
Learning-Based Distributionally Robust Motion Control
with Gaussian Processes

Astghik Hakobyan Insoon Yang

Abstract— Safety is a critical issue in learning-based robotic
and autonomous systems as learned information about their
environments is often unreliable and inaccurate. In this paper,
we propose a risk-aware motion control tool that is robust
against errors in learned distributional information about
obstacles moving with unknown dynamics. The salient feature
of our model predictive control (MPC) method is its capability
of limiting the risk of unsafety even when the true distribution
deviates from the distribution estimated by Gaussian process
(GP) regression, within an ambiguity set. Unfortunately, the
distributionally robust MPC problem with GP is intractable
because the worst-case risk constraint involves an infinite-
dimensional optimization problem over the ambiguity set. To
remove the infinite-dimensionality issue, we develop a system-
atic reformulation approach exploiting modern distributionally
robust optimization techniques. The performance and utility
of our method are demonstrated through simulations using a
nonlinear car-like vehicle model for autonomous driving.

I. INTRODUCTION

The adoption of learning-based decision-making tools for
the intelligent operation of mobile robots and autonomous
systems is rapidly growing because of advances in machine
learning, sensing, and computing technologies. By learning
its uncertain and dynamic environment, a robot can use
additional information to improve the control performance.
However, the accuracy of inference is often poor, as it is
subject to the quality of the observations, statistical models,
and learning methods. Employing inaccurately learned infor-
mation in the robot’s decision making may cause catastrophic
system behaviors, in particular, leading to collision. The
focus of this work is to develop an optimization-based
method for safe motion control that is robust against errors in
learned information about obstacles moving with unknown
dynamics.

Learning-based control methods for mobile robots and
autonomous systems can be categorized into two classes. The
first class learns unknown system models, while the second
class learns unknown environments. Control methods that
learn unknown system dynamics typically use model predic-
tive control (MPC) [1]–[5] and model-based reinforcement
learning (RL) [6]–[8]. These tools employ various learning
or inference techniques to update unknown system model
parameters that are, in turn, used to improve control actions

This work was supported in part by the Creative-Pioneering Researchers
Program through SNU, the Information and Communications Technology
Planning and Evaluation (IITP) grant funded by MSIT(2020-0-00857), and
Samsung Electronics.

A. Hakobyan and I. Yang are with the Department of Electrical and
Computer Engineering, Automation and Systems Research Institute, Seoul
National University, Seoul 08826, South Korea, {astghikhakobyan,
insoonyang}@snu.ac.kr

or policies. On the other hand, the methods in the second
class put more emphasis on “learning the environment”
rather than “controlling the robot”. In particular, for learning
the behavior (or intention) of obstacles or other vehicles,
several methods have been proposed that use inverse RL [9]–
[11], imitation learning [12], [13], and Gaussian mixture
models [14], [15], among others.

Our method is classified as the second since it learns
the movement of obstacles. However, departing from the
previous approaches, we emphasize the importance of “con-
trol” in correcting potential errors in “learning”. In our case,
the key idea is to determine the motion control action of
the agent that is robust against errors in learned informa-
tion about the obstacles’ motion. Specifically, our method
uses Gaussian Process (GP) regression [16] to estimate the
probability distribution of the obstacles’ locations for future
stages based on the current and past observations. To actively
take into account the possibility that the learned distribution
information may be inaccurate, we propose a novel MPC
method that optimizes the motion control action subject
to constraints on the risk of unsafety evaluated under the
worst-case distribution in a so-called ambiguity set. Thus,
the resulting control action will satisfy the risk constraints
for safety even when the true distribution deviates from the
learned one within the ambiguity set.

Unfortunately, the distributionally robust MPC (DR-MPC)
problem is challenging to solve since the worst-case risk con-
straint involves an infinite-dimensional optimization problem
over the ambiguity set of probability distributions. To resolve
this issue, we propose a reformulation approach using (i)
modern distributionally robust optimization techniques based
on Kantorovich duality [17], (ii) the extremal representation
of conditional value-at-risk, and (iii) a geometric expression
of the distance to the union of half-spaces. The reformulated
DR-MPC problem is finite-dimensional and can be efficiently
solved by using existing nonlinear programming algorithms.
Through simulations using a nonlinear car-like vehicle model
for collision-avoidance racing, we empirically show that,
unlike the standard non-robust version, our method preserves
safety even with moderate errors in the results of GP regres-
sion.

The remainder of the paper is organized as follows. In
Section II, we present a GP regression approach to learning
the motion of obstacles. In Section III, we introduce the
learning-based DR-MPC method with a tractable reformula-
tion technique. The simulation results for collision-avoidance
racing are presented in Section IV.

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 7667

II. LEARNING THE MOVEMENT OF OBSTACLES USING
GAUSSIAN PROCESSES

A. Obstacle Model

We consider a rigid body obstacle interfering with the
motion of a mobile robot in Rny . The obstacle state xo(t) ∈
Rnx is defined as the position and orientation of an arbitrary
point on the obstacle. The obstacle state evolves with 1:

xo(t+ 1) = xo(t) + Tovo(xo(t)), (1)

where vo(xo(t)) ∈ Rnx is the vector of the obstacle’s
velocity, and To is the sample time. For ease of exposition,
we describe the case of a single obstacle, but our method is
valid in multi-obstacle cases as well.

Having the obstacle’s states, as well as its geometric
parameters, the region occupied by the obstacle at stage t
can be modeled (or over-approximated if necessary) as a
convex polytope defined by m number of half-spaces:

O(t) := {x ∈ Rny | Gtx ≤ gt}. (2)

Here, Gt ∈ Rm×ny and gt ∈ Rm are found from the
geometry of the obstacle and the current state by Gt =
G(xo(t)) and gt = g(xo(t)).

For example, for a car-like obstacle in a 2D environment,
the states can be chosen as the Cartesian coordinates and the
orientation of an arbitrary point on the obstacle. However, by
symmetry, the simplest motion pattern will be obtained for
the three candidate states that are shown in Fig. 1. The region
occupied by the obstacle is over-approximated as a rectangle,
the parameters of which can be found using the geometry of
the vehicle (e.g., the length and width of the car) and any of
the three candidate states. To find the Gt and gt, we need
to know the exact expression of vo. However, in practice
it is impossible for a robot to have full knowledge of its
environment, in particular, the behavior of the obstacle. For
predicting the obstacle’s motion, we use the GP regression
approach introduced in the following subsection.

B. Gaussian Process Regression

GP regression is a nonparametric Bayesian approach to re-
gression and infers a probability distribution over all possible
values of a function given some training data [16]. A GP is
a collection of random variables, any finite number of which
have a joint Gaussian distribution. Because of its simplicity
and good empirical performance, GP regression has been a
popular tool in several learning-based control methods (e.g.,
[5], [18], [19]).

In this work, GP regression is used for predicting the noisy
velocity function vo(xo(t)) from previous observations of the
obstacle’s behavior.

We choose the training input data as x̂ = {xo(t−1), xo(t−
2), . . . , xo(t−M)}, consisting of the obstacle’s state for M
previous stages. The corresponding measured velocities v̂
are selected as the training output data. In reality, we do not

1For simplicity, we use a single integrator kinematics even though a
double integrator can be used for enhancing accuracy.

Fig. 1: Car-like obstacle in 2D environment. By symmetry,
the simplest motion pattern will be obtained for the follow-
ing three candidates of state: [xr, yr, θ]

>, [xf , yf , θ]
> and

[xc, yc, θ]
>, where (xr, yr), (xf , yf) and (xc, yc) are the

coordinates of the center of the rear axle, front axle, and
center of mass, respectively, with θ as the heading angle.
The region occupied by the vehicle is over-approximated by
the blue rectangle.

have access to function values; instead, the following noisy
observations are available: for the ith observation

v̂(i) = vo(x̂
(i)) + ε, i = 1, . . . ,M,

where x̂(i) := xo(t−i), and ε is an i.i.d. zero-mean Gaussian
noise with covariance Σε = diag([σ2

ε,1 σ
2
ε,2, . . . , σ

2
ε,nx

]).
Since the velocities in different dimensions are assumed

to be independent, each of them can be learned individually.
The dataset for the jth dimension is thus constructed as

Dj =
{(

x̂(i), v̂
(i)
j

)
, i = 1, . . . ,M

}
.

For each dimension of output vo(·), we specify a GP prior
with mean function mj(x) and kernel function kj(x, x′). In
this paper, we use an RBF kernel that is defined by

kj(x, x
′) = σ2

f,j exp
[
− 1

2
(x− x′)>L−1j (x− x′)

]
,

where Lj is a diagonal length scale matrix and σ2
f,j is

the signal variance. The prior on the noisy observations
is a normal distribution with mean function mj(x̂

(i)) and
covariance function Kj(x̂, x̂) + σ2

ε,jI , where Kj(x̂, x̂) ∈
RM×M denotes the covariance matrix of training input data,
i.e., K(l,k)

j (x̂, x̂) = kj(x̂
(l), x̂(k)). Throughout this work, we

used a prior distribution with zero-mean.
It follows that the joint distribution of the training output

data v̂j and the output vj at an arbitrary test point x is given
by[

v̂j
vj

]
∼ N

([
mj(x̂)
mj(x)

]
,

[
Kj(x̂, x̂) + σ2

ε,jI Kj(x̂,x)
Kj(x, x̂) kj(x,x)

])
,

where K(l)
j (x̂,x) = kj(x̂

(l),x), and Kj(x, x̂) = Kj(x̂,x)>.
As a result, the posterior distribution of the output in the
jth dimension at an arbitrary test point x conditioned on
the observed data is Gaussian, with the following mean and

7668

covariance:

µjv(x) := mj(x)

+Kj(x, x̂)(Kj(x̂, x̂) + σ2
ε,jI)−1(v̂j −mj(x̂)), (3)

Σj
v(x) = kj(x,x)

−Kj(x, x̂)(Kj(x̂, x̂) + σ2
ε,jI)−1Kj(x̂,x). (4)

The resulting GP approximation of vo is then given by

v(x) ∼ GP(µv(x),Σv(x)),

where µv(x) = [µ1
v(x), . . . ,µnx

v (x)]>, and Σv(x) =
diag([Σ1

v(x), . . . ,Σnx
v (x)]).

C. Prediction of Obstacle’s Motion

Assuming that xo(0) ∼ N (µx(0),0), it is straightforward
to check that xo(t) is normally distributed at each stage t with
mean µx(t) and covariance Σx(t) to be specified. Having the
posterior of the velocity vector, the state of the obstacle at
the next stage can be predicted by considering the following
joint distribution of the state and velocity vectors [5]:[

xo(t)
v(t)

]
∼ N

([
µx(t)
µv(t)

]
,

[
Σx(t) Σxv(t)
Σvx(t) Σv(t)

])
.

Following procedures in [20] and [21] and applying the
first-order Taylor approximation to (3) and (4) with Gaussian
input xo(t) ∼ N (µx(t),Σx(t)) yields the following approx-
imate mean and covariance functions:

µ̃v(t) = µv(µx(t))

Σ̃v(t) = Σv(µx(t)) +∇µv(µx(t))Σx(t)∇µv(µx(t))>

Σ̃xv(t) = Σx(t)∇µv(µx(t))>.

(5)

Now, it follows from (1) that the obstacle’s state at the
next stage is also normally distributed with the following
mean and covariance:

µx(t+ 1) = µx(t) + Toµv(t)

Σx(t+ 1) = Σx(t) + T 2
oΣv + To(Σxv + Σvx).

(6)

Using (5) and (6), the approximate mean and variance of
xo(t) can be updated.

Having the inferred or predicted obstacle state xo(t), it is
straightforward to obtain gt and Gt in (2) as gt = g(xo(t))
and Gt = G(xo(t)). An example of predicting the motion
of an obstacle is shown in Fig. 2, where a car-like vehicle
is chosen as the obstacle with unknown dynamics. GP
regression is used to predict the trajectory of the vehicle for
the next 10 stages. As shown in Fig. 2a, the predicted mean
in an early stage (t = 5) deviates from the actual trajectory,
as there were no observations available. As more data are
collected, the robot better learns the motion pattern of the
car-like obstacle. As a result, in Figures 2b the difference
between the predicted mean and the actual one is small.

However, in practice, the motion predicted by GP regres-
sion can be quite different from the actual movement of an
obstacle, for example, when it abruptly changes the heading
angle, as in the case of Fig. 2c. To guarantee safety even
when learning fails, we propose a distributionally robust
motion control tool in the following section.

III. LEARNING-BASED DISTRIBUTIONALLY ROBUST
MOTION CONTROL

Consider a mobile robot navigating in Rny according to
the following discrete-time dynamics:

ξ(t+ 1) = f(ξ(t), u(t)) (7)
y(t) = h(ξ(t), u(t)), (8)

where ξ(t) ∈ Rnξ and u(t) ∈ Rnu are the robot’s state and
control inputs, respectively, and y(t) ∈ Rny is the robot’s
current position in the ny-dimensional configuration space.
At stage t, the robot is subject to the following state and
control constraints:

ξ(t) ∈ Ξ(t), u(t) ∈ U(t), (9)

where Ξ(t) ⊆ Rnξ and U(t) ⊆ Rnu .
The robot’s environment changes over time as the obstacle

moves according to its unknown dynamics. As introduced in
our previous work [22], the safe region regarding the obstacle
is defined by the complement of the region occupied by it,
i.e.

Y(t) := Rny \ Oo(t) ∀t ≥ 0,

where Oo denotes the interior of O(t). Our goal is to control
the robot while keeping it in the safe region, even when the
GP-based prediction results are inaccurate.

A. Risk Constraint for Safety

To systematically measure the risk of collision, we use the
notion of safety risk introduced in our previous work [23].
We first define the loss of safety as the deviation of the robot’s
position from the safe region Y(t):

dist(y(t),Y(t)) := min
a∈Y(t)

‖y(t)− a‖2. (10)

For safety, it is ideal to force the robot to stay inside the safe
region. However, due to the uncertain movement of the obsta-
cle, such a deterministic approach is often too conservative or
infeasible. Instead, we employ the conditional value-at-risk
(CVaR) [24] to define the safety risk at stage t as

CVaRα[dist(y(t),Y(t))],

where CVaRα(X) := minz∈R E
[
z + (X − z)+/(1 − α)

]
.2

The safety risk quantifies the average loss of safety beyond
the confidence level α. Note that CVaR is a coherent risk
measure in the sense of Artzner et al. [25] and thus satisfies
axioms that risk metrics in robotics applications should
respect for rationally assessing risk [26]. More importantly,
CVaR is able to distinguish the worst-case tail events, which
is crucial for quantifying rare but unsafe events.

The desired level of safety can be reached by limiting the
safety risk by a pre-specified risk tolerance parameter δ:

CVaRα[dist(y(t),Y(t))] ≤ δ. (11)

This risk constraint is adopted in our MPC for safe motion
control in the following subsection.

2We let (x)+ := max{x, 0} throughout this paper.

7669

(a) t = 5 (b) t = 20 (c) t = 32

Fig. 2: Predicted mean trajectories of a car-like obstacle for the next 10 stages.

B. Wasserstein Distributionally Robust GP-MPC

The safe region in (11) depends on gt and Gt, which define
the region occupied by the obstacle at stage t. Unfortunately,
the distribution of these two parameters is unknown and
challenging to directly identify in practice. However, having
sample data {x̃(1)

o (t), x̃
(2)
o (t), . . . , x̃

(N)
o (t)} generated accord-

ing to the learned distribution of xo(t), it is possible to obtain
a sample of gt and Gt using

g̃
(i)
t := g(x̃(i)

o (t)), G̃
(i)
t := G(x̃(i)

o (t)). (12)

We can then use the sample data to approximate the safety
risk in (11). However, making such an approximation using
limited data may lead to the violation of the original risk
constraint (11). Instead of directly using the learning result
of GP regression, we proposed a motion control method that
is robust against errors in the estimated distribution.

For a concrete MPC formulation, we first rewrite the loss
of safety (10) in an equivalent form using the definition of
the safe region, which is a union of half-spaces.

Lemma 1. Suppose that the region occupied by the obstacle
is given by (2). Then, the loss of safety (10) can be expressed
as

dist(y(t),Y(t)) = min
j=1,...,m

{(
gt,j −Gt,jy(t)

)+
‖Gt,j‖2

}
, (13)

where gt,j is the jth element of gt, and Gt,j is the jth row
of Gt.

Proof. The proof is similar to the proof of [27, Lemma 1],
which we briefly summarize here. Since the safe region is
a union of half-spaces, the distance can be written as the
shortest distance to the all half-spaces that define the safe
region:

dist(y(t),Y(t)) = min
j=1,...,m

dist(y(t),Yj(t)) (14)

where Yj(t) = {x | Gt,jx ≥ gt,j}. The distance to each
half-space can then be expressed in its dual form as

dist(y(t),Yj(t)) =

(
gt,j −Gt,jy(t)

‖Gt,j‖2

)+

(15)

using an argument similar to the proof of [27, Lemma 1].
Strong duality follows from the fact that the primal problem

is feasible and the inequality constraints are linear. By
substituting (15) into (14), the result follows.

We now let

ct,j := − Gt,j
‖Gt,j‖2

, dt,j :=
gt,j
‖Gt,j‖2

. (16)

Using the sample data (12) of g̃(i)t and G̃
(i)
t , we can then

generate a sample {(c̃(i)t,j , d̃
(i)
t,j)}Ni=1 of (ct,j , dt,j) according to

the definition above. Let Qt be the joint empirical distribution
of (ct, dt) ∈ W ⊆ Rm(ny+1) constructed using the sample
data, i.e., Qt :=

∑N
i=1 δ(c̃(i)t ,d̃

(i)
t)

, where δx denotes the Dirac
delta measure concentrated at x. However, the accuracy
of the empirical distribution is subject to errors in the
learning results. To satisfy the risk constraint (11) even
under distribution errors, we instead impose the following
distributionally robust risk constraint:

sup
Pt∈Dt

CVaRPt
α [dist(y(t),Y(t))] ≤ δ. (17)

Here, the left-hand side of the inequality represents the
worst-case CVaR when the joint distribution Pt of (ct, dt)
lies in a given ambiguity set Dt. Thus, any motion control
action that satisfies (17) can meet the original risk constraint
under any distribution error characterized by Dt. In this work,
we use the following Wasserstein ambiguity set:

Dt := {P ∈ P(W) |W (P,Qt) ≤ θ}, (18)

where P(W) denotes the set of Borel probability measures
on the support W. Here, W (P,Q) is the Wasserstein distance
(of order 1) between P and Q, defined by

W (P,Q) := min
κ∈P(W2)

{∫
W2

‖w − w′‖2 dκ(w,w′)

| Π1κ = P,Π2κ = Q

}
,

where Πiκ denotes the ith marginal of κ for i = 1, 2. The
Wasserstein distance between two probability distributions
represents the minimum cost of redistributing mass from
one to another using a non-uniform perturbation. Using the
Wasserstein metric in distributionally robust optimization
and control has recently drawn a great deal of interest be-
cause it provides a tractable solution with superior statistical

7670

properties such as a probabilistic out-of-sample performance
guarantee [17], [28]–[32].

Using the distributionally robust risk constraint (17), we
formulate the following MPC problem:

inf
u,ξ,y

J(ξ(t),u) :=

K−1∑
k=0

r(ξk, uk) + q(xK) (19a)

s.t. ξk+1 = f(ξk, uk) (19b)
yk = h(ξk, uk) (19c)
ξ0 = ξ(t) (19d)

sup
Pk∈Dk

CVaRPk
α [dist(yk,Yk)] ≤ δ (19e)

ξk ∈ Ξ, uk ∈ U , (19f)

where u := (u0, . . . , uK−1), ξ := (ξ0, . . . , ξK), y :=
(y0, . . . , yK), constraint (19b) and uk ∈ U in (19f) should
hold for k = 0, . . . ,K − 1, (19c) should hold for k =
0, . . . ,K, and all the remaining constraints should be satis-
fied for k = 1, . . . ,K. Note that the problem can be extended
to consider L obstacles by repeating the constraints (19e) L
times.

The distributionally robust MPC (DR-MPC) problem with
GP is defined in a receding horizon manner for each stage.
The cost function can be chosen in a way that would guide
the robot so it follows a reference trajectory yref generated
by, for example, RRT* [33]:

J(ξ(t),u) := ‖yK − yrefK ‖P +

K−1∑
k=0

‖yk − yrefk ‖Q + ‖uk‖R,

(20)
where Q � 0, R � 0 are the state and control weighting
matrices, respectively; and P � 0 is chosen in a way to
ensure stability. The constraints (19b) and (19c) are used for
computing the robot state and output over the MPC horizon,
specifying the initial state ξ0 as the current state ξ(t) in
the constraint (19d). Most importantly, (19e) corresponds to
the distributionally robust risk constraint, thereby limiting
the safety risk by a pre-specified tolerance even when the
actual distribution deviates from the distribution estimated by
GP regression within Dk. Here, the Wasserstein ambiguity
set Dk is constructed from the joint empirical distribution
Qk of (ck, dk) at each time step k. The joint distribution
is obtained from GP regression, by learning the obstacle’s
velocity vector and evolving the obstacle’s state according
to (6) from xo(t) to xo(t + K). Finally, (19f) are the state
and control constraints given in (9).

C. Tractable Reformulation

Unfortunately, solving the DR-MPC problem (19) is a
challenging task because the risk constraint (19e) involves
an infinite-dimensional optimization problem over the ambi-
guity set of probability distributions. To resolve this issue,
we reformulate the DR-MPC problem in a computationally
tractable form.

Algorithm 1: Learning-based DR-MPC at stage t

1 Input: ξ(t), xo(t), x̂(i), v̂(i), i = 1, . . . ,M ;
2 Dj :=

{
(x̂(i), v̂

(i)
j), i = 1, . . . ,M

}
, j = 1, . . . , nx;

3 Initialize µx(0) := xo(t), Σx(0) := 0;
4 for k = 0 : K − 1 do
5 Compute µ̃v(k), Σ̃v(k) and Σ̃xv from (5);
6 Update µx(k + 1) and Σx(k + 1) from (6);
7 Generate a sample {x̃(1)

o (k+ 1), . . . , x̃
(N)
o (k+ 1)}

from N (µx(k + 1),Σx(k + 1));
8 Compute c̃(i)k+1 and d̃(i)k+1, i = 1, . . . , N using (12)

and (16);
9 end

10 Solve (22) to obtain u∗;
11 return u(t) = u∗0;

To begin with, we make use of Lemma 1 to rewrite the
safety risk as

CVaRα[dist(y,Y)] = min
z∈R

E
[
z +

(dist(y,Y)− z)+

1− α

]
= min

z∈R

{
z + E

[
max{minj(cjy + dj)− z,−z, 0}

1− α

]}
.

(21)

Next, the following proposition can be used to reformulate
the distributionally robust risk constraint (19e) in a conser-
vative manner, which is suitable for our purpose of limiting
the risk of unsafety:

Proposition 1. Suppose that W = Rn, where n := m(ny +
1) is the dimension of (ct, dt). Then, the following inequality
holds:

sup
Pt∈Dt

CVaRPt
α [dist(y(t),Y(t)]

≤ inf
z,λ,s,ρ

z +
1

1− α

[
λθ +

N∑
i=1

si

]
s.t. 〈ρi, c̃(i)t y(t) + d̃

(i)
t 〉 ≤ si + z

si + z ≥ 0

si ≥ 0
m∑
j=1

ρ2i,j

(ny∑
l=1

y2l + 1
)
≤ λ2

λ ≥ 0

〈ρi, e〉 = 1

ρi ≥ 0

z ∈ R,

where all the constraints hold for i = 1, . . . , N , and e ∈ Rm
is a vector of all ones. ρi,j represents the jth element of ρi
and yl is the lth element of y.

Its proof follows directly from Lemma 2, [27, Proposition
1], and [17, Theorem 4.2]. The assumption that W =
Rn can be relaxed using [27, Proposition 1]. Note that

7671

the optimization problem on the right-hand side is finite-
dimensional, unlike the original one on the left-hand side.
Thus, by limiting this upper-bound of the distributionally
robust safety risk instead of (19e), we can completely remove
the infinite-dimensionality issue inherent in the original DR-
MPC problem (19).

Specifically, according to Proposition 1, the DR-MPC
problem (19) can be reformulated as follows:

inf
u,ξ,y,z,
λ,s,ρ

J(ξ(t),u) :=

K−1∑
k=0

r(ξk, uk) + q(ξK) (22a)

s.t. ξk+1 = f(ξk, uk) (22b)
yk = h(ξk, uk) (22c)
ξ0 = ξ(t) (22d)

zk +
1

1− α

[
λkθ +

1

Nk

Nk∑
i=1

sk,i

]
≤ δ (22e)

〈ρk,i, c̃(i)k yk + d̃
(i)
k 〉 ≤ sk,i + zk (22f)

sk,i + zk ≥ 0 (22g)
sk,i ≥ 0 (22h)
m∑
j=1

ρ2k,i,j

(ny∑
l=1

y2k,l + 1
)
≤ λ2k (22i)

λk ≥ 0 (22j)
〈ρk,i, e〉 = 1 (22k)
ρk,i ≥ 0 (22l)
zk ∈ R, (22m)
ξk ∈ Ξ, uk ∈ U , (22n)

where (22b) and uk ∈ U in (22n) should hold for k =
0, . . . ,K − 1, (22c) should hold for k = 0, . . . ,K, and all
the other constraints should be satisfied for k = 1, . . . ,K and
i = 1, . . . , N . As desired, the reformulated problem is finite-
dimensional unlike the original one (19). However, it is a
nonconvex optimization problem due to the constraints (22f)
and (22i) even when the system dynamics and the output
equation are affine and the cost function is convex. A locally
optimal solution to this problem can be efficiently computed
by using existing nonlinear programming algorithms such as
interior-point methods (e.g., [34]).

The overall learning-based DR-MPC at stage t is shown
in Algorithm 1. At each stage, the current states of the
robot and the obstacle as well as M past observations
{(x̂(i), v̂(i))}Mi=1 of the obstacle’s position and velocity are
taken as the input data. Then, the obstacle’s movement for
future stages is learned by GP regression and is used in
the DR-MPC problem (22). The first element of the locally
optimal solution u∗ is taken as the motion control action
for the robot at the current stage. Note that at stage t = 0,
the dataset D consists of all zeros. As time goes on, new
observations are added to the dataset for GP regression.
During the update, old observations are removed so that only
M latest data are stored.

IV. EXPERIMENT RESULTS

In this section, we present simulation results to demon-
strate the performance of our motion control method. In our
experiments, we consider a car-like vehicle navigating a 2D
environment with the following bicycle dynamics [35]:

xv(t+ 1) = xv(t) + Tsv
v(t) cos(θv(t) + βv(t))

yv(t+ 1) = yv(t) + Tsv
v(t) sin(θv(t) + βv(t))

θv(t+ 1) = θv(t) + Tsv
v(t)

sin(βv(t))

lr

βv(t+ 1) = βv(t) + Ts tan−1
(lr
lr + lf

tan δv(t)
)
,

(23)

where xv(t) and yv(t) are the coordinates of the vehicle’s
center of gravity, θv(t) is the heading angle, βv(t) is the
current velocity angle. The control inputs are velocity vv(t)
and steering angle δv(t). The coefficients lf and lr represent
the distances from the center of gravity to the front and rear
wheels, respectively. Throughout the simulations, we assume
that lf = lr = 2. We also impose the following control
constraints:

vv(k) ∈ [0, 30], δv(k) ∈ [−π/6, π/6] ∀k.

The vehicle is controlled to follow the centerline of the
track while avoiding two dynamic obstacles. The centerline
is thus taken as the reference trajectory yref in (20). The two
obstacles are rectangular car-like vehicles with size 2× 1. It
is straightforward to check that for both obstacles gk and Gk
are easily found from the state that consists of the vehicle’s
center of mass and its heading angle. In our experiments,
we set Q = P = I and R = 0.01I . The sampling time Ts
and To are set to be 0.01, and the MPC horizon is chosen
as K = 5. The risk tolerance level and the confidence level
were selected as δ = 0.01 and α = 0.95, respectively.

To evaluate the performance of learning-based DR-MPC,
we compare it to its non-robust counterpart obtained by
sample average approximation (SAA) [22]. All the simula-
tions were conducted on a PC with 3.70 GHz Intel Core
i7-8700K processor and 32 GB RAM. The optimization
problem was modeled in AMPL [36] and solved using
interior-point method-based solver IPOPT [37].

Fig. 3 shows the resulting trajectories for different sizes of
the Wasserstein ambiguity set compared to the SAA version
(SAA-MPC) with N = 50 samples. At each stage, the
dataset for GP regression is updated to keep only the latest
M = 20 observations.

In the early stages, the robotic vehicle follows the center-
line while predicting the future motion of the obstacles. As
shown in Fig. 3a, when reaching one obstacle that abruptly
changes its heading angle at t = 13, the vehicle tries to avoid
it. In the case of SAA-MPC, the vehicle collides with the
obstacle because the distributional information learned by GP
regression is inaccurate. As a result, the risk constraint is vio-
lated and the MPC problem becomes infeasible. Meanwhile,
the vehicle controlled by our method successfully bypasses
the obstacle. The safety margin increases with the radius θ
of the Wasserstein ambiguity set.

7672

(a) t = 13 (b) t = 38

(c) t = 67 (d) t = 114

Fig. 3: The trajectories of the vehicle controlled by SAA-MPC and DR-MPC with θ = 4× 10−5, 5× 10−5, and 5.5× 10−5.
The current vehicle position is marked with a black dot. The green and blue rectangles represent the two obstacles, while
the transparent ones are the K steps-ahead prediction of the obstacles, obtained via GP regression. The reference centerline
for the vehicle is displayed with points, while the thin grey curve is the actual trajectory of the obstacles.

Fig. 3b shows the situation at t = 38, where the vehicle
controlled by our method continues to follow the reference
trajectory for all θ’s. Meanwhile, the GP is not well enough
to be able to predict the motion of the obstacles around the
corners, although it shows good performance when there is
no sudden change in the obstacle’s movement. As shown in
Fig. 3c, at t = 67 the second obstacle interferes with the path
of the vehicle. Similar to the previous obstacle, the vehicle
controlled by DR-MPC avoids the obstacle for all θ’s. In
the case of the smallest radius θ = 4 × 10−5, the vehicle
chooses to take aggressive action while satisfying the risk
constraint. As the Wasserstein ambiguity set increases, i.e.,
θ increases, the robot makes a more conservative (i.e., safer)
decision, inducing a bigger safety margin. Fig. 3d displays
the trajectories for all cases after the vehicle completes
one lap. Note that only the non-robust SAA version failed
to complete the lap due to collision, while our method
succeeded to do so for all θ’s.

In summary, we conclude that the proposed distribution-
ally robust method successfully preserves safety even with

TABLE I: Accumulated cost, lap time, and average compu-
tation time for the nonlinear car-like vehicle motion control
with N = 50, δ = 0.01, and α = 0.95.

SAA DR-MPC (θ)
4× 10−5 5× 10−5 5.5× 10−5

Accumulated Cost +∞ 491.79 594.68 703.59
Lap Time (sec) - 105.26 109.45 110.31
Avg. Run Time (sec) - 0.6572 0.6767 0.6942

moderate errors in the learning results. In the case of very
small ambiguity sets (e.g., θ = 4 × 10−5), the resulting
control action may be too aggressive to guarantee safety
when the learning errors are significant. Whereas, for θ =
5.5×10−5, the vehicle deviates too much from the reference
trajectory, inducing a large cost. Based on our experiments,
θ = 5× 10−5 may be selected for a good tradeoff between
safety and cost.

Table I shows the accumulated cost and the amount of
time for completing one lap on the track, and the average

7673

computation time required for solving a single DR-MPC
problem (22). As expected, both of the total cost and the lap
time increase with θ since the vehicle controlled by DR-MPC
with larger θ is more conservative and deviates further from
the reference trajectory. Computation time is small in all
cases although a nonconvex optimization problem is solved
in each iteration. This result shows the potential of using our
distributionally robust method in real-time applications.

V. CONCLUSION

We have proposed a distributionally robust decision-
making tool for safe motion control of robotic vehicles
in an environment with dynamic obstacles. Our DR-MPC
method limits the risk of unsafety even with moderate
errors in the obstacle’s motion predicted by GP regression.
For computational tractability, we have also developed a
reformulation approach exploiting modern distributionally
robust optimization techniques. The experimental results
demonstrate the safety-preserving capability of our method
under moderate learning errors and the potential for real-
time application. In the future, the proposed method can be
extended to enhance the capability of fast adaptive reactions,
especially when considering sudden motion changes, and to
address partial observability.

REFERENCES

[1] A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin, “Provably
safe and robust learning-based model predictive control,” Automatica,
vol. 49, no. 5, pp. 1216–1226, 2013.

[2] S. Di Cairano, D. Bernardini, A. Bemporad, and I. V. Kolmanovsky,
“Stochastic MPC with learning for driver-predictive vehicle control
and its application to HEV energy management,” IEEE Transactions
on Control Systems Technology, vol. 22, no. 3, pp. 1018–1031, 2013.

[3] C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot, “Robust constrained
learning-based NMPC enabling reliable mobile robot path tracking,”
The International Journal of Robotics Research, vol. 35, no. 13, pp.
1547–1563, 2016.

[4] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Information-theoretic model predictive control: Theory and applica-
tions to autonomous driving,” IEEE Transactions on Robotics, vol. 34,
no. 6, pp. 1603–1622, 2018.

[5] L. Hewing, J. Kabzan, and M. N. Zeilinger, “Cautious model predictive
control using Gaussian process regression,” IEEE Transactions on
Control Systems Technology, 2019.

[6] Q. M. Hester, T. and P. Stone, “RTMBA: A real-time model-based
reinforcement learning architecture for robot control,” in IEEE Inter-
national Conference on Robotics and Automation, 2012.

[7] A. Venkatraman, R. Capobianco, L. Pinto, M. Hebert, D. Nardi, and
J. A. Bagnell, “Improved learning of dynamics models for control,”
in International Symposium on Experimental Robotics, 2016.

[8] A. S. Polydoros and L. Nalpantidis, “Survey of model-based rein-
forcement learning: Applications on robotics,” Journal of Intelligent
& Robotic Systems, vol. 82, no. 2, pp. 153–173, 2017.

[9] M. Kuderer, S. Gulati, and W. Burgard, “Learning driving styles
for autonomous vehicles from demonstration,” in IEEE International
Conference on Robotics and Automation, 2015.

[10] M. Herman, V. Fischer, T. Gindele, and W. Burgard, “Inverse rein-
forcement learning of behavioral models for online-adapting naviga-
tion strategies,” in IEEE International Conference on Robotics and
Automation, 2015.

[11] M. Wulfmeier, D. Rao, D. Z. Wang, P. Ondruska, and I. Posner,
“Large-scale cost function learning for path planning using deep
inverse reinforcement learning,” The International Journal of Robotics
Research, vol. 36, no. 10, pp. 1073–1087, 2017.

[12] A. Kuefler, J. Morton, T. Wheeler, and M. Kochenderfer, “Imitating
driver behavior with generative adversarial networks,” in IEEE Intel-
ligent Vehicles Symposium, 2017.

[13] F. Codevilla, M. Miiller, A. López, V. Koltun, and A. Dosovitskiy,
“End-to-end driving via conditional imitation learning,” in IEEE
International Conference on Robotics and Automation, 2018.

[14] S. Chernova and M. Veloso, “Confidence-based policy learning from
demonstration using Gaussian mixture models,” in International Joint
conference on Autonomous Agents and Multiagent Systems, 2007.

[15] D. Lenz, F. Diehl, M. T. Le, and A. Knoll, “Deep neural networks
for markovian interactive scene prediction in highway scenarios,” in
IEEE Intelligent Vehicles Symposium, 2017.

[16] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning. MIT Press, 2006.

[17] P. Mohajerin Esfahani and D. Kuhn, “Data-driven distributionally
robust optimization using the Wasserstein metric: Performance guar-
antees and tractable reformulations,” Mathematical Programming, vol.
171, no. 1-2, pp. 115–166, 2018.

[18] F. Berkenkamp and A. P. Schoellig, “Safe and robust learning control
with Gaussian processes,” in European Control Conference, 2015, pp.
2496–2501.

[19] J. Umlauft and S. Hirche, “Learning stochastically stable Gaussian
process state-space models,” IFAC Journal of Systems and Control, p.
100079, 2020.

[20] A. Girard, C. Rasmussen, and R. Murray-Smith, “Gaussian process
priors with uncertainty inputs: multiple-step-ahead prediction,” Tech-
nical Report TR-2002–119, Dept. of Computer Science, 2002.

[21] A. Girard, C. E. Rasmussen, J. Q. Candela, and R. Murray-Smith,
“Gaussian process priors with uncertain inputs application to multiple-
step ahead time series forecasting,” in Advances in Neural Information
Processing Systems, 2003.

[22] A. Hakobyan, G. C. Kim, and I. Yang, “Risk-aware motion planning
and control using CVaR-constrained optimization,” IEEE Robotics and
Automation Letters, vol. 4, no. 4, pp. 3924–3931, 2019.

[23] S. Samuelson and I. Yang, “Safety-aware optimal control of stochastic
systems using conditional value-at-risk,” in American Control Confer-
ence, 2018.

[24] R. T. Rockafellar and S. Uryasev, “Conditional value-at-risk for
general loss distribution,” Journal of Banking & Finance, vol. 26, pp.
1443–1471, 2002.

[25] P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath, “Coherent measures
of risk,” Mathematical Finance, vol. 9, no. 3, pp. 203–228, 1999.

[26] A. Majumdar and M. Pavone, “How should a robot assess risk?
towards an axiomatic theory of risk in robotics,” in International
Symposium on Robotics Research, 2017.

[27] A. Hakobyan and I. Yang, “Wasserstein distributionally robust motion
control for collision avoidance using conditional value-at-risk,” arXiv
preprint arXiv:2001.04727, 2020.

[28] R. Gao and A. J. Kleywegt, “Distributionally robust stochastic opti-
mization with Wasserstein distance,” arXiv:1604.02199, 2016.

[29] C. Zhao and Y. Guan, “Data-driven risk-averse stochastic optimization
with Wasserstein metric,” Operations Research Letters, vol. 46, no. 2,
2018.

[30] J. Blanchet, K. Murthy, and F. Zhang, “Optimal transport based
distributionally robust optimization: Structural properties and iterative
schemes,” arXiv:1810.02403, 2018.

[31] I. Yang, “A convex optimization approach to distributionally robust
Markov decision processes with Wasserstein distance,” IEEE Control
Systems Letters, vol. 1, no. 1, pp. 164–169, 2017.

[32] ——, “Wasserstein distributionally robust stochastic control: A data-
driven approach,” arXiv preprint arXiv:1812.09808., 2018.

[33] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[34] J. Nocedal and S. Wright, Numerical Optimization. Springer Science
& Business Media, 2006.

[35] P. Polack, F. Altché, B. d’Andréa Novel, and A. de La Fortelle, “The
kinematic bicycle model: A consistent model for planning feasible
trajectories for autonomous vehicles?” in IEEE Intelligent Vehicles
Symposium, 2017.

[36] R. Fourer, D. M. Gay, and B. W. Kernighan, “A modeling language
for mathematical programming,” Management Science, vol. 36, no. 5,
pp. 519–554, 1990.

[37] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical Programming, vol. 106, no. 1, pp. 25–57, 2006.

7674

