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Abstract— Leveraging multimodal information with recursive
Bayesian filters improves performance and robustness of state
estimation, as recursive filters can combine different modalities
according to their uncertainties. Prior work has studied how
to optimally fuse different sensor modalities with analytical
state estimation algorithms. However, deriving the dynamics
and measurement models along with their noise profile can
be difficult or lead to intractable models. Differentiable filters
provide a way to learn these models end-to-end while retaining
the algorithmic structure of recursive filters. This can be
especially helpful when working with sensor modalities that
are high dimensional and have very different characteristics. In
contact-rich manipulation, we want to combine visual sensing
(which gives us global information) with tactile sensing (which
gives us local information). In this paper, we study new dif-
ferentiable filtering architectures to fuse heterogeneous sensor
information. As case studies, we evaluate three tasks: two in
planar pushing (simulated and real) and one in manipulating
a Kinematically constrained door (simulated). In extensive
evaluations, we find that differentiable filters that leverage
crossmodal sensor information reach comparable accuracies to
unstructured LSTM models, while presenting interpretability
benefits that may be important for safety-critical systems. We
also release an open-source library for creating and training dif-
ferentiable Bayesian filters in PyTorch, which can be found on
our project website: https://sites.google.com/view/
multimodalfilter.

I. INTRODUCTION

Object manipulation in robotics is inherently multimodal:
a robot can observe the object interaction with its cameras,
register the motion of its own motors, and sense the forces
and torques it applies with its end effector. The information
from these modalities can be used to continuously estimate
the state of those elements in the environment that are
relevant to the manipulation task. Since the information from
vision, proprioception, and haptics is complementary, using
multimodal sensory inputs can help overcome limitations of
single modalities due to occlusions, loss of contact, sensor
failure, or differing sensor rates. Fusing these modalities in an
optimal manner promises more accurate, robust and reliable
manipulation. This idea has fueled research in sensor fusion
and multimodal state estimation for decades [2, 7, 21].

Multimodal state estimation for manipulation is challenging.
Visual, proprioceptive and haptic data live in very different
sensor spaces that represent different physical properties,
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Fig. 1: We study the integration of modalities for recursive state estimation
with differentiable filters; (top) Information from force sensing (local
information), joint encoders and visual sensing (global information) is fused
with different architectures, including new crossmodal strategies that use
information from one modality to assess the uncertainty of another; (bottom)
By combining local and global information during manipulation, the pose
of an object (green peg) can be correctly estimated (red overlay).
have disparate dimensionality, and may arrive at different
rates. Moreover, the models that map these signals to the
task-relevant state (e.g. object motion) are often complex
and require full knowledge of the environment. To alleviate
the complexity of deriving these models, recently proposed
methods [8, 15, 19] learn the measurement, forward, and noise
models from labeled data. To apply deep neural networks
to this learning task, these methods turn the state estimation
process into a differentiable procedure that allows end-to-end
backpropagation of errors. While these methods demonstrate
improved performance and are more interpretable when
compared to completely unstructured LSTMs, this was only
shown with a single sensor modality or with sensors with
very similar characteristics, such as RGB images and depth.
To fuse sensor information with different characteristics,
an estimator needs to understand how to balance confidence
between modalities. We present three types of fusion mecha-
nisms for differentiable filters. The first one fuses data based
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on uncertainty estimates per modality, i.e. unimodal informa-
tion. The second ones concatenates unimodal features into a
multimodal representations. And a third one uses crossmodal
information to weight unimodal state estimates from multiple
sensors. We integrate the proposed fusion mechanisms with
parametric and non-parametric recursive state estimators.
We compare these multimodal differentiable filters with an
unstructured LSTM and evaluate their performance for clean
simulated data, noisy simulated data, and real data.

Our study shows that differentiable filters, when compared
to more expressive LSTM models, are able to provide impor-
tant interpretability benefits without sacrificing performance.
In our comparison of fusion mechanisms, we demonstrate
that filters that only leverage unimodal information can be
brittle and perform inconsistently across tasks. For filters
that leverage crossmodal weights, we demonstrate additional
opportunities for interpretability. By analyzing the outputs
of individual components within the proposed crossmodal
architectures, we show that these filters allow us to inspect the
contributions of individual modalities, while also assessing
when information from each modality can be trusted.

II. RELATED WORK
A. Multimodal Fusion

Traditionally, sensor fusion is performed within a recursive
filter by individually modelling each observation and then
integrating the resulting information into a common state
estimate [1, 11, 14, 27]. These methods support the intuition
that an optimal combination of information from different
modalities improves the overall estimation accuracy. The
general schema of these approaches includes a Bayesian
filter (see Sec. III) and a multimodal measurement model that
quantifies per modality how likely the current measurement is
given the predicted state. Other approaches use measurements
in a crossmodal manner where information from one sensor
modality helps to interpret another [6, 25, 26]. Each of these
methods require the user to identify and define analytical
forward and measurement models that may be hard to specify
for some dynamical systems or intractable to compute online.
In this paper, we reduce the need for predefined models
for multimodal and crossmodal fusion by learning both the
measurement and the forward model from annotated data
with neural networks.

When using probabilistic recursive state estimation with
observations from multiple sensors, the information of the
modalities can only be optimally integrated if the uncertainty
of each sensor has been correctly characterized [3, 28].
Traditionally, these uncertainties have to be hand-tuned so
that the posterior state estimate is close to ground truth. In
this paper, we learn the uncertainty of each sensor modality,
thereby alleviating handtuning.

Instead of fusing sensors recursively within the filters,
Caron et al. proposed to weight state estimates from uni- and
multimodal Kalman filters [4] and to switch between mea-
surement models of uni- and multimodal particle filters [5].
However, the weighting mechanisms depend on user-defined
and hand-tuned thresholds for each sensor. In our work, we

propose and evaluate fusion models that learn to merge
state estimates from single modality filters by leveraging
crossmodal information.

[22, 31] have proposed a multimodal state estimation
framework for planar pushing (similar to two of the three case
studies we use in this paper) with factor graphs (iISAM [16]),
however they used fiducials for tracking instead of raw RGB
data. While the authors show that iSAM provides more
accurate and robust state estimates, it still requires careful
specification of modality-specific cost functions as well as
forward and measurement models, which we learn from data.

B. Differentiable filters

Differentiable filters provide an approach for learning for-
ward and measurement models from data while retaining the
algorithmic structure of a recursive Bayes filter. Differentiable
filters can thus be advantageous for systems whose dynamics
and sensor observations are hard to model analytically, while
making it possible to retain the interpretability of state
representation and uncertainty that is often vital for safety-
critical systems. Jonschkowski et al. [15] and Karkus et
al. [18] each proposed differentiable versions of the particle
filter [28], as applied to simple localization tasks. Their
methods learn an estimator that shows improved results
over an unconstrained LSTM. Similarly, Haarnoja et al. [8]
proposed a differentiable version of the EKF. The authors
reach similar results after testing on toy visual tracking
and real-world localization tasks. In addition, other lines
of research have proposed to use recurrent neural networks to
learn latent state representations [9, 13, 23, 24]. All methods
above explored how to combine filtering techniques with
learning approaches, but they do not systematically study how
to fuse information from different sensor modalities. In this
paper, we investigate new differentiable filtering architectures
to fuse information from the heterogenous sensor modalities
of vision, touch, and proprioception.

III. BACKGROUND ON FILTERING

We consider the problem of estimating the state x of a
system from a sequence of (multimodal or unimodal) observa-
tions z and control inputs u. We represent our knowledge and
uncertainty about our estimate with a distribution over the
current state X, conditioned on all the previous observations
Z1+ and control inputs uy,;. We denote this distributions as
belief bel(x;) = p(x; | 1,21, ). One solution to compute this
belief are Bayes filters.

Traditionally, developing a Bayes filter requires analytically
formulating a forward model to predict the next state based
on current state and control input, p(x, | X;—1,u_1), a
measurement model, p(z, | X;), to compute the likelihood
of an observation given a state, and the noise associated
with predictions and observations. Formulating these models
and quantifying the noise often requires making strong
assumptions on the properties of the underlying system. A
way to avoid making these assumptions is to extract this
information directly from labeled data of observations and
ground truth states. This can be achieved with the recent
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family of differentiable Bayes filters. Here, we study differ-
entiable filters for the special case of fusing heterogeneous
sensory data from multiple modalities. In this section, we
will first give a brief summary of Bayes filters before we
provide a unified notation for differentiable filters. For a more
in-depth discussion of Bayes filters, we refer to [28].

A. Bayes Filters

The Bayes filter algorithm provides an optimal solution
for state estimation in a system that follows the Markov
assumption and in which observations are conditionally
independent. In this filter, the belief is updated in two steps.
In the prediction step, a motion model p(x; | X,—1,u,_1) is
used to predict the belief bel(x;) about the current state X,
given the previous state X, and control input u,_

bel(x;) = /p(xt | X1, 0 1)bel(x,1)dx—1 (1)

In the update step, we correct this initial prediction given a
sensory observation z, plugged into a measurement model
p(z, | ;) that describes the likelihood of this observation
given the predicted state:

bel(x;) = np(z | x;)bel(x;) 2

where 7 is a normalization factor.

The Kalman filter [17] is the optimal estimator for a system
with linear models and Gaussian noise. In robotics, however,
most systems of interest have non-linear models and may
follow a more complex non-Gaussian distribution. For these
cases, there are non-linear Bayes filters that make different
approximations to estimate the belief bel(x;).

Of these, the most widely used include the Extended
Kalman Filter (EKF) and the Particle Filter [28]. The EKF
is used when the involved system models are not linear but
linearizable through a Taylor expansion. Researchers resort to
particle filters when the non-linearities of the system cannot
be linearized or when the underlying state distribution cannot
assumed to be Gaussian, e.g. when distributions have multiple
peaks. In this work we will study how to fuse information
from multiple sensor modalities using differentiable versions
of the EKF and particle filter.

B. Differentiable Filters

For complex physical systems, it is often a challenge to
formulate a dynamics and observation model that is both
accurate and tractable to compute. Recently, differentiable
versions of the most popular non-linear filtering algorithms
have been proposed such that dynamics and observation
models along with their noise parameters can be learned.

1) Extended Kalman Filter: The EKF allows non-linear
forward and observation models but still assumes that the
state follows a Gaussian distribution such that bel(x;) ~
N(u:,X;). Specifically, we assume that the system dynamics
and measurements follow the following nonlinear functions:

X = f(Xt—17ut—1>(It> 3)
7 = h(an't) 4)
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Fig. 2: Multimodal Architectures: a) Fusion of Features: modalities are
processed and merged into a multimodal feature for state estimation; b)
Unimodal Weighted Fusion: estimates from two unimodal recursive filters
are merged based on their uncertainty; c) and d) Crossmodal Weighted
Fusion: both modalities are used to learn coefficients to fuse the unimodal
estimates; the coefficients are used for ¢) weighted average of states or d)
weighted measurement model

where the random variables q and r are the process and

observation noise. In the EKF, the prediction step is as follows

= f(litfl yUp—1 70) 5)
Y =A% AL+ Qi (©6)

where A; is the Jacobian M and Q the covariance

of the process noise q ~ N (O,d) which we assume to be
Gaussian with zero mean. Therefore, bel(x;) ~ N(fi;,X;).
The update step is as follows:

K, =% (H'H,:H! +R,) (7)
M = ,ar +K; (Zt - Htl:lz) (8)
% =1, -KH)L, 9)

where H; is the Jacobian - and R the covariance of
the measurement noise r ~ N(0,R) which we assume to be
Gaussian with zero mean.

For a differentiable version of the EKF, we implement
the dynamics model in Eq. 5 with a Multi-Layer Perceptron
(MLP) with trainable weights 6: fo(t;—1,u,—1,0). Learning
a true measurement model that maps states to expected
observations in our raw sensor space is an underdetermined
problem and prone to overfitting. We follow [8] and instead
learn a discriminative virtual sensor. Our virtual sensor gg (D)
uses as input raw sensory data D and outputs a vector z,
containing observations of the full state x or parts of the state.
Therefore, the measurement model and its Jacobian H are
either identity or selection matrices. Similar to the dynamics
model, we implement the virtual sensor gg(D) with an MLP
with trainable weights 6.

2) Particle Filter: While the EKF assumes a Gaussian
distribution for the underlying distribution of the system
state, a particle filter can model arbitrary distributions by
representing them with a set of particles. Concretely, we will
learn a measurement model in the form of a neural network

ah(”l 70)
d
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that outputs the log-likelihood of the observation predicted
for each particle. Specifically, we approximate the belief
with a set of particles X, = x',x% ... x" with weights
wtm,w,m7 .- 7wtn]. Like any Bayes filter, this non-parametric
filter has a predict and update step. The prediction step in
Eq. 1 is implemented by sampling a random perturbation for

each particle from a generative motion model:

Viixz[i] ~ p(x; | ulfl’xt[i]fl) (10)

The update step in Eq. 2 is implemented by setting the weight
w,[l] of each particle equal to the likelihood of the current
measurement z, being generated by the predicted state x,[l] of

this particle:

(1)

The particle set is then re-sampled proportionally to the weight
of each particle. Note that a virtual sensor is needed only for
the EKF and not the particle filters. For the particle filters,
7, equals the raw sensory data D without any processing.

3) LSTM: A recurrent filter resembles the structure of a
long-short term memory: an internal state that is recurrently
merged with the latest input signal to generate an updated out-
put. Therefore, we consider LSTM architectures as a baseline
to differentiable filters, which we call LSTM Baseline.
In contrast to a differentiable filter, there is no explicit
separation between prediction and update steps in an LSTM.
There are also no explicit measurement or forward models.
An LSTM also does not make the Markov Assumption.
Previous studies [8, 15, 18] demonstrated that differentiable
architectures that leverage the algorithmic structure of a Bayes
filter lead to faster learning and better generalization than
generic LSTM architectures.

Viowll ~ p(a | x)

IV. ARCHITECTURES FOR MULTIMODAL FUSION

We study different strategies to integrate the information
from multiple sensor modalities into a coherent state estimate.
We now describe these strategies as visualized in Fig. 2.

A. Feature Fusion

One strategy to fuse information from multiple modalities
in a differentiable filter is to first extract features from each
modality separately, and then estimate recursively the state
using the fused unimodal features (Fig. 2, a). This is achieved
by a separate encoder network for each modality, and a fully
connected network to integrate the unimodal features into a
multimodal one. The multimodal feature is then used as an
observation in the recurrent filter architecture. We call our
filters Feature Fusion EKF and Feature Fusion
PF.

B. Unimodal Weighted Fusion

This architecture (Fig. 2, b) is a fusing procedure for
multiple state estimates that are each normally distributed. In
this case, we assume we have two unimodal EKF filters that
provide independent state estimates bel(x)") ~ N/ (uM £M)
and bel(x!) ~ N (1, xM). We fuse the two unimodal

beliefs by multiplying the two distributions to produce a
normally distributed multimodal belief bel (xMM):

bel(x}™) = N (™ xMM) ()
LM _ @M () o

' (M) (=)
MM — (=) () h ! 3)

This product of two Gaussians is equivalent to the Product
of Experts [12]. In this architecture, there is no crossmodal
information flow since the modalities are assumed indepen-
dent of each other: the information from one does not help
estimating or assessing the uncertainty of the other. We refer
to the resulting model as Unimodal Fusion EKF.

C. Crossmodal Weighted Fusion

In this architecture, we also assume that there are unimodal
filters providing individual state estimates. Similar to the
Unimodal Fusion EKEF, we assume that the estimates are
normally distributed and independent. The integration of their
estimates is goverened by the coefficients 5/ and 2, which
weight the contributions of each unimodal value (estimated
from observations of sensors M1 or M?2) into a fused estimate.
Each coefficient is inferred from the information contained
in the multimodal signal. In this way, information from
one modality is used to assess the uncertainty about the
other and vice versa, creating a crossmodal information flow.
This architecture assumes that the final and each unimodal
belief can be faithfully represented by a Gaussian. We
apply this fusion architecture to integrate information from
several differentiable Extended Kalman filters and we call
the resulting model Crossmodal Fusion EKE.

In our in}}})lementation, B consists of elements
ﬁ%", ﬁ%", ... B/, where n is the dimensionality of the state
space. The weighting of the covariance matrix is done through
a positive semi-definite matrix Bﬁwi € R™" defined as:

M; MT 1M M;
ﬁ;,l e t.n ﬁf,l ﬁt,n
B = | S s

M; M; M; M;
ﬁ[,l ﬁt,n ﬁpyl ﬁt,n
The integration is then a weighted average as follows:

M M M- M
MM:ﬁt o +B O

t B‘Ml +B‘tM2 (4)
s B/t oM L BM2 o 22
r = M, M, o)
B,' +B;

Note that in this case, the superscript M; and M, does not
indicate the originating modality but the estimated state that
it is applied to.

D. Unimodal Weighted Measurement Models

In this architecture, we assume unimodal measurement

models p(z | x)M and p(z | x,)™> that provide unimodal

>l

weights w; and wﬁwz’ " for each particle. Unlike in Section
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IV-B, where we combine estimated states from each filter, we
instead combine the likelihoods that are the outputs of each
measurement model. One way to do this is with a mixture
model, where we compute our particle weights as the sum
of our unimodal weights:

Wt[i] _ wi”l:[i] +wf42’[i] (6)

Using the standard particle filter dynamics update and

resampling procedures, we can apply this architecture to

integrate estimates from a particle filter with a single dynamics

model and multiple unimodal measurement models. We call
the resulting model Unimodal Fusion PF.

E. Measurement Models with Learned Crossmodal Weights

Finally, we can also add a crossmodal information flow to
the fusion of our unimodal measurement models assumed in
Section IV-D. We do this by learning a mixture weightiIA}!g
model that generates non-negative scalar coefficients f3,"!
and [3,M 2 from the full multimodal observation input. This is
a differentiable generalization of the discrete measurement
model switching method employed by [5] for fusing global
and local sensor information in a land vehicle positioning
problem. The weight of each particle is therefore set to:

Wz[i] _ ﬁtMl *W?’fh[i] "‘ﬁth *Wﬁ"lz’[i] (7
We call the resulting model Crossmodal Fusion PF.

V. IMPLEMENTATION
A. Network Architectures

For the differentiable EKF and differentiable PF estimators,
we use a shared dynamics model with terms parameterized
by trainable weights 6:

X = X1 +f179(xt—17ut—1) . O'(fz,e(Xz—l,llt—l)) (€Y)

where fi g is a state update vector of the same dimension
as X;, f>9 € R is a scalar gating/scaling term, and o is the
sigmoid function o (z) = (1 +e%)~!. Separating the relative
state update into these two terms allows the network to
independently learn the direction and magnitude of the state
update. For the particle filter, we maintain the diversity of
particles by injecting additive Gaussian noise in our state
space after each dynamics udpate.

The network that outputs fi ¢ and f> ¢ feeds the inputs
x,;_1 and u,_; through three-layer encoders. The outputs are

concatenated and passed to a seven-layer set of shared layers.

The measurement models of the differentiable PFs are
trained using as inputs observations (images, F/T signals
and/or end-effector positions) and states (object position
on the table) as stored in each particle. The output of the
measurement model is the log-likelihood of these observations
given the state of each particle. Image inputs are encoded with
a set of 2D convolutions, while proprioception and haptics are
processed with standard fully-connected layers. The encoded
features are concatenated, and then fed to a shared series of
output layers.

The virtual sensor model architectures are nearly identical
to our particle filter measurement models, but instead of
outputting a log likelihood, the networks output an estimated
state and state covariance for our EKF.

B Feature Fusion EKF =22
B Crossmodal Fusion EKF
s Unimodal Fusion EKF
" mmm Feature Fusion PF
Crossmodal Fusion PF
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Fig. 3: We show the results of our tasks: pushing and door manipulation.
In (a), RMSE error in centimeters for each filter in our validation set for
MuJoCo pushing simulation data, MuJoCo pushing simulation data with 40%
and 80% image blackout, and real world pushing. In (b) and (c) respectively,
RMSE error in centimeters and joint angle error in degrees for each filter
in our validation set for the MuJoCo door simulation data and MuJoCo
simulation data with 40% and 80% image blackout.

In the crossmodal weight models, the inputs are also ob-
servations (images, F/T signals, and/or end-effector positions),
and the outputs are the learned crossmodal fusion coefficients
used to balance estimates from each modality. Each modality
is run through an encoder with the same architecture as our
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measurement/virtual sensor models, and concatenated before
being fed to the output layers that produce our final weights.

The LSTM Baseline model is designed to have a
similar architecture and parameter count as the rest of our
estimators, with the same encoder architectures for each
modality and control inputs. Encoded features from each
modality and action inputs are concatenated and passed
through a series of shared layers; in contrast to our crossmodal
weight models, these layers are terminated with two LSTM
layers. The output of the final LSTM layer is then mapped
through an additional fully-connected layer before an affine
mapping is applied to produce the state estimate.

We use ReL.U activations and ResNet-style skip connec-
tions [10] throughout all of our networks.

To ensure that comparisons are fair, we ran an architecture
search for each model. For the image encoders, we tried
three architecture variations for mapping outputs of our 2D
convolutions to our fully-connected layers: (a) a simple flatten
operation, (b) spatial softmaxes, and (c) mean pooling. We
found the simple architecture (a) to perform well for models
that outputted scalar weights and log-likelihoods, while option
(c) generalized best for networks that directly regressed XY
coordinates. We additionally explored varying network widths
and LSTM hidden state dimensions; final results are reported
using 64 units for all fully-connected layers and a hidden
state size of 512 for each LSTM layer.

B. Training Procedure

We first pre-train the dynamics and measurement models
before fine-tuning them in an end-to-end manner. The
dynamics models (Sec. III-B) are pre-trained to minimize
single-step prediction errors, and then for 4, 8, and finally
16-step prediction errors.

The particle filter measurement models are pre-trained
to predict the observation-conditioned log probability density
function of a multivariate Gaussian centered at the ground-
truth state for our particle filter. Likewise, the EKF vir-
tual sensor models are pre-trained to generate observation-
conditioned predicted states. Measurement uncertainties are
learned exclusively end-to-end, and not pre-trained.

After pre-training, we use backpropagation through time
to train each of our state estimation models end-to-end until
convergence, over subsequences of increasing length. 30
particles are used for training the particle filter. Optimization
was done using the Adam optimizer on NVIDIA Quadro
P4000, Tesla K80, and Tesla V100 GPUs.

VI. EXPERIMENTAL EVALUATION

We study the fusion architectures described in Sec. IV to
estimate the state in three experimental scenarios: pushing
a planar object in simulation, pushing a planar object in the
real world, and opening a door in simulation. The simulation
experiments allow us to evaluate the fusion architectures in a
controlled and noise-free setup, while the real data evaluation
allows us to test the robustness of the fusion techniques in a
realistic domain. In both simulation and the real world, we
first generate a dataset of sensor data and ground truth states,

use part of the dataset to train our differentiable models and
a different part to test the resulting models.

A. Experimental Setup

In the planar pushing tasks, we estimate the 2D position
of the unknown object on a table surface, x, = (x;,y;), while
the robot intermittently interacts with the object. In the door
manipulation task, we estimate the 2D position of the door’s
revolute joint and its joint angle, X, = (x;,yr,6,), while the
door is being opened. In these scenarios, we compare the
performance of the aforementioned fusion architectures when
using as input vision (images), haptics (force-torque sensor
readings), and proprioception (encoder values we use to infer
the end-effector pose). For each of our Crossmodal Fusion
and Unimodal Fusion filters, we consider the image as one
weighted modality and force/proprioception as another.

For the simulation experiments, we collect data with
MuJoCo [29]. We create a Mujoco pushing dataset consisting
of 1000 trajectories with 250 steps at 10 Hz, of a simulated
Franka Panda robot arm pushing a circular puck. The pushing
actions are generated by a heuristic controller that tries to
move the end-effector to the center of the object.

For the evaluation with real-world data, we use the three
ellipse shapes from the MIT pushing dataset [30], which
consists of more than a million real robot push sequences on
eleven different objects with four different surface materials.
We use the tools described in Kloss et al. [20] to obtain
additional annotations for the remaining state component, for
rendering gray-scale images, and for stitching together 1000
pushing trajectories with 45 steps at 18 Hz.

Finally, we collect a dataset for the door task in Mujoco
that consists of 600 trajectories with 800 steps at 10 Hz each,
of the Franka Panda robot pushing and pulling a kinematically
constrained door object. Actions are generated by a heuristic
controller that pushes and pulls on the door in random
directions. Half of the trajectories are recorded with the
gripper of the robot closed around the handle of the door; the
other half is recorded without directly grabbing the handle.

In all experiments, the multimodal inputs are gray-scaled
images (1 x 32 x 32) from an RGB camera, forces (and binary
contact information) from a force/torque sensor, and the 3D
position of the robot end-effector. While wrench signals in
the real-world dataset only have 3 dimensions, force in the
x and y direction, and torque in the z direction (F%, F;, and
T,), we use all six dimensions of force and torque in the
simulation dataset.

To see how each filter adjusts to sensor failure and noise,
we randomly black out the input images with probabilities of
0.4 and 0.8 in the simulation datasets for pushing and the door
task. For evaluating each filter, we split the trajectories into
train and test sets. We use 10 trajectories from the simulated
pushing task, 50 trajectories from the real-world data pushing
task, and 20 trajectories for the door opening task.

B. Experimental Results

1) Pushing Task: In the pushing task, we evaluate each
filter by comparing the root mean squared error (RMSE) of
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Fig. 4: Examining outputs from unimodal measurement models within the proposed fusion architectures can help us understand how our neural networks
are fusing each sensing modality. Using a Crossmodal Fusion PF model trained end-to-end on the Mujoco door dataset, we plot how the
likelihood of a state changes as a function of positional offsets from the ground-truth door hinge position: (a) using the unimodal image measurement
model, (b) using the force/proprioception model on a timestep before the robot has made contact with the door, and (¢) using the force/proprioception

model after the robot gripper has made contact with the door.

the estimated X and Y location of the pushed object. We
show the results of each filter in Fig. 3.

Notably, we found that the Unimodal Fusion filters
were brittle and inconsistent. The Unimodal Fusion
EKF performs worse on the blackout-free dataset than on the
dataset with 40% blackout images, and Unimodal Fusion

PF had an average of 1lcm error on the real pushing dataset.

On the other hand, all models that utilized crossmodal
information (the Crossmodal Fusion filters, Feature
Fusion filters, and LSTM) were able to learn how to estimate
the location of the object with less than 3cm of error in the
simulated dataset and less than 2.5cm on the real dataset.

While the EKF and LSTM estimators perform better than
the particle filters on our simulation dataset, we notice that
this gap is completely closed on the real-world dataset. We
speculate that this is because the particle filter is better at
handling discontinuous interactions: our simulation dataset
consists of only a single pushing motion per trajectory, while
our real-world dataset repeatedly makes and breaks contact.

2) Door Task: In the Mujoco door dataset, each filter is
trained to estimate a 3-DoF state with different characteristics:
the x and y coordinates of the location of the door hinge
(stationary within a trajectory) and the hinge angle (changing
based on robot’s actions). We evaluate the filter performance
on the door task with two metrics: the absolute error of the
estimated hinge angle and the RMSE error of the hinge’s

location (we assume the hinge joint pointing in the z direction).

We show our results in Fig. 3.

With the exception of Unimodal Fusion EKF, we see
comparable results across all models for the door estimation
task. For joint angle estimation, Crossmodal Fusion
models had slightly better performance than Feature
Fusion models. LSTM models remain fairly consistent with
both joint angle and hinge location estimations, across all
datasets.

C. Discussion

In the Crossmodal Fusion filters, we can inspect the
outputs of the weighting models to understand how each
modality is balanced. Fig. 5 depicts the predictions from
each modality and the learned weights for the fusion of
information by the Crossmodal Fusion EKF on the

real-world pushing dataset. We observe that the filter relies
more on the information from proprioceptive and force-based
modalities when the robot is in contact and pushing the object.
When the robot stops pushing the object or loses contact,
the filter learns to put more weight on information from
the image-based EKF and less on the proprioception/haptics-
based EKF.

When we use a Crossmodal Fusion filter, we can
also examine outputs from each unimodal measurement
model to help us understand what the filter is learning from
each sensing modality. Fig. 4 depicts the hinge location
likelihood from each unimodal measurement model in an
end-to-end trained Crossmodal Fusion PF. From these
visualizations, we observe that while the image input contains
information to roughly infer both the x and y coordinates of
the location of the hinge (placed at the origin in this case), the
force/proprioception signal only reveals that the hinge location
should be along the axis between the true hinge location and
the end-effector location. Given the combined information of
proprioception and force/torque in one timestep, the hinge
location cannot be inferred unequivocally, only its distribution
along the connecting line. By fusing likelihoods from these
two unimodal measurement models, the learned filter is able
to produce a better estimate of the position than it could if it
only had access to one of them.

We expect the interpretability benefits of the proposed
Crossmodal Fusion architectures to be especially ad-
vantageous for building estimators deployed in settings where
safety and reliability are critical. In addition to using the
belief uncertainty intrinsic to a Bayesian filter to inform
decision-making, we can also use our understanding of how
the estimator is interpreting each input modality to better
diagnose why, how, and where in our estimation pipeline
failures happen. By selectively freezing weights in parts of
the estimator — for example, the image filter if we discover
an issue with our force/proprioception filter — we can then
patch these failures in an end-to-end manner while minimizing
unintended impacts.

Similar to the findings of Kloss et al. [19], we find that
the performance of each type of multimodal filter depends
heavily on the task, with no unique best performing filter.
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Fig. 5: For the real pushing task, we show the estimated states of
the filters (top) and the weights for the unimodal filters (bottom) from
the Crossmodal Fusion EKF. Contact is indicated by the purple
background. The Crossmodal Fusion EKF learns to weight the force
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VII. CONCLUSION

We presented a study of fusion architectures within the
field of differentiable recursive filters for state estimation.
For our experiments, we used the case studies of planar
pushing and door opening to integrate visual, haptic, and
proprioceptive data. We show that fusing these sensory inputs
in differentiable filters that leverage crossmodal information
can provide valuable opportunities for interpretability without
sacrificing performance. This is particularly true for our
proposed Crossmodal Fusion architectures, which allow
for fine-grained analysis of how each modality contributes to
our final state estimate.

In future work, we will investigate the proposed archi-
tectures for a broader set of manipulation tasks and with
other state estimation techniques such as Unscented Kalman
filters or factor graphs. Furthermore, we want to study how
to combine multimodal state estimation with policy learning,
which may allow us to select optimal actions for revealing
task-relevant information.
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