
A Robust Multi-Stereo Visual-Inertial Odometry Pipeline

Joshua Jaekel, Joshua G. Mangelson, Sebastian Scherer, and Michael Kaess

Abstract— In this paper we present a novel multi-stereo
visual-inertial odometry (VIO) framework which aims to im-
prove the robustness of a robot’s state estimate during ag-
gressive motion and in visually challenging environments. Our
system uses a fixed-lag smoother which jointly optimizes for
poses and landmarks across all stereo pairs. We propose a 1-
point RANdom SAmple Consensus (RANSAC) algorithm which
is able to perform outlier rejection across features from all
stereo pairs. To handle the problem of noisy extrinsics, we
account for uncertainty in the calibration of each stereo pair
and model it in both our front-end and back-end. The result
is a VIO system which is able to maintain an accurate state
estimate under conditions that have typically proven to be
challenging for traditional state-of-the-art VIO systems. We
demonstrate the benefits of our proposed multi-stereo algorithm
by evaluating it with both simulated and real world data. We
show that our proposed algorithm is able to maintain a state
estimate in scenarios where traditional VIO algorithms fail.

I. INTRODUCTION

State estimation is one of the most fundamental problems
in robotics. In many cases, core functionalities of a robot
such as motion planning, mapping, and control all depend on
a reliable state estimate. Cameras and inertial measurement
units (IMUs) are two of the most popular sensors used
to obtain a state estimate, especially on smaller platforms
like MAVs due to their light weight and complementary
nature. IMUs provide high frequency data which can give
useful information about short-term dynamics, while cameras
provide useful exteroceptive information about the structure
of the environment over longer periods of time.

Visual-inertial odometry (VIO) is a technique which uses
visual information from one or more cameras, and inertial
information from an IMU to estimate the state of a robot
relative to some fixed world frame. Specifically, a VIO
system aims to estimate the six degree of freedom rigid body
transformation between a starting pose and the current pose
of the robot. Although VIO frameworks are able to obtain
accurate state estimates in many environments, improving
the robustness of these algorithms remains a significant
challenge. In certain environments, such as those with sparse
visual features or inconsistent lighting, current VIO algo-
rithms are prone to failure. Furthermore, certain types of fast
or aggressive motions can lead to failures in state estimation.
In indirect systems which track features in the scene, these
failures can often be attributed to poor feature tracking
which results in incorrect camera measurements being used
in back-end optimization. In traditional frameworks, where
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Fig. 1: Visualization of the proposed multi-stereo RANSAC algorithm.
Sample feature points for the forward facing (orange) and backward facing
(blue) cameras are shown. Also visualized are the uncertain 3D positions
of the points in the world and their uncertain projections back into the
image. In the proposed method we are able to jointly select inliers from the
features observed in all cameras and account for the extrinsic uncertainty
in the process.

information from only a single monocular camera or single
stereo pair is used, a single point of failure is introduced.
If the field of view of the camera were to become suddenly
occluded or experience rapid exposure changes, the accuracy
of the state estimate could drastically decrease or the VIO
algorithm could fail all together.

Using information from multiple cameras with non-
overlapping fields of view can drastically improve the ro-
bustness of a VIO system. If features from one of the cam-
eras were suddenly lost, the VIO algorithm could continue
to maintain a state estimate using only features from the
other cameras and IMU. Furthermore, if the cameras are
configured to have perpendicular optical axes, then when the
robot undergoes fast rotation it is possible that at least one
of the cameras’ optical axes will be closely aligned with the
axis of rotation and will be able to track features during the
motion. Determining the correct set of features to use for
optimization is a non-trivial task. Although several outlier
rejection algorithms exist in state-of-the-art VIO pipelines,
most of these cannot take advantage of the strong constraints
provided by a calibrated multi-stereo system.

We propose a VIO system capable of incorporating an
arbitrary number of stereo pairs with non-overlapping fields
of view. Our paper introduces an outlier rejection scheme to
jointly select features from all the stereo frames to be added
as projection factors in a back-end solver. Our proposed sys-
tem addresses the problem of having an unreliable extrinsic
calibration by modeling the uncertainty in both the outlier
rejection scheme and the back-end graph based optimization.
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Our RANSAC scheme also models the 3D uncertainty of
triangulated points, which is quadratic in depth. Since our
algorithm only uses the RANSAC result to select inliers to
insert in the back-end and does not use the result to calculate
odometry directly, we have seen little adverse effects from
the sometimes noisy results of DLT triangulation, which
minimizes algebraic error instead of geometric error, but in
a much more computationally efficient manor than iterative
approaches [7].

To demonstrate the benefits of our multi-camera VIO
algorithm, we evaluate it in simulation against VINS-Fusion
[22], a current state-of-the-art VIO algorithm running on
each stereo pair individually. We also provide a detailed
comparison of our proposed outlier rejection scheme against
a fundamental matrix RANSAC approach both in terms of
the accuracy of the resulting state estimate and the computa-
tional load of each method. We show that the multi-camera
approach is able to maintain a more accurate state estimate
in several challenging situations. This paper is an extension
of our previous work in [12]. Our main contributions are:
• The description of a multi-stereo front-end pipeline

which can be used with a feature based back-end solver
• The design and evaluation of 1-point RANSAC scheme

with a novel application to multi-stereo camera config-
urations

• A framework to model uncertainty in camera extrinsics
in both the front-end and back-end of our algorithm

II. RELATED WORK

VIO and simultaneous localization and mapping (SLAM)
algorithms can be roughly categorized into two main groups,
direct and indirect methods. Direct methods [2, 3, 4, 28] es-
timate temporal motion by continuously aligning consecutive
camera frames as to minimize the photometric error between
them. On the other hand, indirect methods [13, 19, 22, 25]
track landmarks in the scene and estimate motion by attempt-
ing to minimize the reprojection error between the observed
location of features in an image and the projection of their
3D estimated locations.

RANSAC schemes are widely used in most indirect VIO
algorithms. These algorithms can either be used to remove
erroneous feature correspondences from being inserted into
an optimization or to estimate the egomotion of the robot
directly. VINS-Mono and its stereo counterpart VINS-Fusion
[22] both use a fundamental matrix RANSAC approach for
outlier rejection. The minimal solution requires 7 corre-
spondences and calculates inliers based on their distance
from a candidate epipolar line. In Sun et al.’s [25] im-
plementation of stereo MSCKF [18], a 2-point RANSAC
approach described in [27] is used. They first compensate
for temporal rotation by integrating the IMU. Instead of
performing outlier detection on a triangulated 3D point, they
apply an independent RANSAC to both the left and right
image points and only accept the feature if it is an inlier in
both images. Although both of these methods work well for
detecting outliers observed from a single camera or stereo
pair, neither generalize to features across multiple cameras.

There has been extensive work done in using multi-camera
systems to improve the robustness of simultaneous local-
ization and mapping (SLAM) systems. Oskiper et al. [20]
proposed a multi-stereo VIO which extracts frame-to-frame
motion constraints through a 3-point RANSAC and used an
extended Kalman filter (EKF) to fuse those constraints with
data from an IMU. Houben et al. [10] explored using a multi-
camera system in a graph based SLAM framework with their
proposed extension of ORB-SLAM [19]. Their system added
a factor in the pose graph between key-frames observed from
different cameras at the same time step based on the known
extrinsic calibration of the multi-camera system. Tribou et al.
[26] proposed a multi-camera extension of Parallel Tracking
and Mapping [13] (PTAM) using a spherical camera model.

For joint multi-camera outlier rejection, most existing
methods use the generalized camera model (GCM) and
generalized epipolar constraint (GEC) introduced by Pless
in [21]. In this framework, feature points are parameterized
by Plücker vectors which pass through the optical center
of the camera in which the feature was observed and the
normalized image point. Lee et al. [14] propose a 4-point
solution based on the GEC for a multi-camera setup on board
an autonomous vehicle. This system assumes the roll and
pitch can be directly measured from the IMU but estimates
the temporal yaw as part of the RANSAC formulation. In [9]
Heng et al. propose a similar 3-point algorithm for a multi-
stereo system on board a MAV. Like our proposed method,
they also use an estimated rotation from IMU integration,
but their algorithm is degenerate in the case of no temporal
rotation and no inter-camera correspondences. Although their
platform contains stereo cameras, they do not triangulate
feature points and instead must treat each camera in the
stereo pair independently to ensure there will always be inter-
camera correspondences.

In a separate work [8], Heng et al. describe a 1-point
RANSAC scheme similar to ours in that it uses rotation
measured from the IMU and estimates the relative translation
between 3D features observed from a RGB-D camera as the
RANSAC model. Our work extends theirs by formulating
how this 1-point RANSAC scheme can be used for joint
multi-camera outlier rejection. We also characterize uncer-
tainty in both stereo triangulation and camera extrinsics as
part of our RANSAC.

III. PROBLEM FORMULATION

The goal of this paper is to develop a framework to
robustly select features in multi-stereo systems, and to use
those features effectively in an indirect VIO pipeline. For
each frame, we define a set of camera measurements Ot that
contains all the measurements across the K stereo pairs:

Ot =

K⋃
j=1

Oj
t . (1)

Oj
t is the subset of Ot containing the measurements observed

in stereo pair j. We denote stereo pair i as Si and the
extrinsics of the left camera with reference to the body
frame as TB

Si
or equivalently TSi

. We denote Rt and tt
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Fig. 2: The structure of the front-end for the proposed multi-stereo VIO.
Features are tracked in each stereo frame by a feature handler instance and
then passed to a joint RANSAC algorithm to select inliers to send to the
back-end estimator.

as the rotation matrix and translation vector which can take
a point from the previous body frame (t− 1) to the current
body frame (t). We define the body frame of the robot as
being aligned with the IMU. The goal of the proposed outlier
rejection algorithm is to filter the set of candidate features,
Ot, and extract a smaller subset of features Ct, to be added
as stereo projection factors in the optimization such that each
feature in Ct is consistent with the motion of the robot.

IV. ROBUST MULTI-STEREO VIO

An indirect VIO system following our framework (see
Figure 2) has three main steps:

1) Feature handling (temporal and stereo matching)
2) Outlier rejection
3) Back-end estimation

In this section we will briefly elaborate on Steps 1 and 3
while Section V is entirely dedicated to our proposed outlier
rejection scheme.

A. Front-end Feature Handler

The role of the front-end is to provide the back-end with
valid observations of landmarks in the scene over time.
For each stereo pair on the robot we initialize a feature
handler. During initialization we uniformly divide our images
into a fixed number of buckets and enforce a maximum
number of features in each bucket. Bucketing the image
ensures we obtain an even distribution of features across
the entire image and also avoid landmarks which would give
redundant constraints on the optimization. We fill our buckets
by detecting Shi-Tomasi features [24] in the left image of the
stereo pair and use Kanade-Lucas-Tomasi (KLT) tracking to
match features between the left and right images. We define
Oj

t to be the set of features in the previous frame of stereo
pair j that are candidates to be tracked,

Oj
t = Cjt−1 ∪N

j
t−1 (2)

where N j
t−1 represents the new features that were added

at the previous iteration. Put simply, this states that the
candidate features to be tracked at time step t are the features

TABLE I: Notation Summary
Problem Formulation

pt
L,p

t
R ∈ R2 Left and right candidate feature image

coordinates for stereo pair at time step t

pt−1
L ,pt−1

R ∈ R2 The image coordinates of the features
corresponding to pt

L,p
t
R at time t− 1

Si The i-th stereo pair

TSi

Extrinsics of the left camera of Si with respect
to the body frame

Oj
t

Set of potential features to track at time step
t in stereo pair j

N j
t

Set of new feature points added at time step
t in stereo pair j

Ct
Final set of image points to be used for VIO back-end at
time step t

Multi-Camera RANSAC

Ft
Set of successfully temporally tracked image
point pairs

Pt
B ∈ R3 Triangulated 3D coordinate of a feature in the

body frame at time step t

Pt−1
B ∈ R3

The time step t− 1 triangulated 3D feature
coordinate corresponding with Pt

B represented
in the body frame

P
(t−1)′

B ∈ R3 The 3D feature coordinate Pt−1
B after being

rotated into the current (time t) frame via R̂t

I Set of candidate inliers for a given
iteration of RANSAC

X Set of triangulated feature points

R̂t ∈ SO(3)
Estimated temporal rotation matrix produced
via IMU integration

Υ̂p̃L
Covariance matrix in image pixel space

t̂ ∈ R3 Candidate temporal translation from RANSAC

δ RANSAC threshold

πj Projection function into stereo pair j

which were inliers at time step t − 1 and the new features
which were previously initialized. At each new image we:

(i) Perform KLT tracking from features in previous left
image (Oj

t ) to the current left image.
(ii) Perform KLT tracking from the successfully tracked

features in the current left image to the current right
image. The result is F j

t .
(iii) Replenish the buckets which lost features during Steps

i and ii by adding new Shi-Tomasi features (N j
t ).

For Step i, we initialize the tracker with features warped
by the temporal rotation, estimated from the IMU. Our
algorithm also supports the ability to initialize the temporal
tracker by compensating for the translation between frames.
This can be done relatively inexpensively since each feature
is already triangulated in the multi-camera RANSAC algo-
rithm. We estimate the temporal translation by taking the
most recent velocity estimate from the back-end and applying
a constant velocity model. The output of feature handler j is
F j

t . We denote the set of temporally tracked stereo feature
points across all frames at time t as Ft:

Ft =

K⋃
j=1

Fj
t (3)
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Algorithm 1: Multi-Stereo RANSAC
1 X ← ∅
2 Ct ← ∅
3 R̂t ← IMUIntegration()
4 for j := 1 to K do
5 for (pt−1

L ,pt−1
R ,pt

L,p
t
R) ∈ Fj

t do
6 Pt−1

Sj
← Triangulate(pt−1

L ,pt−1
R )

7 Pt
Sj
← Triangulate(pt

L,p
t
R)

8 Pt
B ← TB

Sj
Pt

Sj

9 Pt−1
B ← TB

Sj
Pt−1

Sj

10 P
(t−1)′

B ←
[
R̂t 0
0 1

]
Pt−1

B

11 X ← X ∪ {(P(t−1)′

B ,Pt
B ,p

t
L,p

t
R, j)}

12 end
13 end
14 for i := 1 to N do
15 I ← ∅
16 (P̂

(t−1)′

B , P̂t
B , . . . )

Rand←−−−− X
17 t̂← P̂t

B − P̂
(t−1)′

B

18 for (P
(t−1)′

B ,Pt
B ,p

t
L,p

t
R, j) ∈ X do

19 P̃B ← Tt̂P
(t−1)′

B

20 (p̃t
L,Υp̃L

)← πj(T
Sj

B P̃B)
21 if (||p̃t

L − pt
L||

2
Υp̃L

< δ) then
22 I ← I ∪ {(pt

L,p
t
R)}

23 end
24 end
25 if (|I| > |Ct|) then
26 Ct ← I
27 end
28 end
29 return Ct

B. Back-end

We use a fixed-lag smoother to optimize for the state of
the m previous key frames and n most recent frames. We
represent each state, xt ∈ R15, as:

xt = [ξ>t ,v
>
t ,b

>
t ]> (4)

where ξ ∈ R6 is the 6 degree of freedom robot pose, v ∈ R3

is the robot velocity, and b ∈ R6 is the vector of biases of
the accelerometer and gyroscope. Measurements associated
with each frame consist of relative and marginalized IMU
measurements [5, 11] between consecutive poses, as well
as stereo projection factors which connect a pose and a
landmark. Our back-end is based on [11] which uses a
marginalization strategy that follows from Mazuran’s Non-
linear Factor Recovery [17] to maintain a sparse information
matrix without discarding the information contained in the
dense priors created by marginalization. Our back-end adds a
modification to account for extrinsic uncertainty in the noise
model of the projection factor. This is discussed in greater
depth in Section VI.

V. MULTI-STEREO RANSAC ALGORITHM

In this section we present our multi-stereo RANSAC
algorithm. For the sake of clarity we have included Table
I which summarizes the notation to be used in this section.
We will explain the method with reference to Algorithm 1.

TABLE II: RANSAC iterations for varying minimal solution points

s 1 2 3 · · · 7
N 7 16 35 · · · 588

We triangulate each candidate feature point in Ft in its
respective stereo frame. This is done for the features in
the current image (line 7) as well as the corresponding
features from the previous image (line 6). We estimate the
temporal rotation, R̂t between consecutive camera frames
by integrating measurements from the onboard gyroscope
(line 3). Using this estimate for temporal rotation we rotate
the triangulated points from the previous time step into
the current time frame (line 10). At this point we expect
that the landmarks in P

(t−1)′
B and Pt

B only differ by the
temporal translation of the robot. We obtain an estimate
for the temporal translation by randomly selecting a single
feature correspondence and subtracting their 3D positions
(line 16 and 17). Using this estimate for translation, we
then project all the triangulated feature points in the previous
temporal frame into the current image frame (line 20). In this
step we also calculate a covariance in the pixel space of the
image based on the uncertainty of the extrinsic parameters.
This is described in more depth in Section VI. We perform
outlier rejection by thresholding the Mahalanobis distance
between the projected points in the left camera frame and
the tracked points (line 21). Our RANSAC based outlier
rejection scheme iteratively repeats this process and selects
the largest set of inliers to insert as measurements in the
factor graph. A main benefit of the 1-point algorithm is that
it only requires a small number of iterations to provide strong
probabilistic guarantees. This relationship is expressed as:

N =
log(1− p)

log(1− (1− ε)s)
(5)

Where N is the number of iterations needed, p is the desired
probability of success, ε is the estimated percentage of
outliers and s is the number of points required for a minimal
solution. Table II shows the number of RANSAC iterations
required to find a set of inliers with probability of success
p = 0.99 and a conservative estimate of the percentage of
outliers of ε = 0.5. We can see that the number of iterations
required grows exponentially with the number of points
required for a minimal solution. In the proposed method,
the RANSAC model only requires a single correspondence,
which calls for the fewest possible number of iterations to
satisfy a given confidence level.

VI. EXTRINSIC UNCERTAINTY COMPENSATION

Obtaining an accurate extrinsic calibration between multi-
ple sensors is a significant challenge in robotics in general,
and is especially difficult for systems with multiple cameras
and inertial sensors. While there are several works which
specifically aim to improve the quality of the calibration
[6, 9, 23] some uncertainty will always remain. This re-
maining uncertainty can be attributed to the noisy sensor
data used to perform calibration and the physical deformation
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Fig. 3: This graph displays the percentage of selected inliers in pair 2, which
has a noisy extrinsic calibration. Without compensating for uncertainty, our
outlier rejection scheme has a bias towards features observed in cameras
with less uncertain extrinsics. After compensating for uncertainty we see
that the feature distribution more closely matches the original distribution,
which are the results with perfect extrinsics.

of the camera rig that can vary with time and temperature.
Knowing that it is impossible to obtain a perfect calibration,
we decide to model and account for the uncertainty. Although
this paper does not specifically focus on strategies to obtain
a measurement of extrinsic uncertainty, it can generally be
done by either extracting it from a tool which formulates
calibration as the optimization of a nonlinear least squares
problem or by estimating it based on the physical parameters
of the camera rig.

We choose to represent the uncertainty in the extrinsics
by modeling uncertainty in the transformation between the
left camera of each stereo pair and the IMU. Using the
same convention as [1], we represent each of these estimated
transformations TB

Si
as a member of the special Euclidean

group SE(3). We can model each transformation as some
“true” transformation T̄B

Si
perturbed by some noise ξi ∈ R6

where ξi ∼ N (0,ΣB
Si

).

TB
Si

= exp(ξ∧i )T̄B
Si

(6)

Where ∧ is an overloaded operator which can either trans-
form the noise perturbation vector ξi ∈ R6 to a member of
the 4×4 Lie algebra ξ∧i ∈ se(3) or transform a vector φ ∈ R3

to a 3× 3 member of the Lie algebra φ∧ ∈ so(3). Since we
will be operating on the transformations in both directions
it is useful to model uncertainty in both the camera-to-IMU
and IMU-to-camera transformations. To do this, we follow
the method described in [15]. In this section we make the
conservative assumption that the uncertainty in camera-to-
imu and imu-to-camera transformations are uncorrelated.

T̄Si

B = (T̄B
Si

)−1 (7)

TSi

B = exp(ψ∧i )T̄Si

B (8)

Where ψi ∼ N (0,ΣSi

B ) and ΣSi

B = Ad
T

Si
B

ΣB
Si

Ad>
T

Si
B

A. Front-end

To motivate the need for uncertainty compensation in the
front-end of our proposed system we consider the example
of a two stereo configuration, where pair 1 has a very
accurate camera-to-IMU calibration and pair 2 a very noisy
calibration. Points observed in each stereo frame are first
triangulated in their respective camera frames and then
transformed into the body frame. Inliers are determined by
applying the RANSAC model and reprojecting candidate 3D
feature points from the body frame back into their respective
cameras. Features observed by pair 2 will tend to have a
higher reprojection error due to the two noisy transformations
they underwent even if they are consistent with the motion of
the robot. Without compensating for uncertainty our outlier
rejection scheme will have an inherent bias toward features
observed in stereo pairs with relatively stronger calibrations
(illustrated in Figure 3). To address this issue, our proposed
method propagates the uncertainty in the transformation
through both the camera-to-IMU transformation as well as
the reprojection to obtain an uncertainty in the pixel space
of the image. With an uncertainty in the pixel space, we can
determine inliers by setting a threshold on the Mahalanobis
distance between the projected features and their actual
observed locations.

We refer readers to [1] for a detailed derivation of un-
certainty propagation used in this section. We start with
a triangulated 3D point in one of the camera frames of
the robot. It is well known that the error in triangulation
is quadratic with respect to the depth of the point. We
model an initial uncertainty on the triangulated 3D point by
propagating the pixel noise in the image using the method
described in [16]. We propagate the uncertain point through
the uncertain camera-to-IMU transformation:

P̄B = T̄B
Si

P̄Si
(9)

If P̄B = [h>, λ]> then the 4×9 Jacobian of the homogenous
transformed point with respect to the parameters of both the
transformation and the original point is:

J =

[
λI3 −h∧ RB

Si

01×3 01×3 01×3

]
(10)

We obtain a covariance matrix estimating the uncertainty of
the point in the body frame using a first order approximation.

ΣPB
= J

[
ΣB

Si
06×3

03×6 ΣPSi

]
J> (11)

We use the method described in [1] to propagate the uncer-
tainty of the extrinsics and the uncertainty of the point in
the body frame through projection into a nonlinear camera
model. For each candidate motion model in RANSAC, we
obtain a 3D point in the body frame, P̃B , which needs to be
projected back into the original image to determine inliers.
We model an uncertain 3D point as:

P̃B = ¯̃PB + Dζ (12)

where ζ ∈ R3 and ζ ∼ N (0,ΣP̃B
) and D is the 4 × 3

matrix defined by D = [I3,0]>.
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Fig. 4: Average Trajectory Error (ATE) on simulated data and Final
Trajectory Error (FTE) on Highbay data. If bars are not shown it means
the VIO algorithm failed to obtain a state estimate. Each trial was run 5
times. Median value is shown in graph with error bars representing the range
of data.

The projection function π : R4 → R2 is a nonlinear
function which takes a homogeneous 3D point in the left
camera frame and projects it to an image pixel. We define
the Jacobian of the projection function with respect to the
homogenous points in the camera frame as

Π =
∂π

∂w

∣∣∣∣
w

=

[
fx
w3

0 − fxw1

w3
2 0

0
fy
w3

− fyw2

w3
2 0

]
(13)

Similarly to Eq. 10 we define G as the Jacobian of the
transformed homogenous point with respect to the parame-
ters of the transformation and original point. In this case the
transformation we are considering is from the body frame
back to the camera frame.

G =

[
λI3 −d∧ RSi

B

01×3 01×3 01×3

]
(14)

where P̃′Si
= TSi

B P̃B = [d>, λ]>. We make the important
distinction that PSi

is the original triangulated point in the
camera frame, while P′Si

is the point after it has been
transformed back into the camera frame as part of the
RANSAC scheme. From here we define the Jacobian of the
entire reprojection function, from the point in the body frame
to a pixel in the image as:

H = ΠG (15)

and the covariance in the image space as:

Υp̃L
= HΞH>, Ξ =

[
ΣSi

B 06×3
03×6 ΣP̃B

]
(16)

B. Back-end

By compensating for uncertainty in our outlier rejection
scheme we end up selecting a greater number of features
observed in stereo pairs with relatively weaker extrinsic
calibrations. Although these features still contain valuable
information that can constrain the state estimate of a robot,

Fig. 5: Visualized trajectories of the proposed algorithm and VINS-Fusion
running on the forward facing stereo pair. The trajectory was manually
registered against the reconstructed scene to aid in visualization. We can
see that the trajectory produced by our proposed algorithm is able to return
to the original starting location while VINS-Fusion drifts significantly.

TABLE III: Average Computational Time for Outlier Rejection

Proposed Proposed without
Uncertainty Compensation

Sim Easy 0.0138 s 0.0435 s
Sim Difficult 0.0118 s 0.0418 s

Highbay 0.00774 s 0.0418 s

the uncertainty in the extrinsics adds noise to the measure-
ments which needs to be accounted for. In our proposed
method, the noise model of each stereo projection factor in
the back-end factor graph is modified to model the noise
in the extrinsics. Our final noise model accounts for both
the uncertainty in the camera model as well as uncertainty
in extrinsic calibration of each stereo pair. Specifically, we
modify Eq. 4 in [11] such that the residual associated with
each projection factor is weighted by Σm rather than Σcij :

Σm = Σcij + Υp∗L
(17)

where Σcij is the noise model of the camera and Υp∗L
is the

covariance of the given landmark projected from the current
linearization point of the optimization into the left camera.
Since we are projecting an estimate of the 3D landmark
position we have ΣP∗B

= 0.

VII. EXPERIMENTAL RESULTS

The proposed multi-camera VIO pipeline was evaluated
using a MAV in a simulated Gazebo environment as well as
on real world data collected in the Robotics Institute’s High-
bay. The simulated environment allowed us to obtain ground
truth extrinsics and manually add noise to test our system,
while the Highbay data allowed us to verify the robustness of
our algorithm on real data. For both types of experiments we
evaluate the accuracy of the trajectory against VINS-Fusion
running on both stereo pairs individually. VINS-Fusion was
run with default parameters and the option to optimize for
extrinsics enabled. As a comparison we also compare against
a version of our full VIO pipeline which uses a fundamental
matrix RANSAC for outlier rejection on each stereo pair
individually. For the simulated data the primary stereo pair
was facing forwards and the secondary pair was facing
backwards. For the Highbay data, the primary stereo pair was

4628



TABLE IV: ATE in Simulated Environments

Proposed Proposed without
Uncertainty Compensation

Proposed with
Fundamental Matrix RANSAC VINS-Fusion Primary VINS-Fusion Secondary

Easy 0.179 m 0.144 m 0.167 m 0.131 m 0.128 m
Difficult 0.791 m 0.954 m 0.810 m Failed 7.510 m

TABLE V: FTE in Field Robotics Center Highbay

Proposed Proposed without
Uncertainty Compensation

Proposed with
Fundamental Matrix RANSAC VINS-Fusion Primary VINS-Fusion Secondary

Highbay 1.694 m 6.980 m 5.217 m Failed Failed

facing forwards the secondary pair was facing downwards.
We also compare against our proposed algorithm without
uncertainty compensation in order to precisely observe the
effects of uncertainty compensation. Each reported result is
the median over 5 trials. Errors are plotted in Figure 4 and
reported in Tables IV and V. Failure is defined as an error
over 10% of the length of the trajectory. To demonstrate the
computational benefit of our 1-point RANSAC formulation,
a comparison of computational time required to run the pro-
posed outlier rejection scheme and the fundamental matrix
RANSAC is shown in Table III.

A. Simulated Results

The simulated data was recorded on a MAV in an outdoor
Gazebo environment. Noise was randomly added to the
extrinsics of each stereo pair. The results of two simulated
flights were recorded. One flight was a relatively easy trajec-
tory with no aggressive motion or sudden scene occlusions.
Another simulated flights included aggressive turns and flight
very close to obstacles which could partially occlude the
fields of view of the cameras on board. Images and IMU
measurements from the simulator were taken as inputs to
the VIO pipeline. All methods are able to achieve a similarly
low ATE on the easy flight. The main benefit of our proposed
system is apparent in the difficult dataset.

B. Highbay Data

Our real world data was collected using a two stereo
camera rig with time synchronized images and IMU data,
seen in Figure 6. The multi-camera rig was moved around
the Highbay and returned precisely to its original starting
position. To test the robustness of our VIO the data was
intentionally made to be extremely challenging, with several
points of sudden occlusion occurring during the run. We
evaluated each algorithm by returning to the same starting
location and measuring Final Trajectory Error (FTE), which
is the absolute drift of the final position. A visualization of
two trajectories is shown in Figure 5 for a reference of scale.

VIII. CONCLUSION

In this paper we have introduced a novel application of a
1-point RANSAC algorithm which is used as part of a multi-
stereo VIO pipeline. Our outlier rejection scheme operates

Fig. 6: The multi-stereo camera rig used to collect experimental results.
Images were captured at 25 Hz and inertial data was collected at 200 Hz.
All cameras were synchronized using the on-board FPGA.

on stereo triangulated points, which allows us to formulate
a 1-point minimal solution. Our algorithm leverages the
known extrinsics between cameras as well as the multi-
view observation of each feature point from the stereo pair
to be able to jointly perform outlier rejection with features
observed across an arbitrary number of camera frames. We
address the issue of noisy calibration by compensating for
extrinsic uncertainty in both the front-end and back-end of
our proposed algorithm. We demonstrate that a multi-stereo
VIO framework using this outlier rejection scheme is able
to beat state-of-the-art VIO algorithms running on any of
the stereo pairs individually in a simulated environment. We
also demonstrate that compensating for extrinsic uncertainty
improves the accuracy and robustness of the VIO’s state
estimate.
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