented in a real system, the support
by a camera is necessary to grab and place the objects.

The presence of static and dynamic obstacles in the work-
ing area of a manipulator limits its full ability and operating
range. Therefore, when using optimization-based algorithms
for online trajectory planning, it is reasonable to formulate
the collision avoidance conditions as motion constraints in
the optimization problem, see [14]. Three different types of
collision avoidance constraints are taken into consideration
in this work. Firstly, self-collision constraints are formulated
for the relevant joints by limiting their movements between
qmin and qmax. Secondly, a constraint dz1(x1(j | k)) with a
minimum operating height in the z−coordinate is considered
to avoid collisions between the robot and the conveyor
belt. Finally, the constraints to avoid collisions between the
two robots are imposed. For the sake of simplicity, these
constraints are formulated with respect to the robot end
effectors by utilizing the concept of a distance function
dfr(x1(j | k), x̂2(j | k − 1)). Here, x̂2 refers to the optimal
trajectory of the second robot calculated in the previous MPC
step. This information is needed to calculate the distance
between the robots as a function of x1 and is kept constant
during an MPC iteration k.
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V. SIMULATION RESULTS

The proposed hierarchical control algorithm is imple-
mented and evaluated on a dynamic simulation model using
MATLAB/SIMULINK. The dynamic simulation model con-
sists of the dynamics of the robots and the computed torque
controllers. The arrangement of the robots next to each other
is such that their working areas overlap considerably. In the
context of this paper, the focus lies mainly on the online
planning of synchronous robot trajectories using distributed
MPCs of dynamically decoupled systems with coupling in
the cost function and the constraints. As the results of the
scheduling layer are discussed in detail in [8], they will
not be addressed further in this paper. The scheduling is
performed iteratively after each placed object and solved
using the GUROBI solver. The information provided by the
scheduler is used on the underlying DMPC layer to compute
the desired robot end configuration and joint velocities, i.e. to
build the terminal constraints xr(Np | k), (26). The resulting
optimization problems for trajectory generation are then
solved for both robots independently using the full discretiza-
tion approach and applying the IPOPT solver. Following this
approach, the unknown states, control inputs, as well as the
final time are merged into a vector of optimization variables

ζr(k) = [xTr (0 | k) · · · xTr (Np | k)

uTr (0 | k) · · · uTr (Np − 1 | k) trf (k)]T ,

with the index r denoting Robot 1 and Robot 2. After each
MPC iteration k, the robots share their predicted trajectories
and the computed minimum time with each other. The
sampling time is set to Ts = 8 ms according to the control
frequency of the considered robot manipulators. The predic-
tion horizon and the belt velocity are chosen as Np = 15
and vb = 0.1 m/s. Choosing a shorter prediction horizon, as
would be desirable for computational reasons, will reduce
the solution space of the optimization problem due to the
terminal constraints. On the other hand, a broader prediction
horizon, which might be advantageous with respect to the
collision avoidance constraints, would increase the compu-
tational effort. Thereby, our chosen value Np = 15 is found
to be a good trade-off.

At the beginning of the optimization, i.e. at the beginning
of the trajectory planning, the calculated minimum time is
long enough and decreases with each MPC step, as the robot
approaches its target with each applied control input. The
minimum final time becomes nearly zero when the robot
reaches the target, triggering the re-execution of the planning
algorithm, and thus leading the robot to the next destination.
As can be seen in Fig. 3, this results in a sawtooth-like
progression of the optimal time over the simulation duration.
According to the results, Robot 1 needs more time to reach
the first target than Robot 2, i.e. t∗1f > t∗2f . In case the robots’
trajectories are not synchronized, i.e. δ = 0, Robot 2 will
reach its first target faster than Robot 1. This is due to the
fact that for the selected targets, the second robot has to
cover a shorter distance compared to the first one. Robot 2
will reach the first object after approximately 0.46 s and the
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(a) Unsynchronized trajectory planning (δ = 0).
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(b) Synchronized trajectory planning (δ 6= 0).

Fig. 3. Comparison of the calculated minimum times t∗f of the two robots
for both cases, unsynchronized (a) and synchronized (b). As a result of the
time synchronization, the difference between the calculated optimal times
decreases with each optimization step until they finally equalize. Due to the
synchronization, the robots will reach their targets simultaneously.
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Fig. 4. Comparison between the unsynchronized (δ = 0) and synchronized
(δ 6= 0) case for each robot individually. For t∗1f > t∗2f , the time
synchronization does not affect the slower Robot 1 and vise-versa in case of
Robot 2 for t∗2f > t∗1f . The time synchronization ensures that the optimal
time of the faster robot changes more slowly in each optimization step until
it matches the time of the slower robot. For t∗1f ≈ t∗2f , i.e. δ ≈ 0, both
robots try to reach their targets as fast as possible (see also Fig. 3).

corresponding slot after 1 s, whereas Robot 1 after 0.58 s
and 1.2 s, respectively, see Fig. 3 (a). Since it is required
that the robots perform their tasks simultaneously, the faster
robot is gradually slowed down until the final times become
equal. This is done by coupling the cost functions of the
trajectory generation optimization algorithms, as described
in Sec. IV. Synchronizing the trajectories in time, results in
a lower slope of the optimal time curve of the slower robot
compared to the uncoordinated case, see Fig. 3 (b). As long
as the calculated optimal times of the two robots differ, the
faster robot is slowed down slightly in each step until the
final times converge towards the same value. Nevertheless,
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(a) Robot 1 for t∗1f > t∗2f .
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(b) Robot 2 for t∗1f > t∗2f .

Fig. 5. Distances of the end effectors, the assigned objects, as well as the
corresponding slots. All distances are shown relative to the same coordinate
system to simplify the comparison. (a): The slower Robot 1, continues
planning its trajectory regardless of the time synchronization targeting to
finish the task as fast as possible. (b): Due to the time synchronization, the
faster Robot 2 reaches its targets at the same time as the slower Robot 1.

this does not affect the slower robot, as it must not be
slowed down any further. This can be seen by the comparison
between the synchronized (δ 6= 0) and the unsynchronized
(δ = 0) trajectory planning for both robots as shown in
Fig. 3 and Fig. 4. For the slower robot (Robot 1 for t∗1f > t∗2f
and Robot 2 for t∗2f > t∗1f ) the outcome of the optimization
for the synchronized and the unsynchronized planning is the
same. For the faster robot, on the other hand, the decrease of
the final time becomes smaller due to the synchronization of
the trajectory planning. The difference between the optimal
final times (t∗1f , t

∗
2f ) of the robots becomes smaller with each

iteration until they finally approach to zero simultaneously.
In case the robots need about the same time to reach their
targets, i.e., t∗1f ≈ t∗2f , the synchronization has no influence
on the optimal final times, and both robots try to achieve
their goals as fast as possible.

The effect of the synchronization on the robot movements
can also be observed by considering all distances relevant
to a pick-and-place scenario, as shown in Fig. 5 for both,
the synchronized (δ 6= 0) and unsynchronized (δ = 0) case.
For Robot 1 the course of the end effector from the starting
position to the first object and afterward to the corresponding
slot is the same in both cases, since the synchronization has
no impact on the slower robot, see Fig. 5 (a). On the contrary,
the end effector of the faster Robot 2 shows a different
behavior due to the synchronization, see Fig. 5 (b). In the
unsynchronized way, Robot 2 would reach its targets earlier.
Especially when reaching the slot, one can see that the robot
could place the object after about 1 s. In the synchronous
case, however, the robot reaches the slot after about 1.2 s,
and thus at the same time as Robot 1.

VI. CONCLUSIONS

An optimization-based algorithm is presented, which con-
sists of a central scheduling layer for the robot task allocation
and an underlying distributed layer of communicating DMPC
algorithms for trajectory generation. The cost functions of
the resulting distributed optimization problems are coupled
via a switch function, imposing a synchronous trajectory
planning for the robots. The proposed approach is demon-
strated in simulations showing the coupling term’s influence
on synthetizing synchronized robot motions by progressively
decelerating the faster robot and not influencing the slower
one. Future work will consider the real-time implementation
of the suggested framework in an experimental setup. The
validation in a realistic environment will also provide an op-
portunity to analyze the effects of disturbances and commu-
nication delays on the closed-loop performance, in particular
regarding the time synchronization and the robustness of the
DMPC algorithms.
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