
Data Driven Online Multi-Robot Formation Planning

Ellen A. Cappo, Arjav Desai, and Nathan Michael

Abstract— This work addresses planning for multi-robot
formations online in cluttered environments via a data-driven
search approach. The user-specified objective function govern-
ing formation shape and rotation is expressed in terms of offline
demonstrations of robot motions (performed in an obstacle free
environment). We leverage the offline demonstration to inform
online planning for coordinated motions in the presence of
obstacles. We formulate planning as a discrete search over
demonstrated multi-robot actions, and select actions using a
best-first approach to minimize edge expansions for fast online
operation. Actions are selected using a heuristic based on their
probability distribution exhibited in the demonstration, and
we show that this approach is able to recreate coordinated
motions exhibited in the demonstration when navigating in
the obstructed conditions of the cluttered test environments.
We demonstrate results in simulation over environments with
increasing numbers of obstacles, and show that resulting plans
are collision free and obey dynamic constraints.

I. INTRODUCTION

In this work we consider the problem of planning coor-
dinated motions online for a group of robots in cluttered
environments informed by the data generated through offline
demonstration. Planning coordinated motions between agents
is common across a wide range of multi-robot applications,
including the cooperative transport or manipulation of objects
[1], performing escort missions [2] or sensor coverage [3],
and depicting characters or figures in entertainment applica-
tions [4–6]. However, planning kinodynamically feasible and
collision free motions for multiple agents can be challenging
because computational complexity scales with the number
of agents and planning time is limited for applications that
require online updates; increased environment complexity
further complicates the planning problem because robots may
not be able to reach or maintain the desired goal.

While the computational complexity of online multi-robot
planning is a significant concern, the coordination problem
itself can be challenging due to the difficulty in formulating
a coordination objective. When the coordination goal is
well understood or clearly expressed by quantifiable metrics,
optimization approaches or rule-based policies are commonly
used to plan team motions. For example, the common task of
maintaining agents in formation is often formulated in terms
of minimizing deviation to a desired formation, and can be
solved via a constrained optimization employing sequential
convex programming [1], using a vector field policy to
avoid obstacles but maintain formation [7], or time-based
polynomial trajectory planning over a receding horizon in

The authors are affiliated with the Robotics Insti-
tute, Carnegie Mellon University, Pittsburgh, PA, USA.
<eacappo,adesai,nmichael>@cmu.edu We gratefully
acknowledge support from industry.

Fig. 1: Example of coordinated motions between robots in a formation
being performed in a complex environment. The robot motions were selected
during online search based on user-provided demonstration data. Robots
are shown at sampled times, t1, t2, and t3, along a set of trajectories
generated through keyframes returned via the proposed search methodology.
The robots transition from a triangle formation to a line formation in order
to avoid collision with an obstacle (represented by the orange voxels).

order to maintain distance and bearing specifications between
agents [8]. The coordination policy of these approaches (in
this example, “minimize deviation from a desired reference”)
is specified by human understanding of the problem domain.

However, some applications can require coordination poli-
cies that are difficult to express via optimizable metrics,
or which do not have a clear best policy. In these cases,
demonstrated solutions—if available—may be used to inform
planning policies. In the example of team sports such as
soccer where it may be unclear how players should perform
defense, [9] uses video demonstration of human players
to learn agent roles. In [10], no decentralized controller is
available for the posed particle assignment problem, and so a
centralized planning formulation is used as a demonstration
to train decentralized policies for a multi-robot team.

In this work, we seek to plan coordinated motions reflect-
ing user preferences for a team of robots in complex and
cluttered environments without having to explicitly express
user objectives through a rule-based methodology as in prior
work [5, 6]. The methodology of [5, 6] allows a user to
specify time-varying formation objectives online via param-
eterized input and create dynamically feasible and collision
free multi-robot plans in the form of time-based polynomial
trajectories in non-cluttered environments. However, directly
finding dynamically feasible and non-colliding trajectories
for the desired user input in cluttered environments is difficult
to solve under online time constraints.

We propose to use plans reflecting user specified multi-

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 11638

time

action set generation

a b c

offline demonstration online planning

Fig. 2: This figure illustrates an overview of the approach. Block (a) shows
an offline demonstration of a group of robots changing formation from a line
to a polygon. Block (b) illustrates the demonstration, sampled at uniform
time discretizations, represented as actions performed by the formation,
described as rotations and shape transformations. These actions are stored
in an action set, A. Block (c) shows a group of robots in a cluttered
environment, executing actions from action set A to transition from polygon
to line to navigate between obstacles.

robot coordination preferences generated in an open environ-
ment via [5, 6] to inform online plan generation in cluttered
and complex environments. The contribution of this approach
is that it allows a system to reproduce user-preferred coordi-
nation strategies in non-demonstrated scenarios (the transfer
of actions from open to cluttered environments), as well as
perform coordinated multi-robot motions without requiring
the direct specification of a rule-based objective function or
direct online user-input.

II. METHODOLOGY OVERVIEW

This section provides a conceptual overview of the pro-
posed approach, as visually depicted in Fig. 2. Our approach
is divided into Offline and Online portions. We formulate
multi-robot planning as a Markov Decision Process, where
robots transition between states via actions, and introduce
notation to describe a discrete representation of multi-robot
states and actions (Sect. III). A demonstration provided by a
user, showing user-desired motions for a formation of robots,
is given in the form of a time series of robot positions.
Sect. IV describes the representation of the demonstration
as state-action tuples, and the creation of an action set
composed of actions experienced in the demonstration.

Sect. V describes the online navigation of a group of
robots through a cluttered environment. Finding a sequence
of actions that allows the robot group to navigate the desired
path can be formulated as search over a tree of possible
actions, and to minimize edge expansions for fast search
online, we propose a selection heuristic for use with a Best-
First Search approach. We regard the provided demonstration
as a user-generated probability distribution of actions, and
propose the use of a simple, probability-based heuristic to
select actions during search.

Sect. VI discusses metrics for evaluating action sequences
compared to a demonstration, and Sect. VII evaluates the pro-
posed approach through a series of experiments performed
in varying simulated environments.

III. NOTATION AND PROBLEM FORMULATION

This section introduces notation and problem formulation.
In the following descriptions, indexing elements are given as
superscripts, while time elements are written as subscripts.
For example, the state x of robot i at time t is written as xi

t.

A. Robot, formation, and obstacle notation
The state of an individual robot, s, with respect to a

local, formation reference frame S is given by its position,
s = [x, y, z]T ∈ R3. The state of a group of n robots
is a vector containing the states of the member robots,
S = [s1, . . . , sn] ∈ R3×n. A valid formation, or shape S,
is one in which no robots are in collision with each other:
i.e., a minimum separation distance, dr, is required between
all robots in a formation: ‖ si − sj ‖2 ≥ dr ∀

(
si, sj

)
∈ S,

and ‖ · ‖2 describes the Euclidean distance or l2-norm.
Similar to state in the group reference frame, we de-

fine the state of a robot in world frame W as x =
[x, y, z]T, x ∈ R3, and the state of a group of n robots as
X = [x1, . . . , xn], X ∈ R3×n. The formation reference
frame, S, is related to W by a positional offset, C ∈ R3, and
a rotation, R ∈ SO(3), so that state s of a robot in frame S
is expressed in frame W as x = C + Rs, and likewise for a
formation of robots, X = C + RS.

We use a voxel-based environment representation, letting
O ⊂ R3 be the set of static obstacles (occupied voxel cells).
However, the methodology described in this work holds
for any chosen environment or obstacle representation, for
example, defining obstacles O as a point set of observed
surface data or collection of convex polygons, etc. We define
P(Xt) as the set of voxels occupied by the convex polytope
defined by robot poses X at time t. A formation of robots is
collision free if the set of voxels covered by the formation
does not intersect the obstacle set, i.e., the intersection of the
two sets is the empty set: P (X) ∩ O = {}.

B. MDP over states and actions
We formulate planning for a group of robots as a Markov

decision process (MDP), where our state at time t is the
tuple st = {Ct, Rt,St}, an action at time t is the tuple
at = {ct,Ωt, At}, and the transition function T () gives
T (st+1| at, st) by:

Ct+1 = Ct + ct (1)
Rt+1 = ΩtRt (2)
St+1 = AtSt. (3)

In the above set of equations, ct ∈ R3 describes a translation
in W in x, y, and z; At ∈ R3×3 describes a linear
transformation of the n robot formation, St ∈ R3×n; and
Ωt ∈ SO(3) describes an incremental rotation that takes Rt

to Rt+1. We let T () be deterministic, transitioning st to st+1

given at with probability 1.
The problem definition is as follows: given the current

system state st at time t, we seek to complete a path
specification given only as components c and Ω of an action
with the most appropriate shape space transform A to form
the complete action tuple: at = {ct,Ωt, At} to take the
system to the desired (and feasible) state at the next timestep,
st+1. This may be stated as:

At = argmax
At∈A

Reward(At) (4)

s.t. P (Xt+1) ∩ O = {} (5)

‖ si − sj ‖2 ≥ dr ∀
(
si, sj

)
∈ St+1, si 6= sj . (6)

11639

Reward(At) is a reward function in terms of At, the linear
transform describing the transition of St to St+1, drawn from
a set A of demonstrated transforms. We discuss the specifics
concerning the generation of set A and details of reward
calculation Reward(At) to Sects. IV and V, respectively.

IV. DEMONSTRATION DATA AS {s,a} TUPLES

To select a shape transform At as in Eqn. (4) in line
with user expectations, we require a demonstration of user-
directed robot motions represented as a series of state-
action tuples. Here, we generate demonstrations using the
methodology of [5, 6], which takes detailed user input to
produce dynamically feasible, time-based polynomial trajec-
tories for all robots. We therefore sample the demonstration
at a chosen, uniform time discretization to create a time-
series of robot states. The dynamic feasibility of the demon-
stration trajectories means that (1) no states contain robot-
robot collisions, and (2) sampling at a fixed time resolution
provides actions within a bounded set, as the demonstration
trajectories generated by [5, 6] respect the provided actuator
limits of the physical robot platform.

We begin with a demonstration of the form X1:T in W
for all robots in a group, where Xt has been sampled at
t = {1, . . . , T}, and ti+1 = ti + dt. Given two sequential
poses, Xt and Xt+1, and the knowledge of either St or
Rt, we can decompose Xt and Xt+1 to MDP states st and
st+1 and the action at which transitions st to st+1. This is
a Procrustes problem [11], where we seek a transformation
that maps robots from Xt to Xt+1, such that transformation
Y minimizes ‖ YXt −Xt−1 ‖.

A. Position and translation components of states and actions

We equate the position component of state, C, to the
geometric mean of robot positions: X̄. Given position com-
ponents Ct = X̄t and Ct+1 = X̄t+1 at neighboring
timesteps, translation term ct is found by subtracting the
geometric mean of the robot group at time t from t + 1,
a rearrangement of Eqn. (2): ct = Ct+1 − Ct.

B. Rotation component, Ωt, of action at

Knowledge of the position component lets us group the
remaining state components, Rt and St, together as Pt:

Pt = RtSt = Xt − Ct (7)
Pt+1 = Rt+1St+1 = Xt+1 − Ct+1 (8)

Given Pt and Pt+1, the rotation matrix Ωt is the solution to
the orthogonal Procrustes problem [11] : Ω = argminΩ

‖ ΩPt−Pt+1 ‖F subject to ΩTΩ = ΩΩT = I with det(Ω) =
1, where ‖ · ‖F denotes the Frobenius norm.

This problem is equivalent to finding the nearest special
orthogonal matrix1 to a given matrix M = Pt+1P

T
t . To find

Ωt, singular value decomposition is used to write:
Pt+1P

T
t = UΣV T (9)

Ωt = UΣ′V T (10)

1An orthogonal matrix is a square matrix whose columns and rows are
orthogonal unit vectors, i.e., RTR = RRT = I; a special orthogonal
matrix is an orthogonal matrix whose determinant equals 1, det(R) = 1.

where Σ′ is a modified Σ with the smallest singular value
replaced by sign(det(UV T)), i.e. +1 or -1, and the other
singular values replaced by 1, so that the determinant of Ω
is guaranteed to be positive [12].

C. Discussion of R0 and S0

Poses Pt and Pt+1 are known from Eqns. (7) - (8), and
we would like to decompose this information into four state
components, Rt, St, Rt+1, St+1. We have so far expressed
only one constraint: that Rt evolves to Rt+1 via pure rota-
tion. This allows us to express Rt+1 fully in terms of Rt via
Ωt (Eqn. (10)) exactly as in Eqn. (3). We therefore have two
knowns, Pt and Pt+1, and three unknowns, Rt, St, and St+1,
and so require one additional piece of information which may
be provided by the knowledge of either the starting shape,
S0, or the starting orientation, R0. The demonstration may be
assumed to begin with R0 equal to identity, or alternatively,
S0 may be defined via knowledge of the user’s desired shape
or by matching the observed positions of the robots at t = 0
to a library of desired formations.

D. Rotation and shape components of state

Without loss of generality, we use poses Pt=0 and Pt=1

to clarify the explanation of determining state rotation and
shape components.

We first examine the case where R0 has been specified.
Given R0, Eqn. (7) may be directly solved for St=0:

St=0 = RT
0P0, (11)

and the evolution of Rt=0 by Ωt=0 (Eqn. (10)) gives Rt=1,
yielding St=1:

St=1 = RT
1P1. (12)

If S0 has been specified, R0 may be found similarly as to
Eqn. (10), as:

P0S
T
0 = UΣV T (13)

R0 = UΣ′V T, (14)
and the solution of St=0 and St=1 proceeds as in
Eqns. (11) and (12).

While we have used poses at t = 0 and t = 1 for
explanation, it should be clear that knowledge of R or S
at any time t enables the calculation of all components of
state at t+ 1. States at all times may therefore be calculated
sequentially from knowledge state st=0.

E. Shape transform At

The final component of action at undefined is transform
At. This is, again, a Procrustes problem, although here un-
restricted to a rotation matrix and so may be solved through
the least squares minimization given by [11] (additionally as
noted in the example implementation of [13]):

At = St+1S
T
t (StS

T
t)−1. (15)

Due to the described extraction of rotation matrix Ωt from
Pt, Pt+1, transform At may be interpreted as scaling and
shearing elements, where scale may be given along the x,
y, and z dimensions and with the off-diagonal components

11640

describing shearing as:sxx 0 0
0 syy 0
0 0 szz

 ,

 1 sxy sxz
syx 1 syz
szx szy 1

 . (16)

We make no assumptions about the uniformity of scal-
ing, meaning that sxx 6= syy 6= szz , nor symme-
try of shearing, i.e., sxy 6= syx, etc, reiterating that
A ∈ R3×3 or equivalently A ∈ R9 for the values
{sxx, syy, szz, sxy syx, sxz szx, syz szy}.

Transforms At observed from demonstration X1:T may be
discretized (for example, casting all values to a desired reso-
lution, dA) so that actions can be recognized as discrete and
unique. A set of possible actions, A used in Eqn. (4), may
then be formed of all unique actions from the demonstration.

V. ONLINE ACTION SEARCH

This section describes the formulation of action selection
as a tree search among possible actions, and the introduction
of a simple reward measure for estimating user-preferred
actions.

A. MDP as tree search

The process of selecting and evaluating the possible ac-
tions from a given state may be formulated as search over
a directed graph, specifically a tree, where nodes represent
states and edges represent actions. A node stores state s =
{C,R,S} and collision information with respect to obstacle
set O. Each edge represents a single action, A ∈ A.

The root node is initialized at the start position in the
world, Ct=0, with the starting rotation, Rt=0, and formation
state, St=0. At each node, a maximum of |A| possible
decisions can be made (i.e., a node has a maximum of |A|
possible children), where |A| is the size of action set A.

Child node state is found by applying the transition func-
tion (Eqns (1)-(3)). Therefore children share action compo-
nents ct and Ωt, resulting in shared state components Ct+1,
Rt+1, but have different shape transforms At and so different
shapes St+1. Every child node is checked for collisions with
the environment as well as for collisions between robots, and
nodes in collision are marked as inadmissible.

In order to find actions quickly to meet online planning
time requirements, we propose a Best First Search (BFS)
approach [14] to determine a sequence of shape transforms,
A1:T , for a user input {c1:T ,Ω1:T }. BFS for our application

Algorithm 1: Best First Search [14] formulated for our application.
returns TreePath or failure
root←− node with formation start state and zero reward
frontier←− root // queue ordered by cumulative reward
explored←− {} // empty list
while i < limit do

if Empty(frontier) then return failure
node←− Pop(frontier) // highest cumulative reward
if node.depth == T then return TreePath(root, node)
explored←− node
Children←− Expand(node)
CollisionCheck(Children)
CumulativeReward(Children)
frontier←− Insert(Children \ (explored ∪ frontier))

end

is summarized in Alg. 1. Search may be terminated under
three conditions: (1) when the end of the horizon is reached,
t = T ; (2) the frontier list (Algorithm 1) is empty, meaning
all non-colliding nodes have been explored; (3) we have
reached a maximum number of node expansions, capped so
as to limit online planning time.

B. Selection policy

We suggest that the reward of a node representing trans-
form At be based on the probability of seeing At as part of a
string of actions from the demonstration. We express this by
defining a window around timestep t using two parameters,
m and h, where m defines the number of actions prior to,
and h defines the number of actions following, At.

Reward(At) = p(At:t+h|At−m:t−1) + t. (17)
Given many nodes with similar or equal reward, we prefer
to expand nodes that move closer to the end of the path. As
search depth is correlated with timestep t, we therefore add
t to the reward based on p(At).

VI. EVALUATION METRICS

This section describes three measurable attributes that
allow us to evaluate a search solution, a string of shape
transforms over a time horizon T , A1:T , with respect to a
demonstration. The solution is a string (a finite sequence of
symbols chosen from an alphabet, a finite set of symbols),
where each symbol is a unique transform, Ai ∈ A, and the
size of the alphabet is the chirality of set A, |A|.
Longest Common Substring (LCS): One measure for de-
termining the extent to which a solution exactly matches
(a portion of) the demonstration can be expressed by the
Longest Common Substring (LCS). Given two strings F and
G, of lengths LF and LG respectively, the LCS is the longest
string which is a substring of both F and G.

We additionally look at two possible metrics for scoring
the “distance” of a solution from the demonstration.
Minimum Demonstrated Hamming Distance (MDHD): Edit
distance describes the number of operations required to trans-
form one string to another. The Hamming distance between
two strings of equal length (we denote this as dH(·, ·)) is
the number of positions at which the corresponding symbols
differ [15], and in our application, gives a measure of how
well the solution could have done (ignoring the feasibility
requirements which constrained solution choice) to exactly
replicate a portion of the demonstration.

The Hamming distance can only be computed between
strings of equal length. For a demonstration string F of
length LF , and a solution string G with length LG, there
will be (LF − LG + 1) possible LG-length substrings from
the demonstration. We denote the Minimum Demonstrated
Hamming Distance2 (MDHD) between the query string, G,

2Our defined “Minimum Demonstrated Hamming Distance,” identifying
the minimum distance of a query string to a string set, is unrelated to
“minimum Hamming distance” as defined in the literature, the smallest
Hamming distance between all possible pairs of strings in a set [15].

11641

and the set of substrings, f i with length Lf = LG, drawn
from the demonstration string, F , as:

f i ⊆ F, Lf = LG (18)

f∗ = argmin
fi⊆F

dH(f i, G) (19)

MDHD = dH(f∗, G). (20)
Minimum Demonstrated JSD (MDJSD): While it ignores
action ordering, we can also view a demonstration and a
solution as two probability distributions over actions. A
common metric for measuring the similarity between two
probability distributions is the Jensen–Shannon divergence
(JSD), also known as the information radius or total diver-
gence to the average [16]. The JSD is a symmetrized and
smoothed version of the Kullback–Leibler divergence. We
let F be the string of demonstration data and G the solution,
and we use fi, gi, to denote the observed frequencies of
Ai from the demonstration and the solution strings. The
Kullback–Leibler divergence between strings F and G is
then KLD(F ||G) =

∑|A|
i=1 fi log2

(
fi
gi

)
, and the JSD is given

as:
F = {fi, . . . , fM}, G = {gi, . . . , gM} (21)

M =
1

2
(F + G) (22)

JSD(F ||G) =
1

2
KLD(F ||M) +

1

2
KLD(G||M), (23)

Comparing a solution to an entire demonstration is unin-
formative when LF � LG; we do not expect the solution
to well represent an entire demonstration, but we would
hope that the solution well represents some portion of the
demonstration. Therefore, as in our calculation of the MDHD
(Eqns. (19)–(20)), we calculate JSD with respect to the
set of all LG-length substrings of the demonstration to
find a Minimum Demonstrated Jenson-Shannon divergence
(MDJSD):

f i ⊆ F, Lf = LG (24)

f∗ = argmin
fi⊆F

JSD(f i||G) (25)

MDJS = JSD(f∗||G). (26)

VII. EVALUATION

In this section we evaluate the proposed search approach
using the metrics proposed in Sect. VI over several environ-
ments of varying complexity, and additionally examine the
dynamic feasibility of trajectories interpolated through the
discrete states returned from search.

(a) “Low” clutter,
≈24% occupied

(b) “Medium” clutter,
≈28% occupied

(c) “High” clutter,
≈32% occupied

Fig. 3: Environments of varying complexity used in evaluation. Environment
labels of “low, med, high” corresponding to Subfigures (a), (b), and (c),
respectively, correspond to Table 1. Environments span 10m × 10m × 3m
in height, and are shown here with a voxel resolution of 0.125m.

a b

c d
Fig. 4: These four images show representative examples of coordinated
actions performed by a formation of robots during search evaluation.

Our methodology returns plans in the form of a non-
colliding sequence of goal states (positions) for the robot
group. To use the proposed approach with real robots, we
require dynamically feasible plans trackable by a hardware
platform. Some approaches use independent robot controllers
to directly navigate to the goal destinations output from
formation planning [1]; although this approach would also
work for our problem formulation, we prefer to evaluate
the dynamic feasibility of our plans by using the states
returned from search as keyframes in a polynomial trajectory
formulation. This allows us to quickly evaluate the dynamic
feasibility and safety of the entire plan quickly online.

In the following experiments, we use the method of [17]
to fit time-based polynomial trajectories to the discrete states
returned from search. We evaluate plans for use with a
quadrotor system requiring trajectories that are smooth and
continuous up to the acceleration limits of the platform,
and results are shown in Fig. 5. For each trial, robots are
randomly placed in the environment and asked to follow
a randomly-generated, set-length path. Table 1 shows the
solution metrics evaluating the discrete solution returned
from search (Sect. VI). We evaluated several values of m
and h to describe the length of the windowed history used in
Eqn. 17, and found that using a small window of past actions
performed best in terms of solution quality and computation
time; we therefore show results for trials conducted with
search parameters m = 1 and h = 0.

The results in Table 1 illustrate that the proposed method-
ology is able to return solutions that exactly reflect portions
of the demonstration even in mildly cluttered environments,
as shown in Line 1. As environments become increasingly
cluttered, we see that as expected, solutions are forced to
deviate in greater degrees from any portion of the demon-
stration, and that there are a greater number of failure
cases where a formation cannot fit along an intended path.
However, even in the most cluttered environment, approxi-
mately 80% of the solution sequence reflects a portion of the
demonstration (the LCS of Line 5 is approximately 80% of
the action sequence length).

We additionally show results for the same environments
represented at alternate voxel resolutions. We anticipated

11642

Table 1: Performance over varying environments. Action sequence length
= 19, |A| = 92, dA = .01, dt = .25, m = 1, h = 0. Environments “low”,
“med”, and “high” are shown in Figs. 3a, 3b, 3c. The voxel resolution of
“coarse” is set to 0.25m, and “fine” is set to 0.125m. We report the average
values over 25 trials at each environment and voxel resolution.

Average
LCS

Average
MDHD

Average
MDJSD

Average
search

time [s]

Average
graph size

[nodes]

Failed
trials

1. Env: low, res: fine 19.000 0.000 0.000 2.196 1157.818 3
2. Env: low, res: coarse 17.227 1.545 0.044 2.184 1124.455 3
3. Env: med, res: fine 18.619 0.381 0.012 2.096 1140.286 4
4. Env: med, res: coarse 17.095 1.476 0.041 2.180 1103.476 4
5. Env: high, res: fine 15.579 2.947 0.079 2.060 1052.895 6
6. Env: high, res: coarse 11.263 6.684 0.196 1.998 1081.368 6

that searching a coarser resolution would perform faster,
and we do see that in general, coarser representations show
slightly lower search times and graph sizes. However, the
performance differences in search time and graph size with
respect to voxel resolution are minor, showing that the
method maintains performance over higher-fidelity envi-
ronment representations. This is beneficial in avoiding the
decreasing solution quality incurred by coarser voxelization;
with coarser representations, fewer solutions are found due
to the reduced available free space.

Search times reported in Table 1 are reported as the
(average) total search time to find actions along the entire
specified path (including all collision checks). Trajectories
generated from the discrete states returned from search
roughly span a time duration on the order of sample resolu-
tion, dt, multiplied by the number of actions in the solution
sequence. The search time required is therefore sufficiently
less than the travel time of the robots that the methodology
can safely evaluate and generate trajectories for online use.
We further note that our implementation was performed in
MATLAB, and that transitioning to alternate programming
languages or libraries will decrease search time.

VIII. CONCLUSION AND FUTURE WORK

The proposed approach contributes the capability to co-
ordinate multi-robot formation planning guided by demon-
stration, allowing us to reflect user preferences or instruc-
tions that are not easily input during online operation. This
affords us the ability to coordinate actions with respect to
a wider variety or more unstructured representation of user
preferences–as represented by the distribution of actions in
a demonstration–rather than being restricted to minimizing a
rule-specified objective function. Simulation results validate
that the proposed method is able to find high-resolution
solutions over an extended time horizon within a computation
budget that allows for online operation, even in complex and
cluttered environments.
function proved difficult to evaluate within the desired online

As future work, we intend to incorporate formation state
and environment features into action selection. We anticipate
that we can improve the quality of action selection and
increase search speed by reducing the number of required
collision checks, as we learn which actions are likely to
produce collisions with respect to environment features. We
additionally intend to evaluate alternate search approaches
which might improve action selection while remaining within
the desired online time budget. For example, while incor-
porating a look-ahead parameter in our proposed reward

Fig. 5: Trajectory characteristics showing dynamic feasibility: tests employ
robots of radius 0.1 m, and acceleration and jerk limits of 5 m/s2, and
40 m/s3, respectively.

operating time for the size of the search set, intelligent
selection of likely nodes might mean that we can afford a
limited look-ahead over a subset of options to improve plan
quality.

REFERENCES

[1] J. Alonso-Mora, S. Baker, and D. Rus, “Multi-robot formation control
and object transport in dynamic environments via constrained opti-
mization,” Intl. J. of Robot. Research, vol. 36, no. 9, pp. 1000–1021,
2017.

[2] G. Antonelli, F. Arrichiello, and S. Chiaverini, “The entrap-
ment/escorting mission,” IEEE Robot. Autom. Mag., vol. 15, no. 1,
pp. 22–29, 2008.

[3] P. Dasgupta, T. Whipple, and K. Cheng, “Effects of multi-robot team
formations on distributed area coverage,” Intl. J. of Swarm Intelligence
Research (IJSIR), vol. 2, no. 1, pp. 44–69, 2011.

[4] J. Alonso-Mora, A. Breitenmoser, M. Rufli, R. Siegwart, and P. Beard-
sley, “Multi-robot system for artistic pattern formation,” in Proc. of the
IEEE Intl. Conf. on Robot. and Autom. IEEE, 2011, pp. 4512–4517.

[5] E. A. Cappo, A. Desai, and N. Michael, “Robust coordinated aerial
deployments for theatrical applications given online user interaction
via behavior composition,” in Int. Symp. on Dist. Auton. Robotics Syst.
Springer, Cham, 2016, pp. 665–678.

[6] E. A. Cappo, A. Desai, M. Collins, and N. Michael, “Online planning
for human – multi-robot interactive theatrical performance,” Auton.
Robots, vol. 42, pp. 1771–1786, Dec. 2018.

[7] D. Zhou, Z. Wang, and M. Schwager, “Agile coordination and assistive
collision avoidance for quadrotor swarms using virtual structures,”
IEEE Trans. Robot., vol. 34, no. 4, pp. 916–923, 2018.

[8] M. Turpin, N. Michael, and V. Kumar, “Decentralized formation
control with variable shapes for aerial robots,” in Proc. of the IEEE
Intl. Conf. on Robot. and Autom. IEEE, 2012, pp. 23–30.

[9] H. M. Le, Y. Yue, P. Carr, and P. Lucey, “Coordinated multi-agent
imitation learning,” in Proc. of the 34th Intl. Conf. on Machine
Learning-Volume 70. JMLR. org, 2017, pp. 1995–2003.

[10] Q. Li, X. Du, Y. Huang, Q. Sykora, and A. P. Schoellig, “Learn-
ing of coordination policies for robotic swarms,” arXiv preprint
arXiv:1709.06620, 2017.

[11] J. C. Gower and G. B. Dijksterhuis, Procrustes problems. Oxford
University Press on Demand, 2004, vol. 30.

[12] D. W. Eggert, A. Lorusso, and R. B. Fisher, “Estimating 3-d rigid body
transformations: a comparison of four major algorithms,” Machine
vision and applications, vol. 9, no. 5-6, pp. 272–290, 1997.

[13] M. K. Chung, Statistical and computational methods in brain image
analysis. CRC press, 2013.

[14] S. J. Russell and P. Norvig, Artificial intelligence: A modern approach.
Malaysia; Pearson Education Limited, 2016.

[15] T. Yamada, “Principles of error detection and correction,” in Essentials
of Error-Control Coding Techniques. Elsevier, 1990, pp. 11–37.

[16] A. Mehri, M. Jamaati, and H. Mehri, “Word ranking in a single
document by Jensen–Shannon divergence,” Physics Letters A, vol. 379,
no. 28-29, pp. 1627–1632, 2015.

[17] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments,” in Robotics
Research. Springer, 2016, pp. 649–666.

11643

