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Abstract— Determining a feasible path for nonholonomic
mobile manipulators operating in congested environments is
challenging. Sampling-based methods, especially bi-directional
tree search-based approaches, are amongst the most promising
candidates for quickly finding feasible paths. However, sam-
pling uniformly when using these methods may result in high
computation time. This paper introduces two techniques to
accelerate the motion planning of such robots. The first one
is coordinated focusing of samples for the manipulator and the
mobile base based on the information from robot surroundings.
The second one is a heuristic for making connections between
the two search trees, which is challenging owing to the nonholo-
nomic constraints on the mobile base. Incorporating these two
techniques into the bi-directional RRT framework results in
about 5x faster and 10x more successful computation of paths
as compared to the baseline method.

I. INTRODUCTION

Mobile manipulators are useful for transporting and de-
livering objects [1]–[7]. In such transportation tasks, the
manipulator can be at a “home” position on the mobile
base (MB) and the need for its planning arises only when
the MB arrives at the target location. However, in cases
where large objects are to be transported, there may be a
need to simultaneously move the manipulator and the MB,
especially in cases where there is a narrow door or a passage.
An example can be seen in Fig. 1(a), where the mobile
manipulator needs to transport a long rod while avoiding
contact with the machinery through a door.

Motion planning for nonholonomic mobile manipulators
is challenging due to the high number of degrees of freedom
(DOF) and the motion constraints on the MB. Sampling-
based methods [8], [9] provide an effective way for motion
planning of such robots. Bidirectional RRT like methods [10]
provide a promising approach for motion planning of such
systems. However, when the robot is carrying objects through
congested environments, as shown in Fig. 1(a), narrow
passages may form in the high dimensional configuration
space of the robot, and it may take a long time to compute a
feasible path. In factory settings with time-critical operations,
this can be detrimental to the productivity. Hence, there
is a need for specialized techniques to speed up motion
planning for such systems. One such technique is to focus the
sampling in appropriate regions of the configuration space.
To achieve this focusing, we should search in regions of the
configuration space which are relevant to the problem and
avoid searching in regions that are not. To select relevant
regions in the configuration space, we use the information
provided by the description of the workspace, which is the
environment surrounding the robot.

The focusing technique considered in this paper for

Fig. 1: (a) A nonholonomic mobile manipulator carrying a long
rod in a congested factory environment (start: red, goal: blue) (b)
Workspace focusing with green spheres for the manipulator and
with white disks for the mobile base

the motion planning of mobile manipulators is shown in
Fig. 1(b). Here, there are disks in the workspace along the
floor from the start to the goal location of the MB. Also, there
are spheres in the workspace from the starting end-effector
(EE) location of the robot till the goal EE location. Focused
sampling in the disks for the MB can be used to accelerate
the search towards goal MB location. Similarly, sampling
for the EE poses in the spheres and mapping the samples
to the configuration space can also be used to accelerate
the search. However, the focused sampling for the MB and
the manipulator must be coordinated appropriately, so that
together they are effective.

We perform search by growing two rapidly exploring
random trees [10] in the high dimensional configuration
space of the mobile manipulator, one from the start and
the other from the goal configuration, with samples being
generated inside the focus regions. These two trees need
to be connected in order to find a feasible path from the
start to the goal. However, connecting the two trees can be
challenging due to the boundary value problem that needs
to be solved for a feasible path between the connecting
configurations of the respective trees [8]. For randomly
selected nodes (one from each tree), this boundary value
problem in most cases will not have a feasible solution.
Moreover, attempting to solve a boundary value problem
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is computationally expensive and hence should be done
between pairs of nodes that seem promising. Furthermore,
even if there is a successful connection between the MB
configurations of two nodes, the manipulator configurations
of those two nodes may not connect because those two
configurations may be very different. Hence, there is a need
for a heuristic, which helps in determining the nodes of
the two trees, between which connection attempts should be
made. This can help in reducing the number of unsuccessful
connections attempts and hence reduce computation time.

In this paper, we present a method for motion planning of
nonholonomic mobile manipulators carrying large objects.
Our work makes the following contributions: (a) a method
to coordinate the focused sampling for the MB and the
manipulator configurations, and (b) a heuristic to determine
which nodes from the corresponding trees are to be selected
for a connection attempt due to the nonholonomy of the
MB. Finding a feasible solution quickly is challenging and of
paramount importance in the context of mobile manipulation
in congested environments. Therefore, our objective is to
determine feasible solutions quickly.

II. RELATED WORK

Sampling-based motion planners like RRT, PRM and their
variants [10]–[13], are very useful in a wide variety of mo-
tion planning problems with high dimensional configuration
spaces. They are computationally fast as compared to search
based planners. Moreover, these planners in addition to [10],
[14], [15] are probabilistic complete. Planners like in [16]
focus the sampling in appropriate areas of the configuration
space using workspace information to significantly speed up
the computation of paths for high DOF systems. In [17]–[19],
workspace and configuration space sampling are scheduled
appropriately in order to have enough variations in the
configurations of the tree such that the benefits of focusing
as well as complete random sampling can be reaped.

Work has done on task-constrained mobile manipulation
planning [13], which is an extension of Informed-RRT* [14].
Since the MB in these is holonomic, determining the connec-
tion between start and goal trees is straightforward. These,
along with BIT* [15], [20] can be extended to the planning
of nonholonomic mobile manipulators. In these methods, the
focus region is refined, as informed by each successive solu-
tion. As progressively better solutions lead to shrinking focus
regions, optimal paths are found quickly. These methods per-
form exceptionally well for problems with the following two
(not limited to) features: (a) determining the initial feasible
path is easy and quick and (b) the length of the optimal
path is relatively long i.e there is no maze-like structure in
the configuration space. Firstly, since the focusing is done
based on a feasible path, it is necessary to determine a
feasible initial path quickly. Hence, the performance of these
algorithms is limited by the technique used to determine the
initial path. Secondly, the focus region is based on the length
of a feasible path. If the length of the optimal path is large
(typically when there are narrow tunnels in the configuration
space), the focus region will be comparable to the entire

configuration space, resulting in a minimal focusing effect.
The planning for nonholonomic mobile manipulator carrying
large objects in cluttered environments do not satisfy either
of these conditions and hence using these methods may not
be ideal.

Multi-modal and hierarchical planners like [21], [22] are
very effective at generating feasible motions for mobile
manipulators in complex environments under uncertainty.
Planners like TGGS [23] use separate roadmaps for the base
and the arm for planning. Such methods cannot be directly
used when the manipulator and the MB need to coordinate
their motions. Sampling can be focused by incorporating
artificial potential field (APF) [24], [25] into RRT based
methods like in [26], [27]. Here random samples are moved
towards the goal by performing gradient descent on the
potential field. The resultant configuration is then used as
the random sample for RRT*. Such methods can be used for
a high DOF system like a mobile manipulator in cluttered
environments; however, defining the APF appropriately is
challenging. Sampling-based motion planning for nonholo-
nomic mobile manipulators has been studied in [28], where
the robot has to track the end-effector trajectory. However,
end-effector trajectories may not be available.

III. PROBLEM STATEMENT

Let the workspace of the robot be denoted asW ⊂ R3. Let
q = {x, y, φ, θ1, θ2, . . . , θn} be the configuration of mobile
manipulator with a manipulator with n joints. (x, y, φ) is the
pose of the MB (MB), i.e the location and the orientation. Let
the geometry of the mobile manipulator at a configuration q
be represented as a set of rigid bodies M(q) ⊂ W . Let
O ⊂ W be the set of workspace obstacles. Let C be the
configuration space of the mobile manipulator containing
all the valid configurations of the robot. The set of joint
configurations that lead to collision is denoted by Cobs =
{q ∈ C : M(q) ∩ O 6= ∅}. The set of joint configurations
that are collision-free is Cfree = {q ∈ C\Cobs}. Let T be the
homogeneous transformation matrix representing the pose of
the End-Effector (EE) in W . For a given joint configuration
q, we can find T by applying Forward Kinematics (FK). We
use the dot notation to extract quantities (e.g. T.p denotes
the position component and T.R the rotation matrix). A tree
node n consists of a configuration q, the EE transform frame
T(q). The terms nodes and configurations are used inter-
changeably and we make the distinction where appropriate.
q.qb denotes the pose of the 3-D MB and q.qm denotes the
n-D configuration of the manipulator from the node q. Ts
denotes the tree of nodes rooted at the start node and Tg for
the tree rooted at the goal node.

We are interested in the path planning problem for a
non-holonomic mobile manipulator. Given the geometric and
kinematic robot model, workspace obstacles O, the start
and the end configurations qs,qg , the objective is to find
a collision-free path made of configurations Q = {qk}Kk=0

where q0 = qs,qK = qg and the non-holonomic constraint
is satisfied between every two consecutive qk.qb.
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IV. DETERMINING FOCUS REGIONS
In this section, we explain the procedure to determine the

focus regions for the MB and the EE, within which sampling
happens during run-time for the bi-directional RRT [10].
A. Focus Region for the mobile base (MB)

The focus region for sampling MB locations is determined
by generating disks on the x − y plane from the start to
the goal MB locations. The first disk is generated with the
start location of the MB (qs.qb.x,qs.qb.y) as the center. The
distance to the nearest obstacle minus the incircle radius
of the MB is taken as the radius. k points are sampled
randomly on the circumference for the first disk. The point
closest to the goal location is chosen, and a disk is created
with that point as the center and radius is determined as
before. This procedure is followed until the goal location
(qg.qb.x,qg.qb.y) is inside a disk. This results in a sequence
of free-space disks {Di} from the start to the goal MB
locations. This helps in focusing the sampling on being
within those passages that are wide enough for the mobile
manipulator to pass. Since this strategy to generate these
free-area disks is greedy, we may not generate them along
the shortest possible path. However, the greedy approach is
fast and aligns well with our objective to determine a feasible
path quickly.
B. Focus Region for Manipulator EE

To focus the sampling for the EE, we determine a
collision-free focus region in the workspace from the starting
EE position to the goal EE position. We define a free space
sphere S to be a sphere in W with no obstacle inside. We
find a sequence of connected free space spheres {Si} from
the start EE position (Ts.p) to the goal EE position (Tg.p).
The first free space sphere S1 is centered at (Ts.p). We
compute the radius by finding the distance to the nearest
obstacle using [29]. Then, we sample k points on the surface
of S1. We add these points to a priority queue based on their
distances to Tg.p. We then pop the m closest points to the
goal EE location, and of those chose closest to one of the
free space disk centers in (x, y). Then we make the next free
space sphere S2. We continue this until the Tg.p is within a
sphere. This gives a sequence of free space spheres for the
EE through the workspace {Si}.

The sequence of free-space disks and spheres can be seen
in Fig. 2. It can be seen that if we do not consider the disks to
determine the EE free space spheres, they may pass through
the narrow gap, resulting in inconsistency in the MB and
the EE paths. The procedures for generating {Di} and {Si}
is almost identical and is described in Algo. 1, (for {Di}
m = 1 and exclude line 9). In the algorithm, we use ball to
refer to a disk (2-ball) or a sphere (3-ball) where P is 2D
or 3D location of the center, respectively.

V. CONSTRUCTING TREES
Construction of trees for bi-directional RRT has a few

standard steps like finding the nearest neighbor, extend,
connect, and swapping trees. In this section, we explain how
each of these for a nonholonomic mobile manipulator is
implemented to construct search trees. The random sampling

Fig. 2: A sequence of free space spheres (green) for the EE from
the start to the end along the MB free space disks (blue)

Algorithm 1 Generate free-space balls
1: function FS BALLS(Ps,Pg)
2: V ← Φ, E ← Φ, PQ ← Φ
3: r1 ← DISTANCETOOBSTACLE(Ps)
4: Q1 ← CREATEBALL(Ps, r1,Φ)
5: H(Q1)← ||Pg −Ps|| − r1
6: INSERT(PQ, H(Q1), Q1)
7: while PQ 6= Φ do
8: Qs← POP(Q,m)
9: Q ≡ (P, r, Qparent)← CLOSESTTOFREEAREADISKS(Qs)

10: V ← V ∪Q
11: E ← E ∪ (Qparent, Q)
12: if ||Pg −P|| < r then
13: return (V,E)
14: end if
15: P ← U(Q, k)
16: for pi ∈ P do
17: if pi is outside all other balls then
18: r′ ← DISTANCETOOBSTACLE(pi)
19: Q′ ← CREATEBALL(pi, r

′, Q)
20: INSERT(PQ, ||Pg − pi|| − r′, Q′)
21: end if
22: end for
23: end while
24: end function

is done inside either of the focus regions. A random sample
is either the complete (3 + n) dimension configuration
qrand (i.e in C) where the MB position is inside one of
the disks {Di} and its orientation and the n dimensions
of the manipulator are uniformly random. Or, the random
sample is a homogeneous transformation matrix Trand, with
Trand.p being the EE position inside one of the spheres {Si}
and Trand.R being a random rotation matrix. By abuse of
notation, this sampling is said to be in W .
A. Finding Nearest Neighbors

Fig. 3: qnear where, qnear.qb = (xn, yn, φn) (blue) is a
candidate nearest neighbor configuration for the randomly sampled
configuration qrand where, qrand.qb = (xr, yr, φr) (red).

The procedure to determine the nearest neighbor when
sampling is done in C is different as compared to when
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sampling is done in W . To determine the nearest neighbor
in C, we need to determine the nearest neighbor for the MB
configuration first. Due to the non-holonomic nature of the
MB, the ‘nearness’ of manipulator configurations does not
matter unless the MB poses are near. The Fig. 3(a) shows the
criterion for choosing the nearest poses for the MB. There is
a need to take the orientation of the MB of the sampled
configuration (qrand) into account. The criterion is that
(xr, yr) should lie within the gray arc (within d) described
by β. Further, sgn(γ) = sgn(β) and |γ| ≤ α, where
γ = |φr − φn| is the difference in the orientations of the
MB at qrand and qnear. We determine K nearest nodes only
based on the above criterion for nearness and of those, we
choose the one with the least Euclidean distance between the
manipulator configurations qnear.qm and qrand.qm. Here, γ,
β, α , K and d are parameters that need to be set. The nearest
neighbor, when sampling is done inW is the node in the tree
with the closest EE location to Trand.p.

B. Extend towards the Random Sample
Once the qnear is chosen according the the conditions

in Sec. V-A, we extend the MB configuration as shown
in Fig. 4. We rotate the MB at (xn, yn) to point towards
(xr, yr) and move along the line joining (xn, yn) and
(xr, yr) by a distance de to reach the point (xe, ye). The
extended MB configuration is qe.qb = (xe, ye, φe), where
φe = arctan(yr − yn, xr − xn). Further, we interpolate the
manipulator configuration towards qrand.qm from qnear.qm
and check for collision at intermediate steps. The extended
configuration is qe.

Fig. 4: Extending from
qnear.qb = (xn, yn, φn) (blue)
to qrand.qb = (xr, yr, φr)
(red), lands up at
qe.qb = (xe, ye, φe) (green) at
a distance de from (xn, yn)

When the random sam-
pling is in W , we drive the
mobile manipulator at the
near configuration qnear to-
wards Trand using Jacobian
pseudo-inverse method [30].
We use the analytical Jaco-
bian J of the EE as a func-
tion of the robot configura-
tion q as Jq̇ = ẋ, where
x is the 6 × 1 EE pose. As
the mobile manipulator is a
3 + n DOF robot, J is a
6 × (3 + n) matrix. Hence, we can write q̇ = J+ẋ + Nψ̇
Where, J+ is the Moore-Penrose inverse, J+ = JT (JJT )−1.
N is a matrix representing the projection into the null space
of J and ψ̇ is an arbitrary (3 + n)-dimensional velocity
vector. Here, N projects the velocity q̇ into the null-space
of J and the corresponding motion does not affect the EE
tracking task. The second term in the RHS can be used
to obtain different joint velocities q̇ with the same EE
velocity ẋ. This can be exploited to make sure that the
non-holonomic constraints of the MB are satisfied. In this
regard, we represent the non-holonomic constraints of the
MB i.e ẋ sinφ − ẏ cosφ = 0 as Jhq̇ = ẋh, where Jh is a
1× (3+n) vector with all the terms zero except the first and
the second terms which are sinφ and − cosφ respectively.

ẋh is 0. Combining these, we get

ψ̇ = (JhN)+(ẋh − JhJ
+ẋ) (1)

q̇ = J+ẋ + N(JhN)+(ẋh − JhJ
+ẋ) (2)

∆q ≈ J+∆x−N(JhN)+JhJ
+∆x (3)

We determine the Jacobian J at qnear. ∆x is the difference
between the EE pose at qrand and qnear. We perform
collision checks along ∆q from qnear in steps to reach qe
which in the best case is qnear + ∆q.
C. Heuristics for Connecting Trees

The start and goal trees grow in the configuration space
with sampling either in configuration space or workspace.
We attempt a connection between the two trees when they
have equal number of nodes. We select the newest node qnew
(or qe) of one of the trees and use the strategy described in
Sec. V-A to determine its nearest neighbor (qo) in the other
tree. We then attempt a connection between the two nodes
using a strategy similar to the one described in Sec. V-B.
We rotate the MB at its place at (qo.qb.x,qo.qb.y) to point
towards (qe.qb.x,qe.qb.y) and then drive towards it. After
reaching (qe.qb.x,qe.qb.y), we rotate it at its place to make
its orientation qe.qb.φ. We then interpolate the manipulator
configuration from qo.qm to qe.qm along this MB path. A
connection is successful if this connecting path of the mobile
manipulator is collision-free and satisfies the joint limits. The
heuristic refers to the strategy used to determine candidate
nearest neighbors in the other tree or the same tree. Here
we ignore those nodes which do not satisfy the conditions
described in Sec. V-A when determining the nearest nodes.

VI. THE HS-BI-RRT ALGORITHM
In this section, we formalize the algorithm based on

focused sampling for the MB and EE. The over-all algorithm,
Hybrid Sampling-based Bi-directional RRT (HS-Bi-RRT),
is shown in Algo 2. We initialize the two trees (Ts, Tg)
with the start and the goal configurations as well as the
sphere and disk sequences (lines 2-5). These are reversed
for the goal tree. The current tree is initialized as the start
tree and the other tree is initialized as the goal tree. For
each tree, there is a current sphere and a current disk in
which sampling will be done (lines 7-10). Both these are
represented by ‘ball’ in the Algo. 2 from lines 12 onward,
as we will perform similar operations on both. Rs is a
sampling ratio which tells the probability of sampling in the
configuration space as compared to the workspace. In the
function NEXTRANDSAMPLE we sample in both with equal
probability, i.e Rs is 0.5. When the sampling is to be done
in C, we generate a random sample in the current disk via a
normal distribution with a mean at the center and standard
deviation σ for the MB location. The MB orientation and the
manipulator configuration are sampled at random. Further,
10% of the sampling in C is done in the entire configuration
space with no focusing for MB, to maintain the completeness
of the algorithm. When sampling is to be done in W , we
similarly sample the EE location in the current sphere with
a normal distribution with a mean at the center and standard
deviation σ. This standard deviation is specific for the current
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ball (i.e the current sphere and the current disk) and the
current tree. The idea behind using the normal distribution
for sampling is that there is relatively more free space for
the robot to move near the center. l is the label for whether
the sampling is done in C or W . Depending on l we find the
nearest nodes and extend as explained in Secs. V-A & V-B.

Algorithm 2 Hybrid Sampling based Bi-directional RRT
1: function HS-BI-RRT(qs,qg , {Dn1}, {Sn2},Rs )
2: Ts ← {NODE(Ts,qs,S1,D1)},
3: Tg ← {NODE(Tg ,qg ,Sn2 ,Dn1 )},
4: Ts.SPHERES ← {Sn2}, Tg .SPHERES ← REVERSE{Sn2}
5: Ts.DISK ← {Dn1}, Tg .DISK ← REVERSE{Dn1}
6: Tc ← Ts, To ← Tg
7: Tc.CURRENT SPHERE ← Ts.SPHERES{1}
8: To.CURRENT SPHERE ← Tg .SPHERES{1}
9: Tc.CURRENT DISK ← Ts.DISKS{1}

10: To.CURRENT DISK ← Tg .DISKS{1}
11: while t < tmax do
12: (Srand, l)← NEXTRANDSAMPLE(Tc.CURRENT BALL,Tg ,Rs)
13: qnear ← NEARESTNODE(Tc,Srand, l)
14: (Tnew,qnew)← EXTEND(qnear,Srand, l)
15: if qnew 6= Φ then
16: Tc ← UPDATETREE(qnew)
17: Tc.CURRENT BALL.σ = (1− λ) · Tc.CURRENT BALL.σ
18: else
19: Tc.CURRENT BALL.σ = (1 + λ) · Tc.CURRENT BALL.σ
20: end if
21: if Tc.CURRENT BALL.σ < ξ′′ then
22: Tc.CURRENT BALL.σ = ξ
23: Tc.CURRENT BALL ← Tc.CURRENT BALL.child
24: end if
25: if Tc.CURRENT BALL.σ > ξ′ then
26: Tc.CURRENT BALL.σ = ξ
27: Tc.CURRENT BALL ← Tc.CURRENT BALL.parent
28: end if
29: if TOTALNODES(Tc) > TOTALNODES(To) then
30: SWAP(Tc, To)
31: else
32: ({Θconnects}, FLAG)← CONNECT(Tc, To)
33: if FLAG is SUCCESS then
34: return Path(Tc, To, {Θconnects})
35: end if
36: end if
37: end while
38: end function

When we have a new node qnew (or qe) after sampling
within a sphere or disk with the corresponding σ, it suggests
that this sphere or disk is promising for further sampling. We
then reduce the σ of this disk or sphere so as to exploit it by
further focusing the sampling in it, like in line 17. However,
if there is a failure in generating a qnew, it conveys that we
need to explore more in order to grow the tree instead of
focusing more. Hence, we increase the standard deviation σ
of that disk or sphere for sampling (line 19). The increase
and decrease of the standard deviation are parameterized by
λ (lines 17 & 19). This λ is different for a sphere and a disk
and needs to be tuned appropriately.

There has to be a limit on the exploration and exploitation
being done. If we exploit till σ is too small, then we may end
up in very similar locations for the random samples. Once
exploitation is sufficiently done, i.e the reduction of the σ of
the current sphere or the current disk less than a set value
(ξ′), we reset the σ to the original value ξ and move ahead to
the next sphere or disk in the sequence. (lines 21-24). Further,

if σ is too large, we may end up not focusing at all. That also
suggests that there have been repeated failures in generating
a new configuration. Hence, there is a need to retract and go
to the previous sphere or disk in the sequence. Further, the
standard deviation needs to be reset for the sphere or disk
(lines 25-28). If the current ball is the first or the last, we
reset the σ and do not move to a neighboring sphere or disk.

To make sure that both the start tree and the goal tree
grow equally, we swap them when the current tree has a
greater number of nodes [17] (lines 29-30). Further, when
they have an equal number of nodes, we make a connection
attempt using the procedure explained in Sec. V-C (line
32). The algorithm returns a feasible path once a successful
connection is found (line 34) within the timeout.

VII. RESULTS
A. Experimental Setup

We implemented the planner HS-Bi-RRT in MATLAB on
a Dell workstation with Intel Xeon 3.5 GHz and 32 GB
RAM. We benchmarked our method with existing algorithms
and variations of our method. WD-Bi-RRT refers to when
Rs is zero, and the sampling for the MB happens inside
the workspace disk only, whereas the sampling for the
manipulator is done at random in its configuration space.
WS-Bi-RRT is a variant of our algorithm when Rs is 1, i.e.
sampling happens only in the workspace spheres for the EE
location. All of these use the heuristic for connecting the two
trees. Bi-RRT refers to the standard RRT-connect [10] with
sampling in the entire configuration space along. Whereas,
Bi-RRT+ is Bi-RRT with the heuristic for connection.

We measure the time and the average path cost, which
is the distance traveled by the object being carried. We
have tested our method on a diverse set of 20 scenarios
with a failure time-out of 1000 seconds. The diversity in
scenarios is introduced by having a differential drive mobile
manipulator to carry different large objects, which are planar
(like a broom, rod, plate, wheel) and 3D (trash bin, chair)
in different types of challenging scenarios. We have also
extended the algorithm to a bimanual mobile manipulator
carrying two objects in its two arms. The 20 scenarios are a
combination of the robots carrying these objects in various
congested environments. A representative subset of the test
scenarios is shown in Fig. 5. These scenarios contain easy
and challenging cases, to show the relative performances of
the competing methods. The objects being carried are large,
and it can be observed that we cannot have the manipulator
in a “home” position and carry them without coordinating the
motions of the MB and the manipulator. The parameters are
as follows: α = π

8 , |β| = π
8 , λ = 0.2, ξ = 0.05, ξ′ = 0.75,

ξ′′ = 3. These were determined empirically by testing in
numerous scenarios.
B. Discussion

In Tab. I, we show the computation time and path cost for
the five cases. The path cost signifies how good the initial
solution is. A better and faster initial solution, when coupled
with an any-time algorithm like BIT* may produce the
optimal solution quicker. When tested over 20 scenarios, we
observe that HS-Bi-RRT is, on average ∼ 3 times faster than
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Fig. 5: The 5 of the 20 test scenes for which the numerical results
are presented in Tab. I. Green: Start, Blue: Goal configurations

TABLE I: The average computation time and average path length of
the EE for he 5 test cases. The average is over 20 runs. Computation
time includes the time required for generating free-space balls.

the next best method for that scene. We use the heuristic in
all the competing methods. If we select nodes for connection
based on direct Euclidean distance in C like in [13] instead
of using the heuristic, there is on average about 73% failure
rate for HS-Bi-RRT, 81% for WD-Bi-RRT, 71% for WS-Bi-
RRT and 90% for Bi-RRT. Further, when there is a success,
the computation time is ∼ 9 times more on average. This
shows the importance of using the heuristic for connections.

In scene S04 the robot carries a long broom from a box to
the room via a narrow passage. In S07 the robot transports
a chair from one room to another. In both, there is a single
narrow passage to be traversed to reach the goal for the MB.
It can be observed in Tab. I that for these cases, HS-Bi-RRT,
which has focusing for the MB as well as the manipulator,
produces a path significantly faster than the other three. WD-
Bi-RRT, which has focusing for the MB, produces a solution
faster than Bi-RRT+. It was observed that the time taken
by WS-Bi-RRT is high due to the infeasibility to determine
successful connections between the two trees. This happens
due to biasing towards very different configurations for the
manipulator, which do not connect in such narrow passages.
However, WS-Bi-RRT produces the best quality solution.
This can be attributed to the greedy sampling for the EE
pose towards the goal. In these scenes, each method was
successful in producing a solution for all the 20 attempts.

In scene S12, the robot has to transport a large metal-
lic sheet from one machine to another while avoiding a
pillar on the way. The pillar may result in the workspace
spheres taking a different homotopy class as compared to

the workspace disks. The MB cannot pass between the pillar
and the machine as the gap is too small. This can result in
configurations in the two trees that may never connect due
to collision with the pillar. This is where the advantage of
sampling for the manipulator in the entire configuration space
is evident. However, it should also be observed in Tab. I that
HS-Bi-RRT still produces a better solution quicker than WD-
Bi-RRT on average. This is due to the fact that focusing for
the manipulator, even if misguided, helps when coupled with
complete configuration space sampling. Here, WS-Bi-RRT
is successful in producing a solution within 1000 seconds
only ∼ 60% of the times. However, when WS-Bi-RRT does
produce a solution, it does so faster than WD-Bi-RRT and
Bi-RRT+ and with a shorter path length.

Scene S13 shows the cases when there are multiple ho-
motopy classes for the MB. Here, the time taken by HS-Bi-
RRT is lower yet comparable to that of WD-Bi-RRT and Bi-
RRT+. This is due to the fact that there is enough free space
for them to grow and find connections. In fact, Bi-RRT+ is
faster than WD-Bi-RRT as it can find a longer path in the free
space quickly. In such cases with multiple homotopy classes,
the quality of solution by HS-Bi-RRT is highly dependent on
the initial sequence of workspace disks. It may not find the
correct homotopy class in each run. We can easily extend
our algorithm to manually select a homotopy class to bias
the sampling of the MB configurations.

In S17, we show that our algorithm can be extended to
a nonholonomic bi-manual mobile manipulator for trans-
porting two different objects in the two arms and passing
through a narrow door. The algorithm is modified to have
two different workspace sphere sequences for the two EEs.
Here, it can be observed that results follow the same trends as
in the S04 and S07. Moreover, WS-Bi-RRT fails to produce
a result in 7 out of 20 runs. In this example, determining
a feasible connection between the two trees is even more
challenging due to the presence of 2 manipulators.

The video of simulations of the robot trajectory and
physical experiments can be found in the following link:
https://youtu.be/UfxfBq3bjHw

VIII. CONCLUSIONS AND FUTURE WORK
In this paper, we have addressed the motion planning

for nonholonomic mobile manipulators using a sampling-
based method described by our algorithm HS-Bi-RRT. In
such problems, determining a feasible solution is a chal-
lenge due to narrow passages in the configuration space
and the nonholonomic constraints of the MB. Focusing the
sampling in different regions of the configuration space can
significantly reduce the computation time. For a mobile
manipulator, this focusing must be done for the MB and the
manipulator in appropriate regions to accelerate the growth
of the trees towards each other. The primary contribution of
this paper is a method to coordinate the focusing for the
MB and the manipulator in the workspace and grow the
trees in appropriate directions. Moreover, we have presented
a heuristic for determining connections between the MB
first and then find connections for the manipulator. It was
observed that without this heuristic, each of the algorithms
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have a high failure rate to even compute a path. Furthermore,
we also sample in the entire configuration space to make sure
that the algorithm is probabilistic complete. We have shown
that these together significantly reduce the computation time
as compared to existing methods in diverse scenarios. In this
work, we have not addressed cases where the workspace
disks are misguided, for example, having a short door so
that the mobile manipulator cannot pass, but the mobile base
alone can pass under. Since our method is probabilistically
complete, it will find a path in this case as well, but the
computation time will be significantly higher. In the future,
we also plan to use the techniques in [31] for closed-loop
implementation of the trajectories generated by our method.
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