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Abstract— Multiple approaches to the estimation of high-
order motion derivatives for innovative control applications
now rely on the data collected by redundant arrays of inertial
sensors mounted on robots, with promising results. However,
most of these works suffer scalability issues induced by the
considerable amount of data generated by such large-scale
distributed sensor systems. In this article, we propose a new
adaptive sensor-selection algorithm, for distributed inertial
measurements. Our approach consists in using the data of
a subset of sensors, selected among a larger collection of
inertial sensing elements covering a rigid robot link. The sensor
selection process is formulated as an optimization problem,
and solved using a projected gradient heuristics. The proposed
method can run online on a robot and be used to recalculate
the selected sensor arrangement on the fly when physical
interaction or potential sensor failure is detected. The tests
performed on a simulated UR5 industrial manipulator covered
with a multimodal artificial skin, demonstrate the consistency
and performance of the proposed sensor-selection algorithm.

Index Terms— Acceleration Feedback, Artificial Robot Skin,
Automatic Sensor Selection, Greedy Algorithm

I. INTRODUCTION

A. Motivation and Related Works

Reliable estimation of high-order motion derivatives is of

paramount importance in robotics, with significant implica-

tions in the fields of control and parameter identification. On

a robotic system, motion derivatives such as joint velocities

or accelerations are usually computed through sequential

time-derivation and filtering of the raw encoder data, yielding

substantial amounts of high-frequency noise as well as a non-

negligible lag [1]. As a result, the obtained signals generally

prove unsuitable for use in high-gain control loops. Driven

by the large-scale democratization of very low-cost inertial

sensors, referred to as micro-electro-mechanical systems

(MEMS) [2], several alternative approaches proposed to fuse

the joint encoder data with the derivative-free estimates of

the linear and angular components of motion provided by a

set of Inertial Measurement Units (IMUs), rigidly attached to

the different links of a robot [3]–[10]. In this context, sensor

redundancy proves to be of significant interest as it makes

it theoretically possible to significantly reduce the measure-

ment noise [11] while at the same time providing enhanced

robustness to possible sensor failures through adequate fault
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Fig. 1: (a): Our experimental platform is a UR5 industrial

robot from Universal robotics, covered with 253 artificial

skin cells. (b): The artificial skin mounted on our robot

is a redundant network of identical measurement units or

“cells” organized in patches of different size. (c): The skin

is mounted over a layer of soft-elastic material to better fit the

shape of the robot and dampen high-frequency mechanical

vibrations. During physical interaction with the external

environment, this layer is likely to deform, thereby slightly

changing the orientation of the sensor attached to it.

detection and isolation techniques [12]–[15]. In practice, one

of the main obstacles to the successful deployment of whole-

body distributed inertial feedback in robotics turns out to be

the considerable amount of data that can potentially be gen-

erated by such a system, especially considering that inertial

sensing generally requires high sampling rates. To produce

the intended effect on the robot, data must be transmitted and

processed in real-time, at the control loop frequency. This

is a complex problem, which rapidly becomes intractable

when the generated amount of data exceeds the system’s

bandwidth. Evolutionary processes in nature converged to-

wards a remarkably elegant and effective solution to this

issue in the context of tactile perception. By contextualizing

the process of data generation, the sensory receptors of the

natural skin mainly transmit information that suggests a

change of state (e.g., variations in temperature or force) [16].

Accordingly, multiple neuromorphic event-driven approaches

to distributed sensing were recently developed, especially
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for applications involving massively redundant arrays of

sensors, such as artificial robot skins, with promising results

[17]–[23]. Although such approaches could potentially be

applied to raw inertial data, suitable implementation of the

event generation engine usually require a dedicated sensor

hardware. In the more general case where distributed sensors

can only operate in continuous mode, the issue of data

flow limitation can still be adequately addressed, provided

that it is treated as a sensor-selection problem, namely

finding for each robot link i equipped with a set of Ni

inertial sensors, a subset of Mi sensing elements that provide

the best compromise in terms of the network load and of

an application-relevant metric. Once identified, the selected

sensors are set to broadcast measurement at the maximum

frequency while other sensors are deactivated or run at a

lower update rate. Sensor-selection is a widely studied topic,

with multiple contributions, ranging from energy optimiza-

tion in redundant WiFi networks [24] to distributed state

estimation and tracking [25], [26]. Besides network load

mitigation, sensor selection has multiple potential uses in

robotics. As a matter of fact, most state-of-the-art distributed

inertial measurement techniques are based on the assumption

that the sensors are rigidly coupled to the robot link to

which they are mounted. However this assumption is not

always verified in practice, considering that the sensors that

come into direct contact with the external environment are

likely to undergo local deformations and impacts, which in

turn induces inconsistencies into the inertial measurements

collected by the system (c.f. Fig. 1.c). In this context the

ability to reorganize the sensor network online, discarding

the corrupted elements, would prove invaluable. However,

for this to be achievable, this re-organization step must be

done as fast as possible. Sensor-selection is often considered

as a NP-hard combinatorial optimization problem [27]. As a

result, the approaches to solving the sensor-selection prob-

lems are essentially application-specific [28]. If the accuracy

of the result is of prime importance, global optimization

techniques will be considered, regardless of the required

computational effort. This is for example the case in [29]

where a branch-and-bound method is presented. However if

the considered application is subject to strict constraints in

terms of timing or computational power, as it is often the

case in robotics, local sub-optimal heuristic approaches will

be preferred as for example proposed in [30] based on convex

optimization techniques or in [31], [32] using tailor-made

greedy algorithms.

B. Our Approach and Contribution

In this paper, we propose a new online sensor selec-

tion algorithm allowing to automatically determine suitable

combinations of inertial sensors, for robot links accelera-

tion estimation purposes. We consider the case of a UR5

industrial robot, covered with a multimodal artificial skin.

The skin is a redundant network of interconnected sensing

units or “cells”. It is organized in patches of different sizes

(see Fig.1) and provides continuous measurements of the

normal contact forces, proximity, temperature and three-

dimensional accelerations, at the cells mounting points [23],

[33], [34]. Although multiple approaches already tackled the

problem of inertial sensor placement, in particular in the

context of gyroscope-free navigation [35]–[43], the issue of

inertial sensor selection among larger redundant sets with

fixed geometries is seldom addressed. Similarly to [30], our

approach does not intend to find the globally optimal sensor

configuration, but rather focuses on providing a “sufficiently

good” sub-optimal configuration, fast enough to allow online

implementation and adaptation on a robot. We formulate

the sensor selection problem as a greedy algorithm, guided

by a locally projected gradient heuristics. The adaptability

of our approach stems from the fact that we can use the

precontact information provided by the proximity sensors

of the artificial skin in order to automatically trigger a re-

computation of the sensor configuration, excluding the cells

and neighbors that are likely to get into contact with the

external environment. The present paper is organized as

follows: in Section II we provide a formal description of

the redundant distributed inertial sensing problem. Section

III describes the proposed approach for online sensor selec-

tion on a robot covered with artificial skin. The numerical

simulations performed on a model of UR5 industrial robot

manipulator, are presented and their results are discussed in

Section IV. Finally, Section V gives a brief conclusion and

discusses future works.

II. REDUNDANT DISTRIBUTED INERTIAL SENSING

A. Fundamentals of Distributed Inertial Sensing

We consider the movements of a rigid robot link i in an

inertial reference frame W , as depicted in Fig. 1.a. The link i

is equipped with a set of Ni triple-axis acceleration sensors,

spatially distributed and rigidly coupled to as many different

mounting points. Each sensor k = {1 · · ·Ni} of the link

i measures a linear acceleration Skak in a body-attached

sensor reference frame Sk:

Skak = RSk

W
(ak + g) + Skbk + Sknk ∈ R

3. (1)

In this expression, g = [0 0 − 9.81]
⊤
m.s−2 denotes the

gravitational acceleration and ak ∈ R
3 the acceleration

induced by the robot movements. The terms Skbk ∈ R
3

and Sknk ∼ N (03×1,σa) respectively denote the sensor

bias and noise vectors while RSk

W
∈ SO(3) is the rotation

matrix relating the sensor frame Sk to the inertial frame W .

The acceleration ẍi = [v̇⊤i , ω̇
⊤

i ]
⊤ ∈ R

6 of a link-attached

coordinate frame Li can be related to the acceleration ak of

any sensor frame Sk through the following expression:

ak
︸︷︷︸

Sensor frame
acceleration

= v̇i
︸︷︷︸

Link frame
acceleration

+ ωi ×
(
ωi × r

k
i

)

︸ ︷︷ ︸

Centrifugal
acceleration

+ ω̇i × r
k
i

︸ ︷︷ ︸

Euler
acceleration

, (2)

where rki = rk −ri ∈ R
3 denotes the position of the sensor

frame Sk relative to the joint frame Li, expressed in the

coordinate system of W , and ∀u,v ∈ R
3,u× v denotes

the cross-product between vectors u and v.
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B. Fusion of the Redundant Skin Acceleration Measurements

One of the most widely used approach to fusion of

redundant acceleration measurements, often referred to as

accelerometer-only or gyroscope-free IMU (AO-IMU resp.

GF-IMU), is based solely on the measurement of multiple

acceleration sensors, mounted in different places on the same

rigid body. This allows rewriting (2) in the form of a linear

system, as for instance proposed in [44]–[46]:

ak = Gk
iψi. (3)

where ψi =
[

v̇⊤

i ω̇⊤

i

[

ω
2

x ω
2

y ω
2

z ωxωy ωyωz ωzωx

]⊤
]⊤

∈

R
12 is referred to as the augmented state vector while

Gk
i =

[

I3×3 − S(rki ) − S(ṙki ) B(rki )
]

∈ R
3×12 denotes the

associated observation matrix. ∀u,v ∈ R
3, we define the

cross product operator S(·) ∈ R
3×3 as S(u)v = u × v,

and B(u) =





0 −ux −ux uy 0 uz

−uy 0 −uy ux uz 0
−uz −uz 0 0 uy ux



 ∈ R
3×6.

Therefore, determining the linear and angular acceleration of

a rigid body from distributed inertial measurements simply

amounts to solve an inverse problem. In practice, obtaining

a unique solution to this problem requires to stack the

measurements of at least four triads of acceleration sensors

into an augmented vector y =
[
a⊤
1 · · ·a⊤

Ni

]⊤
∈ R

3Ni .

Inverting the corresponding augmented observation

matrix Gi = [G1⊤
i · · ·GNi⊤

i ]⊤ ∈ R
3Ni×12 using a left

psedoinverse, leads to the least-squares body acceleration

estimate:

ψi = (G⊤

i Gi)
−1G⊤

i y, (4)

Despite its relative simplicity, this method has several dis-

advantages, limiting its use in robotics or navigation ap-

plications. These limitations stem in particular from the

sign ambiguity1 on ωi, and from poor performances at low

angular velocities as the cetrifugal acceleration term in (2)

cannot be suitably measured due to the limited resolution of

the accelerometers [47]. An alternative approach, introduced

in [48], consists in reformulating (2) as the sum of a linear

and non-linear term:

ak = v̇i +
(
S2(ωi) + S(ω̇i)

)
rki (5a)

=
[
I3×3 −S(rki )

]

︸ ︷︷ ︸

Hk

i

[
v̇i
ω̇i

]

︸ ︷︷ ︸

ẍi

+ S2(ωi)r
k
i

︸ ︷︷ ︸

hk

i
(ωi)

. (5b)

Provided that a suitable measure of ωi is available, which

is usually the case on a fixed robot manipulator using the

encoder data or a set of body-attached gyroscopes, the linear

and angular acceleration terms v̇i and ω̇i of link i can also

be obtained using a weighted left pseudo-inverse:

ẍi =

[
v̇i
ω̇i

]

=
(

H⊤

i Q
−1Hi

)−1

H⊤

i Q
−1 (y − hi(ωi)) (6)

1The sign ambiguity on the angular velocity term stems from its quadratic
nature within the vector ψi. This is a direct consequence of the centrifugal
acceleration term in (2).

where Hi =
[

H1⊤
i · · ·HNi⊤

i

]⊤

∈ R
3Ni×6 and hi(ωi) =

[

h1
i (ωi)

⊤ · · ·hNi

i (ωi)
⊤

]⊤

∈ R
3Ni are respectively the aug-

mented observation matrix and the centrifugal acceleration

vector. The covariance matrix Σi ∈ R
6×6 of the acceleration

estimate (6) can be expressed as Σi = (H⊤

i Q
−1Hi)

−1,

where the matrix Q ∈ R
3Ni×3Ni denotes the acceleration

sensors’ noise covariance matrix, here assumed to be di-

agonal and measured directly. Among the most significant

advantages of this approach over the previous one are its

compatibility with 2D flat sensor geometries, as described in

[48], and the fact that it still provides reliable measurements

in the low angular velocity range2.

III. ONLINE SENSOR SELECTION ALGORITHM

A. Value function for Distributed Inertial Sensor Selection

Since the fusion of spatially-separated inertial measure-

ments can be considered as an inverse problem, the result

is, therefore, intrinsically dependent on the conditioning of

the corresponding observation matrix. As the latter is a

function of the geometric arrangement of the sensor ar-

ray, it can be used as a value function and optimized by

modifying the selection vector or the sensor placement in

space. Previous work in the context of gyro-free navigation

[39] demonstrated that the best results in this respect were

obtained when the acceleration sensors were located on the

vertices of a platonic solid, as in this case, the observation

matrix turns out to be isotropic, i.e., with a unitary condition

number. Another relevant figure of merit for our application,

and more generally for consumer MEMS-based distributed

inertial sensor networks, is the measurement noise mitigation

capability. This can be interpreted as minimizing the volume

of the confidence ellipsoid of the estimate [37], [38], [42],

which is actually proportional to the square-root of the

determinant of the covariance matrix Σi. In this work, we

decided to make a compromise between these two metrics

and defined the value function f(zi) : R
3×Mi → R+ of the

robot link i as a weighted sum of these two terms, namely:

f(zi) = α · cond(Σ−1
i (zi)) + β ·

√

det(Σi(zi)) (7)

where α, β ∈ R+ are heuristically determined tuning coef-

ficients, that are here set to α = 10−4, β = 1 to emphasize

the noise attenuation characteristics while penalizing badly

conditioned configurations, where cond(Σ−1
i (zi)) >> 1.

B. Projected Gradient Heuristics

The task of selecting Mi distinct sensing elements among

a larger finite set of Ni sensors can be formulated as a

combinatorial optimization problem, of the form:

z⋆i = argmin
zi

f(zi), s.t. 1
⊤

Ni
zi = Mi (8)

where zi ∈ {0, 1}Ni is a Boolean sensor selection vector

and f(zi) : {0, 1}Ni → R+ is an application-dependent

value function. Although solving such a problem is in theory

2This is verified in practice as the noise level of gyroscopes and joint
encoders is several orders of magnitude lower than that of accelerometers.
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Fig. 2: One iteration of the proposed algorithm on two cells of the upper-arm patch. The idle cells are depicted in blue, while

the selected cells broadcasting information at the maximum frequency, and their neighbors are depicted in cyan and green

respectively. The unconstrained gradient step is represented as a red segment and its projection along feasible directions of

the problem is depicted in magenta. (a): First the neighbors of each selected cells are extracted and a classic gradient step of

the unconstrained problem is computed. (b): The unconstrained gradient step is then projected along each feasible direction.

The highest norm projection is then selected. (c): If the norm of this gradient projection is greater than a heuristically defined

threshold ζ, then a cell-switch event is triggered with the corresponding neighbor cell along the selected direction.

feasible by brute-forcing every possible sensor combina-

tion, this proves intractable in practice this number grows

with binomial coefficient of Mi and Ni. In this paper, the

proposed heuristic to minimizing (7) is formulated as a

projected gradient descent. From an initial random sensor

distribution on the robot link i, we proceed by first computing

the gradient ∇ri(zi)f(zi) of the value function f(zi) in

terms of the selected sensors Cartesian coordinate vectors

ri(zi) ∈ R
3·Mi , relative to the link frame Li. The following

gradient step is then derived for each selected sensor k,

regardless of the patch geometrical constraints (c.f. Fig. 2.a):

r̂ki = rki − η∇rk

i

f(z) (9)

where η ∈ R+ is a tuning parameter. This unconstrained

gradient step is then projected onto the constrained Cartesian

subspace Ek
i of the problem. We define the subspace Ek

i

in a cell-wise manner, as the set of unit-length segments

directed along the cell-to-neighbor vectors r
k,nk

i = rnk

i −rki
as depicted in Fig. 2.b. For each selected cell, the neighbor n⋆

k

of cell k with the maximal projection value will be labeled as

candidate, to be considered for the next algorithm iteration:

n⋆
k = argmax(ProjEk

i

(r̂ki − rki )) ∈ R (10)

The different candidates are then filtered such that:

1) only the candidates whose projected norm is greater

than a predefined threshold ρ ∈ R+ are declared valid

and used (c.f. Fig. 2.c),

2) the candidates whose index belong to the set of “un-

usable cells”, namely the sensors that are identified

as malfunctioning, undergoing physical interaction3, or

that are already selected in the current iteration are

automatically discarded. The vector containing these

indexes is automatically updated at each control period.

3In this work, we identify unusable cells by exploiting the multi-modality
of the skin, making use of the proximity and force sensors to determine
precontact and contact conditions.

At the end of these two filtering steps, the remaining cell

candidates define the new selected sensor set. The whole

process is repeated until convergence, when the vector of

filtered candidates turns out to be empty.

IV. VALIDATION BY NUMERICAL SIMULATION

A. Description of the Validation Setup and Protocol

The validation setup is presented in Fig. 1. We con-

sider a model of 6-DoF UR5 industrial robot arm from

Universal robotics, covered with two patches of artificial

skin, accounting for a total of 253 cells. Cell positions

and orientations were determined using calibration data,

obtained from the actual skin system mounted on a real

UR5. We used the self-configuration procedure detailed in

[49]. The proposed validation protocol consists of two main

steps. We first analyze the convergence properties of our

method and compare them to that of a greedy algorithm

by executing a Monte Carlo Simulation (MCS) on a set of

randomly generated initial cell configurations ranging from

3 to 20 cells. Note that since a set of at least three cells is

required to get reliable acceleration estimates using (6), the

greedy algorithm has to be initialized with a non-empty cell

distribution, which, in this work, is either randomly generated

or computed using the proposed projected gradient algorithm

from a random initial set. Here the randomly initialized

greedy is referred to as “standard” while the projected-

gradient-initialized greedy is referred to as “hot-started”.

The second validation step aims at demonstrating the per-

formance gain, in term of measurement noise mitigation,

along a predefined trajectory executed by a simulated UR5

robot. The fact that this phase is executed in simulation is

here justified by the need of a noiseless link acceleration

reference and of perfectly-calibrated acceleration sensors,

for suitable assessment of the estimation quality. During

this experiment, a simulated UR5 robot tracks a preset

trajectory, defined as a weighted sum of sinusoids. Two sets
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(a) Convergence of our method over 10
4 randomly generated initial cell

configurations of 5 to 20 cells. The red-dashed line corresponds to the value
function when all the cells are activated.

(b) Comparison over 10 randomly generated initial cell configurations of
3 to 20 cells, of the convergence of our method with a standard greedy
algorithm and a “hotstart” greedy algorthm.

Fig. 3: Convergence results

of simulated skin cells, rigidly coupled to the robot body,

measure the 3D acceleration along this trajectory. As for

actual accelerometers, a normally distributed measurement

noise with standard deviation σ = 0.34 · I3×3
4 is added to

the acceleration measurements of each simulated skin cell.

Estimates of the link linear and angular accelerations are then

computed using (6) and the skin acceleration data acquired

with different cell numbers and configurations. In practice,

these configurations are generated, on the one hand, using

our method and, on the other hand, using the standard and

hot-started greedy algorithms. We compare the estimated

link accelerations to the reference accelerations computed

using the closed form expressions of the robot second order

kinematics and use the variance of the difference between

these two signals as a noise-level metric.

4This value was determined from actual sensor measurements.

Fig. 4: Mean execution time of our method, vs standard and

hot-started greedy over 103 randomly generated initial cell

configurations of 5 to 20 cells each.

B. Results and Discussion

The results of the convergence experiment are displayed

in Figs. 3a, 3b and Fig. 4. From Fig. 3a, it is possible to

see that convergence of the proposed algorithm is achieved

in less than ten iterations. Nevertheless Fig. 3a reveals a

non-negligible spread in the final cost values for a given

number of cells, thereby suggesting a lack of robustness

of the proposed algorithm to local minima. Note that the

effects of unusable cells does not noticeably appear in this

study and would deserve deeper treatment. This is here

considered as future works. Fig. 3b suggest that the quality

of the resulting optimizer exceeds that of the standard greedy

for cell numbers ranging from three to fifteen. This can be

explained by the random nature of the initial cell distribution

used in this algorithm. It is interesting to note that the

performances of our algorithm are similar to those of the

greedy algorithm when the latter is hot-started with an

optimized initial distribution. One of the main advantages of

the proposed method lies in its execution time. This is clearly

visible in Fig. 4, where we can see that our algorithm is up

to two times faster than greedy algorithms for sets of three

to thirteen cells, which generally corresponds to the number

of sensing elements used on the links of a robot, as it offers

a good compromise between network load and measurement

accuracy. The mean convergence time is evaluated to 10.5ms

on Matlab for 7-cells in a 144 cells patch, which is compat-

ible with online use, considering in particular that for loops

run much faster in C++. Execution of our sensor selection

algorithm on an actual skin system, mounted on a real UR5

robot proved its reactivity and ability to run online, at the

robot control interface frequency (i.e. 125Hz on the UR5).

The results are shown in the attached video. The results of the

noise mitigation experiment are displayed in Figs.5 and 6 in

terms of the linear accelerations measured on the second link

using (6). Fig.5 shows in particular the consequences of an

ill-selected cell configuration, referred to as “grouped” and
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Fig. 5: Linear accelerations of the second link of a simulated

UR5 manipulator. The estimated values ˆ̇vx, ˆ̇vy, ˆ̇vz computed

using (6) and the measurements of 7 skin cells in three differ-

ent configurations, namely grouped (c.f. Fig.6a), optimized

and full-set, are compared to the reference values v̇x, v̇y, v̇z .

visible in Fig.6a. The noise variance in this case is depicted

as a magenta star marker on Fig.6b. The benefits of the

proposed cell selection algorithm in terms of measurement

noise attenuation are clearly visible in the middle plot of Fig.

5 and in Fig.6b. Again, it is worth noting the similarity of

these results with those of the greedy algorithms.

V. CONCLUSION

In this work, we proposed a new method for online sensor

selection within redundant arrays of inertial measurement

units. Relying on a projected gradient heuristics, the pro-

posed sensor selection method is capable of converging in

less than ten iterations to new inertial sensor configura-

tions that significantly reduce noise levels in the obtained

acceleration estimates. Future work will consist in testing

the presented method on a real manipulator and eventually

extending it to an entire humanoid robot.

(a) A set of initial (red) and final (green) cell configurations on
the simulated UR5 manipulator during a validation run. On the
left, a grouped initial configuration of seven cells. On the right,
a randomly distributed initial configuration of seven cells.

(b) Noise variances obtained with multiple optimized cell configurations
over a 10-sample MCS.

Fig. 6: Noise levels for grouped and optimized cell distribu-

tions
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