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Abstract— Sensor-based activity recognition for construction
vehicles is useful for evaluating the skills of the operator,
measuring work efficiency, and many other use cases. There-
fore, many researches have explored robust activity-recognition
models. However, it remains a challenge to apply the model to
many construction sites because of the imbalance of the dataset.
While it is natural to employ multi-label representation on
imbalanced data with a large number of activity categories,
multi-label robust classification for activity recognition has yet
to be resolved because of the nature of the time-series property.

In this work, we propose a novel multi-label long short-term
memory (LSTM) model, which is effective for the sequence
multi-labeling problem. The proposed model has connections
to the temporal direction and attribute direction, which exploit
both the temporal pattern and co-occurrence among attributes.
In addition, by providing a bidirectional connection structure
in the attribute direction, the model enables us to alleviate the
dependency of the chain order in what we call “classifier chain®,
which is a classical approach to multi-label classification.

To validate our methods, we conduct experiments using real-
world construction-vehicle dataset.

I. INTRODUCTION

In this work, we tackle construction-vehicle activity recog-
nition, which is useful for evaluating the skills of the opera-
tor, measuring work efficiency, and many other use cases. In
similar past studies, many researchers have explored activity
recognition for humans and robots [1], [2], [3], [4], [5]. [6],
(71, (81, [9].

Many studies have reported that modeling temporal pat-
terns is very important for activity recognition [4], [5], [6],
[7], [8], [9]. Vail et al. [4], for example, has proposed a
conditional random field (CRF)-based activity recognition
model for robots. Long short-term memory (LSTM) [10] has
been researched for a number of years for the modeling of
time series such as part-of-speech tagging [11] and machine
translation [12]. Recently, LSTM has also been applied to
many activity-recognition researches [7], [8], [9] because of
its robustness.

While LSTM has been generally successful, imbalanced
data, where some classes have small amounts of data com-
pared to those of other classes, is however still a problem in
construction-equipment recognition. Construction machines
are used at various sites, such as quarries and coal mines, and
thus, activity recognition involving construction machines
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Multiclass: Dig while stop Multilabel: {Digging, Stop, Stop}

Fig. 1: Example of converting multi-class into multi-label

leads to large-scale classes because various operations are
performed at each site. Furthermore, the acquisition cost
of construction-vehicle data is very expensive in terms of
time and money. Therefore, it is very difficult to obtain
sufficient data for each label. When we apply a standard
multi-class LSTM model to this domain directly, it will be
overfitted to classes which have large amounts of data. Thus,
the classification accuracy for classes with less data will be
greatly reduced.

To tackle this data-imbalance problem, we convert a multi-
class dataset to a multi-label dataset by assigning labels to
the partial and simple activities of the construction vehicle, as
shown in Fig. 1. This method has the following advantages:

« Imbalance of the dataset can be alleviated by exploiting
each attribute, which results in the improvement of
recognition performance.

o Test data can be classified even if training data is not
available.

However, the discussion is insufficient for constructing an
effective model toward multi-label time-series datasets like
this study.

Lipton et al. [13] have proposed a multi-label diagnoses
model based on time-series feature extraction, using LSTM
for clinical medical data such as heart-rate data. However,
this model uses LSTM only for temporal feature extraction,
so it is not a sequence-labeling model, which is what is
required in this study.

In one of the few existing studies, Shimosaka et al.
[14] have proposed multi-task CRF (MT-CRF), which is a
fully connected CRF model for all attributes. Through the
introduction of full connections to CREF, it becomes possible
to simultaneously consider the relationships among attributes
and the dependency on the time series. On the other hand,
because CRF is a linear model, it is not sufficient for complex
construction-equipment data. In addition, CRF cannot model
long-term time-series dependencies because it is based on a
first-order Markov property.

In this study, we propose a novel sequence multi-labeling
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model based on multi-label LSTM, which is effective for
multi-label time-series datasets. The proposed method can
consider the complex and long-term temporal pattern of
data and dependency among attributes simultaneously by
combining LSTM and a multi-label classification method.

One important challenge in multi-label time-series classifi-
cation is that the effective architecture of multi-label LSTM
is not obvious and thus needs to be explored. Therefore,
we comprehensively explore the important factors of model
architecture for the sequence multi-labeling problem and
incorporate them into the implementation.

In summary, the contributions of this research are as
follows:

« We propose a classifier chain (CC)-based LSTM model,
which is effective for the sequence multi-labeling prob-
lem. The proposed model can consider the relation-
ship between long-term dependency and co-occurrence
among attributes simultaneously by connecting hidden
nodes in the time-series direction and attribute direction.

o In order to search for an effective architecture, we
comprehensively investigate the important factors for
the sequence multi-labeling problem. We raise three
types of factors to be considered: 1) the direction
of temporal connections, 2) the direction of attribute
connections, and 3) how to connect each layer. Two
types of methodologies are introduced to each of these,
leading to eight CC-based multi-label LSTM models.

« To validate our proposed method, we conduct exper-
iments using real-world construction-vehicle dataset.
The experimental results show the importance of simul-
taneously considering the long-term temporal patterns
and co-occurrence among attributes. Moreover, the ef-
fectiveness and importance of the proposed architecture
are also discussed through the experimental results.

II. RELATED WORK

Activity recognition: In activity-recognition research,
time-series models have been widely studied for handling
the temporal dependencies of activities. Thus, Markov-based
models have been applied in this research field for many
years. According to literature, first-order Markov-based mod-
els have been actively applied to this domain to model
temporal dependencies [4], [5], [6]. On the other hand,
first-order Markov property-based models cannot consider a
longer-term context because of the assumptions that are used
with the Markov property.

Therefore, research on the application of recurrent neural
network (RNN) [15], a deep-learning model that can take
into account the long-term context, is in progress. RNN is a
model that considers the long-term context while recursively
calculating the internal state and has improved accuracy by
modeling to a long-term time series. However, because of
its model structure, RNN has a problem with the gradient
vanishing during long-term time-series learning [16]. In
order to solve this RNN gradient-disappearance problem, the
application of long short-term memory (LSTM) [10] with

a forgetting gate inside the cell has been actively applied in
recent years [7], [8], [9].

Multi-label classification: Unlike in conventional
activity-recognition researches, we tackle a sequence multi-
labeling problem, wherein multiple activity attributes are
estimated for each time bin. Problem transformation methods
are intensively applied to a multi-label classification prob-
lem [17], [18]. Label powersets (LP) [17] are proposed as
a simple transformation problem, wherein single labels are
annotated into powersets of multi-labels. LP are a simple yet
effective method. However, LP become problematic when the
number of labels is increased, which leads to an explosion
of classes. Therefore, LP are insufficient for large-scale
datasets. To tackle this issue, binary relevance (BR) [17] is
proposed, where the classifier of each attribute is individually
trained. However, BR cannot model the co-occurrence among
attributes, which is important for multi-label classification.
Therefore, in recent years, the application of classifier chain
(CC) [19] has become popular. CC considers the co-
occurrence among labels by incorporating a chain structure
into the classifier, by inputting the classification results as
features.

Multi-label classification towards time-series: In recent
years, multi-label classification models for time-series data
have been attracting attention from researchers. Chen et
al. [20] proposed a CNN-RNN-based multi-label classifica-
tion model, which extracts local features using convolutional
neural network (CNN) and then extracts long-term tempo-
ral patterns using RNN for computer-vision-based activity-
recognition tasks. Lipton et al. [13] proposed a multi-label
diagnoses model for clinical medical data by applying LSTM
as a temporal feature extractor. While these models result
in a high performance for multi-label time series, these
models are not for sequence-labeling models. Therefore,
these models cannot be cast into our domain. x Shimosaka
et al. [14] proposed MT-CRF for a sequence multi-labeling
problem, which is of a similar problem setting to our domain.
MT-CRF models the co-occurrence of each attribute label
and the temporal dependencies by having connections across
all labels. However, CRF is a linear model, so it is not suffi-
cient for learning the complex relationships among sensors.
Besides, because it follows Markov property, it cannot model
long-term temporal patterns.

III. ACTIVITY RECOGNITION FOR CONSTRUCTION
VEHICLES

A. Problem setting

Activity recognition in this study is formulated as a
sequence-to-sequence mapping problem, where activity tags
at each time are inferred from the sequence of sensor
values attached to the construction vehicles. We define the
number of sensors as d and the discretized time index
as t € {l1,---,T}. The vector z; € R? represents the
concatenation of sensor values at time ¢. The activity labels at

T
time ¢ are represented by y; = (yﬁl) il/t(2) yt( )) €
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Y1 X Yy X -+ X Y,,. The objective is to estimate label se-
quence {y;};_; from the sequence of sensor values {x;}’_;,
with high accuracy.

In this research, we employ a sliding-window-based fea-
ture extraction for the input of LSTM. We extend the input
vector using a mk size window (m,k € N). Here, m is
the rate of sampling and k is the dimension of a vector
obtained after downsampling. That is, the vector at time ¢
is first extended by collecting sensor vectors focusing on
the t-th frame using the mk size window. The extended
vector is then downsampled with an interval of m frames.
Finally, the concatenated input vector data from the series
of vector data are obtained by normalizing the extended
vector to make its mean equal to 0 and its variance equal
to 1 for each column from the raw sensor vector x; to Z;.
The formulation of this procedure can be written as follows:

X, = T 2T 2T T RA(2k+1)
t = t—mk t—m(k—1) t+mk € .

B. Standard long short-term memory

We formulate a standard LSTM model used in multi-class
sequence labeling. LSTM receives input sequence {X;}!=
from 1 to K € N and output estimation sequence {y;}!=
for the given input.

LSTM captures the long-term dependency, propagating
temporal information via the hidden nodes. From this char-
acteristic,c LSTM has been frequently applied to activity-
recognition researches in recent years [8], [9], [7]. The
hidden nodes and outputs are formulated as follows:

i = o (WX + Whihi1 +b;), ()
ft = O (Wmet + thhtfl + bf) R 2)
¢ = tanh (W, Xy + Wyzhi—1 + bz), 3)
¢t = 4406+ frocyy, “4)
o; = 0 (WyoXi+ Wiohi 1 +b,), )]
h; = o;otanh(¢). (6)

W. and b. represent weight matrices and bias vectors, re-
spectively. Operator o indicates element-wise production, and
o(x) = H%p(*w) represents the sigmoid function. ¢, o,
and f; represent the input gate, output gate, and forget gate,
respectively. These gates select what kind of information
should be discarded or not from the input data. h; is a
memory cell which stores the context information. This
memory cell will be used to model the temporal dependency.
Estimation for the data at frame ¢ is given by the label which
maximizes the probability p; = softmax (h;).

C. Conventional multi-label classification models

The goal of this study is to construct a multi-label LSTM,
which is effective for multi-label time-series datasets. This
section outlines the conventional multi-label classification
method, which is the basic architecture of the proposed
model.

1) Label powersets (LP): Label powersets is a technique
that converts multi-label classification to a multi-class clas-
sification problem by reassigning a single label to a set of
multi-labels. Because it converts the problem into a simple
multi-class problem, existing methods can be applied easily.

On the other hand, the number of single labels increases in
proportion to |Y7||Yz| - - - |Y;n|- Thus, the dataset will have an
imbalance, which leads the model to an over-fitting problem
if |Y] is large.

2) Binary relevance (BR): Binary relevance trains a model
for each attribute 3" (i € {1,--- ,m}) € V; F;: R? - V;
independently. Because binary relevance performs training
for each attribute independently, it can suppress the imbal-
ance of dataset better, compared to label powersets. However,
because the independence of each attribute is assumed, the
consistency of the label combination is not guaranteed (e.g.,
inconsistent output such as digging while running) because
of the independence of the recognition phase.

3) Classifier chain (CC): Classifier chain models the co-
occurrence among attributes by introducing a chain structure
for the classifier. This model enables us to model co-
occurrence by chaining each classifier to the others.

A chain structure is introduced by adding the clas-
sification result for an attribute as an input feature to
the input of another classifier. In this study, there are
cases where multi-class labels, rather than binary la-
bels, are assigned to each attribute. Thus, we conduct
encoding classification via one-hot encoding. That is,
XT g g
is used for training classifier for the :-th attribute
fii RE {0, 13711 ... x {0, 1}1Yi-1] = V;. Here, 4,7 is
a one-hot vector using classification result for attribute j.

CC has been widely used in multi-label classification be-
cause of its ability to model co-occurrence among attributes.
On the other hand, the performance of the model highly
depends on the structure of the chain. However, it is not
obvious what structure is the best.

In the following sections, we discuss the design principles
of the multi-label LSTM based on this CC model.

feature vector Xt(i) =

IV. MULTI-LABEL LSTM FOR SEQUENCE
MULTI-LABELING

Unlike previous multi-label classification researches [21],
[22], [23], [24], this study deals with a sequence multi-
labeling method that assigns a multi-label to each frame.
Therefore, modeling temporal dependency and handling de-
pendency across attributes are both important.

Existing methods [21], [22], [23], [24] are classification
models that are not based on time-series data, and thus cannot
be directly applied to sequence multi-labeling as in this work.
In addition, these models are not sufficient because they do
not consider temporal patterns.

In this study, we propose a multi-label LSTM model that
is effective for sequence multi-labeling problems.
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TABLE I: Design guidelines towards implementation of Multi-label LSTM

Points

Temporal connection

Attribute connection

Connection target

Way of implementation

Unidirection, Bidirection

One-way-ordered, Arbitrary-ordered

Hidden node, Softmax

(a) ACC-BLSTM

(%)

(b) SCCC-LSTM

Fig. 2: Example of variants of cascaded classifier chain LSTM (CCC-LSTM). (a) represents the arbitrary-ordered cascaded
classifier chain bidirectional LSTM (ACC-BLSTM), which chains temporal and attribute layers bidirectionally. (b) represents
the softmax version cascaded classifier chain LSTM (SCCC-LSTM), which chains softmax outputs for attribute layer.

A. Design policy towards multi-label LSTM

In this study, we propose a novel multi-label LSTM model
for multi-label time series.

The basic architecture for the multi-label LSTM model
is based on the classifier chain (CC) model introduced
in section III-C. The purpose of this work is to build a
model that simultaneously takes into account the long-term
temporal patterns and the co-occurrence among attributes
by having a connection between the time series and the
attributes. However, it is not obvious what kind of CC-based
LSTM architecture would be effective. In this study, we will
raise factors that are considered to be important for sequence
multi-labeling and incorporate these factors into the proposed
architectures. We focus on three types of components: the
direction of temporal connections, the direction of attributes
connections, and how to connect each layer.

Firstly, we consider two types of connections in the
direction of temporal connections: unidirectional and bidi-
rectional. By incorporating bidirectionality, it is possible to
use more temporal information, and it enables the model to
increase the expressive ability for time series.

Secondly, we consider two types of connection directions
in the direction of attribute connections: one-way-ordered
and arbitrary-ordered. By incorporating bidirectionality, we
will obtain the possibility of reducing the dependency of
chain structure in CC, making the model more stable.

Finally, we consider two ways of connecting in the at-
tribute direction: chaining hidden layers of softmax values.
The basic architecture is to consider co-occurrence among
attributes by connecting hidden layers. On the other hand,
as the number of dimensions of the hidden nodes increases,
the input dimension becomes enormous and the risk of over-
fitting is increased. Therefore, we introduce chaining softmax
values to reduce the number of parameters.

In summary, we construct models following the design
guidelines shown in table 1. In this study, these factors are

combined to construct models, and we have a total of 2% =
8 CC-based models. We will give the formulation of the
proposed architecture in the next section.

B. Proposed method: multi-label LSTM

1) Cascaded classifier chain LSTM (CCC-LSTM): The
basic model of classifier chain (CC)-based LSTM. The
difference from the standard LSTM model is that this model
makes use of feature vector vil) for the [-th attribute to model
co-occurrence among attributes. This feature vector is made
by concatenating the outputs from previous hidden layers
and input data. The internal gates in the LSTM for the [-th
attribute are calculated as follows:

o = ()(f DT T thT)T(7)
il = o (wiel + winl, + ), (8)
O = o (Wi Wi m2, e)), ©)
&)~ tanh ( 5 R+ b)), (10)
)V = iPoe! f” o), (11)
o) = o (Wihol + win{, + b)), (12)
Y = ol 6 tanh (cﬁ”) . (13)

By using a vector formulated as (7) and previous hidden
nodes hgl_)l, we define the calculation process of CCC-LSTM

cell (7) -

(13) as
D = ccoLST™M(v! ™, n" ).

(14)

It should be noted that CCC-LSTM is equivalent to the

well-known standard LSTM, except that this model has
another connection along with attributes. This connection
makes it possible to model dependencies among the at-
tributes. Based on this CCC-LSTM, we formulate factors
in the table I into the following sections.
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Fig. 3: Data distribution for (a) single label, and (b) - (f) each attribute after conversion to the multi-label

2) Arbitrary-ordered Cascaded Classifier Chain LSTM
(ACC-LSTM): A variant of the CCC-LSTM model, in which
bidirectionality was introduced to the connection for the
direction of the attribute. In the CC model, classification per-
formance is highly dependent on the chain structure. In order
to alleviate this dependency, we introduce bidirectionality.

We define equation (14) as the calculation process for
upward CCC-LSTM cell (U)hgl). Similarly, we define the
calculation process for downward CCC-LSTM cell as

O —O) ceCcLSTM(Pot) ™ Dy (15)

Final output is obtained by concatenating theTupward and
downward vector h\") = WRHT  OROT)

3) Cascaded classifier chain bidirectional LSTM (CCC-
BLSTM): A variant of CCC-LSTM model, in which bidirec-
tionality was introduced for the time direction. This architec-
ture enables models to use more temporal information, which
leads to a high classification ability. This kind of model has
been firstly proposed as BLSTM [25].

In combination with the aforementioned ACC-LSTM
model, we implement a model which introduced all con-
nections bidirectionally shown in Fig. 2a.

4) Softmax version cascaded -classifier chain LSTM
(SCCC-LSTM): A variant of CCC-LSTM model that uses
softmax output for the chaining of hidden nodes. In CCC-
LSTM, the dimension of the feature vectors is significantly
increased at the suffix of the chain, carrying the risk of
overfitting due to the curse of dimensionality. Therefore,
we implement SCCC-LSTM, which is a variant of CCC-
LSTM model that links output obtained by softmax output
pl = softmax (hi) instead of hidden nodes h;. By using
softmax values, as shown in Fig. 2b, instead of directly
chaining hidden nodes, it considers the co-occurrence among
attributes, while reducing the number of dimensions of input
features even at the suffix of a chain.

V. EXPERIMENTS

A. Construction-vehicle dataset

The dataset used for this experiment consists of multi-label
time-series data that record the work of construction vehicles
for around 55 minutes. The sensor values are acquired at
intervals of 100ms. As a result, we have 34,782 frames
dataset. The acquired data contain engine speed, engine
torque, pressure in each direction of the control lever, and
so on. For the experiment, 42 types of sensors are used.

The dataset contains 68 labels as a single label. Towards
this single label, we annotated multi-labels focusing on the
partial activity of the construction equipment. Specifically,
a total of five types of attributes are annotated: category of
work, movement of the bucket, loading state, turning state,
and running state. Among these attributes, "movement of
the bucket" is composed of 12 classes, while the others are
binary classes. Fig. 3 shows the data distribution for (a)
single label as multi-class representation and (b) to (f) for
each attribute. As we can see, the distribution for the single
label is highly imbalanced and most labels have almost no
data. On the other hand, in the multi-label, although there are
some classes which have less data, imbalance is alleviated
compared to with the single label.

To compare these data imbalances, we introduce the sim-
ple index. Define C'% . as the maximum value of the number
of data points in the attribute ¢ and C?;, as the minimum
value. We define simple data imbalance as C{,, = g‘;‘j"‘.
Whenl this index is used, the imbalance for a single label
is CS;II‘gle = 7491.0, while the imbalances for each of the
attributes of a multi-label are CState = 1.06, CLoad = 1.87,
Cvork = 89.5, CRUn = 11.47, and C{Iy™ = 1.37. This
index also shows that the imbalance is highly reduced.
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TABLE II: Accuracy for the classes wherein no training data is available.

Models BR-LSTM | CCC-LSTM | SCCC-LSTM | ACC-LSTM | CCC-BLSTM | ACC-BLSTM
Subset-Accuracy 0.122 0.012 0.0008 0.01 0.122 0.122

B. Experimental setting 0.56 N

We employ simple comparative methods: combination A
models of logistic regression (LR), multilayer perceptron 0.54r 1
(MLP), and multi-label classification. We also employ label
powersets LSTM (LP-LSTM) and binary relevance LSTM gos2r . . ]
(BR-LSTM). We employ the 8 variants of CCC-LSTM 3 v v
models discussed in IV-A as the proposed models. Feature g 0.5 ° ik
extraction is performed via a time-sliding window, where §0487 :§§‘§”§:W |
size is set to 5. For the parameters of LSTM, we set 256 for e - S
the dimension of each hidden layer and 0.5 for the dropout 046l v. ¢ ¢ seisni’ |
of each layer. The sequence of LSTM is set to 50. The MLP ' :%gr:i%rw
has 3 hidden layers and set to 256, 128, and 64 dimensions 0.4 ‘ Ly ‘ SACCBLSTH

for each of the hidden layers. LR is regularized via L2
regularization, with a regularization coefficient of 1.0. These
parameters are empirically determined through experiments.
We conduct 10-fold cross-validation for the validation.

We employ subset accuracy and Hamming accuracy as
evaluation metrics. Subset accuracy indicates an exact match
rate between estimation and ground truth, while Hamming
accuracy indicates a partial match rate between estimation
and ground truth. For the given instance  and ground truth
y, each index is formulated as follows:

Subset(y, f(x)) [y = f (=],
l

P = fi@l
i=1

(16)
Hamming(y, f(z)) —

Here, [[-]] denotes the indicator function, which returns 1 if
condition - is true and O otherwise.

C. Results

1) Comparing basic performance of each model: Fig. 4
illustrates the results of plotting the Hamming accuracy on
the horizontal axis and subset accuracy on the vertical axis. In
Fig. 4, the model is revealed to become better as it proceeds
to the upper right. Fig. 4 shows that the proposed multi-
label LSTM model outperforms other models such as LR and
MLP. In particular, the CCC-BLSTM model that incorporates
bidirectionality in the time-series connection demonstrates
good performance. This result establishes the importance of
considering temporal information.

Focusing on the multi-label method, the classifier-chain-
type model shows a relatively good performance compared
to those of the other models, excluding MLP. This result
shows the importance of considering co-occurrence among
the attributes.

The effect of the arbitrary-ordered model is small in
the CCC-LSTM models. Meanwhile, this effect improves
when SACC-BLSTM and SCCC-BLSTM are compared. The
improvement comes from reducing the dimension of features
via chaining softmax values, while the number of parameters
is increased via the arbitrary-ordered architecture.

079 08 081 082 083 084 085 086
Hamming accuracy
Fig. 4: Results with scatter plot: Horizontal axis shows the
Hamming accuracy; vertical axis shows the subset accuracy

The LP models show good performance in terms of
subset accuracy but low performance in terms of Hamming
accuracy. These results indicate that LP models are strongly
influenced by imbalanced data because the LP models solve
the problem as a multi-class classification, and thus, tend to
be overfitted to the class with a large number of data points.

2) Recognition performance for missing class: In
construction-vehicle activity recognition, there are cases
where some sites cannot provide any training dataset. Hence,
it is important to recognize classes which are missing in
the training dataset. To evaluate the performance for such a
situation, we conduct an additional experiment.

We remove the class from the training dataset, and then
we train our proposed model by using the remaining dataset.
We evaluate the performance of the proposed model via
the removed classes. The parameters are the same as those
described in V-C.1. We remove a class which contains a total
of 1,313 frames in the dataset, and use it for test.

Tab. IT shows the result of this experiment. According to
the results, our proposed model has the ability to recognize
classes which have no training dataset. This result validates
the effectiveness of our proposed method. Note that the LP
model cannot classify any given classes because no training
dataset is available. Therefore, this result also indicates
the effectiveness of multi-label, rather than multi-class, for
construction-vehicle activity recognition.

VI. CONCLUSION

In this study, we discussed the construction of a multi-
label LSTM that is effective for multi-label time-series
data. Because the effective architecture was not obvious, the
architecture was formulated and implemented focusing on
three points: time-series connection, attribute direction con-
nection, and connection method. In addition, a comparison
experiment was conducted using actual data that recorded
construction-equipment work to verify the effectiveness. As
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a result of the experiment, the CCC-BLSTM model in-
corporating time-series bidirectionality demonstrated good
performance. From this observation, it can be said that
it is important to simultaneously consider the relationship
between attributes and time-series dependency.

Future issues include support for various construction-
equipment models. Because the current model is effective
for only one type of equipment, a model that can be applied
to multiple types of equipment is desired. Another issue
includes validating our proposed towards other real-world
datasets.
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