
Efficient Trajectory Library Filtering for Quadrotor Flight in Unknown
Environments

Vaibhav K. Viswanathan1, Eric Dexheimer1, Guanrui Li2,
Giuseppe Loianno2, Michael Kaess1, and Sebastian Scherer1

Abstract— Quadrotor flight in cluttered, unknown environments
is challenging due to the limited range of perception sensors,
challenging obstacles, and limited onboard computation. In
this work, we directly address these challenges by proposing
an efficient, reactive planning approach. We introduce the
Bitwise Trajectory Elimination (BiTE) algorithm for efficiently
filtering out in-collision trajectories from a trajectory library
by using bitwise operations. Then, we outline a full receding-
horizon planning approach for quadrotor flight in unknown
environments demonstrated at up to 50 Hz on an onboard
computer. This approach is evaluated extensively in simulation
and shown to collision check up to 4896 trajectories in under
20µs, which is the fastest collision checking time for a MAV
planner, to the best of the authors’ knowledge. Finally, we
validate our planner in over 120 minutes of flights in forest-
like and urban subterranean environments.

I. INTRODUCTION

Flying autonomously in cluttered, unknown environments
is challenging for micro-aerial vehicles (MAVs). To fly in
unknown environments, an MAV must collect perception
sensor data, fuse the perception data into a map representation,
and then plan a collision-free, dynamically-feasible path all
online on its onboard computer. This is challenging due to
the limited range of perception sensors, state estimation drift,
and limited onboard computation.

Common approaches for online MAV path planning in-
clude optimization-based and sampling-based planners.
Optimization-based methods have the benefit of solving
for an optimal path given an objective function, such as
smoothest path or maximizing information gain ([1]–[4]).
However, these methods are computationally expensive and
can have uncertain solve times. Alternatively, sampling-based
planners ([5]–[8]) often have asymptotic guarantees and
fixed planning times. The path quality of sampling-based
planners is correlated with the planning time, due to the
asymptotic guarantees. The most computationally expensive
part of sampling-based planning is collision checking. Often,
each sampled segment of a path is collision-checked with the
entire map representation. This leads to a tradeoff between
path quality and solve time. Some approaches mitigate the
computational costs by only considering instantaneous sensor
messages. However, this approach neglects to use all of the

1 V. Viswanathan, E. Dexheimer, M. Kaess, S. Scherer are with
The Robotics Institute, School of Computer Science, Carnegie
Mellon University, Pittsburgh PA {vviswan2,edexheim,
kaess,basti}@cs.cmu.edu

2 G. Li, G. Loianno are with The Department of Electrical and Computer
Engineering, Tandon School of Engineering, New York University, Brooklyn,
NY {gl1871,loiannog}@nyu.edu

Fig. 1: A field trial of the BiTE planner in a forest-like environment.
(a) shows the onboard camera image, (b) shows the corresponding
depth image, (c) shows the bitset map and library of trajectories, red
trajectories are in-collision, green trajectories are feasible, and the
yellow is the selected trajectory, (d) shows the quadrotor performing
an aggressive collision-avoidance maneuver.

available information and can result in potentially dangerous,
suboptimal maneuvers.

In this work, we present the Bitwise Trajectory Elimination
(BiTE) algorithm, an extremely efficient and reactive receding-
horizon planning framework for MAV flight in unknown
environments. The key insight is that discretizing the space of
trajectories into a trajectory library and using a discrete, robot-
centered occupancy grid map representation allows us to pre-
compute the expensive collision-checking process. The BiTE
algorithm has two stages: 1) a computationally expensive
offline stage where collisions between the trajectory library
and voxel cells are stored in a bitset library representation and
2) an efficient online stage where in-collision trajectories are
filtered out using bitwise operations on the offline computed
bitset library.

We use the BiTE algorithm as a key component of a full
autonomy pipeline that has been verified in hardware with
over 120 minutes of flights in outdoor, forest-like and urban
subterranean environments with several robot and sensor
configurations. Our approach is capable of collision-checking
4896 trajectories in under 20µs, which is the fastest collision-
checking time for an MAV planner that uses a fused map
representation, to the best of the author’s knowledge.

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 2510

The main contributions of this paper are:

• A novel method for efficiently filtering out in-collision
trajectories from a trajectory library using bitwise
operations, Bitwise Trajectory Elimination (BiTE).

• A full receding horizon perception to planning autonomy
system using BiTE demonstrated at up to 50Hz. This is
the highest rate for a planner with a map representation,
to the best of the authors’ knowledge.

• Extensive statistical evaluation of the system in simula-
tion environments.

• Over 120 minutes of field trials demonstrating the ability
of the system to control a real quadrotor in forest-like
and urban subterranean environments.

This paper is organized as follows: Section II describes related
research in the area of MAV motion planning and map repre-
sentations. Section III describes the BiTE algorithm in detail.
Section IV outlines the full online autonomy pipeline for
quadrotor flight in unknown environments. Section V presents
the simulations conducted and results that demonstrate the
algorithm performance. Section VI presents the hardware,
field experiments, and results that validate the system can be
used for control of real MAVs.

II. RELATED WORK

a) Receding Horizon Planning: Receding horizon approaches
are popular for navigation in unknown environments since
the replanning compensates for limited sensing horizons and
reaction to dynamic obstacles. Some early work in receding
horizon planning solves a Mixed Integer Linear Program to
find trajectories for a fixed-wing UAV that moves towards a
goal position [9]. However, this approach uses a heuristic for
collision avoidance and consequently does not do explicit
collision-checking. The work in [2] proposes a receding
horizon control policy for quadrotors that has guarantees of
algorithm completeness and collision avoidance. More recent
work in high-speed MAV flight uses motion primitives in a
receding horizon manner to follow a global plan [10].

b) Trajectory Libraries: Trajectory libraries and motion
primitives are a popular method in robotics for trajectory
set generation since they efficiently discretize the space of
possible trajectories [11]–[15]. This paradigm has been used
heavily for aerial vehicle navigation due to the computation
constraints of MAVs. The work in [5] uses a trajectory library
for MAV wire avoidance. In [8], Florence et al. present a
set of motion primitives sampled in the action space. The
approach presented in [16] maintains a trajectory library to
ensure there is a set of safe maneuvers for helicopters.

c) Map Representations for Planning: Recent work in
planning has emphasized map representations that couple
perception and planning to reduce collision-checking time,
utilize better sensor error models, and account for state
estimation drift.

One vein of planning research is on memoryless algorithms,
which reduce collision-checking time by only using the
most recent sensor measurements. Both [8] and [17] do
collision-checking on a point cloud from a RGB-D sensor
measurements, and [18] and [19] use instantaneous stereo
images for collision-checking. [20] is another memoryless
algorithm that introduces a novel pyramidal partitioning of
RGB-D space that enables fast collision checking. In [10], the
most recent depth is both used for KD-tree collision checking
and fused into a map for longer-horizon planning. A key
drawback of using a single frame for planning is that it can
result in myopic plans constrained by the sensor FOV or risk
collision with a previously seen obstacle.

The most similar method to the work in this paper is Falco
[21], which uses an adjacency list to correspond occupied
voxels with invalid trajectories. However, this method uses
only instantaneous sensor data and is designed for 3D
LiDARs, which are heavy and not feasible for many MAVs.

Other works use a history of frames to do collision checking.
Nanomap [22] and DROAN [5] do collision-checking with
a fixed history of RGB-D and stereo sensor measurements,
respectively. Some drawbacks of these methods are that they
rely on a fixed number of frames, and are designed for specific
sensor modalities (stereo and RGB-D, respectively).

III. BITWISE TRAJECTORY ELIMINATION (BITE)
ALGORITHM

The principal contribution of this work is the Bitwise
Trajectory Elimination (BiTE) algorithm for computationally
efficient filtering of in-collision trajectories in a library. This
algorithm provides a novel method of integrating perception
and planning by introducing the bitset library representation.
The bitset library represents a 3D voxel grid in which each
voxel has a value for how its occupancy affects the set of
feasible trajectories.

The BiTE algorithm has two stages: 1) a computationally
expensive offline stage where intersections between the
trajectory library and voxel cells are stored in a bitset
library, and 2) an efficient online stage in which in-collision
trajectories are filtered out using bitwise operations on the
offline computed bitset library.

A. Problem Formulation

Suppose the map is represented as a 3D voxel occupancy grid
in the robot frame GR = {gijk|i = 1, ...,m; j = 1, ..., n; k =
1, ..., o}, where gijk = {0, 1}. A cell with value gijk = 0
refers to a free cell, and gijk = 1 refers to an occupied
cell. The grid is positioned and oriented relative to the robot
frame. The total number of cells is M = m · n · o and the
map resolution is r.

Let ξ be a trajectory of the UAV, such that ξ(t) =
{x(t), y(t), z(t), ψ(t), v(t)} where {x, y, z} are positions in
R3, ψ is the yaw, and v is the magnitude of the velocity. We
assume that the velocity is in the direction of the UAV yaw.

2511

Fig. 2: A toy example of the Bitset Library Representation: (a) shows a trajectory library of size N = 5 overlayed on a 2D occupancy
grid of size M = 36. (b) illustrates how a cell in the bitset library representation stores information about which trajectories in the library
intersect it. (c) is the full bitset library structure that results from the offline collision-checking phase.

The space of all trajectories is discretized into a library of
N trajectories, L.

The objective of the BiTE algorithm is to find Lfree, the set
of all trajectories that do not intersect the occupied cells in G
such that Lfree ⊆ L. The best trajectory, ξ∗, can be selected
from Lfree and executed by the UAV.

B. Offline Collision Checking

In the bitset library map representation, each voxel stores
information about whether each trajectory in the library
intersects it. The bitset library is an M -length array of N -
bit bitsets, where each element of the array, Bi, is a bitset
that corresponds to a voxel in GR. Each bit in the bitset
corresponds to a trajectory in L and the value is 1 if that
trajectory intersects the respective voxel and 0 otherwise. The
bitset library data structure is demonstrated in 2D in Figure
2.

The bitset array data structure is built by looping over all
voxels. Within each voxel loop, a collision bitset is created by
looping over all trajectories and setting the corresponding bit
number to 1 if the trajectory intersects the voxel. To account
for the robot shape and safety constraints, collision checking
is done on expanded configuration space. The collision bitset
is added to the bitset library, which is an M-length bitset array.
The full algorithm for offline collision checking is shown in
Algorithm 1.

The bitset library only needs to be calculated once for a given
map resolution r, map dimensions (m,n,0), and trajectory
library (L).

C. Online Trajectory Library Filtering

The BiTE online filtering stage leverages the bitset library
representation to efficiently collision check all of the trajec-
tories in L. The algorithm for online filtering is shown in
Algorithm 2.

In the first step of the online phase, an N -bit bit-
set freeTrajectories is initialized as zero. Each bit of

Algorithm 1: Offline Collision Checking

1 initialize collisionList = {} ;
2 for i← 1 to M do
3 c←bitset< N > ;
4 for j ← 1 to N do
5 c[j] = checkCollision(ξj , gi,j,k) ;
6 end
7 Add c to collisionList ;
8 end

Result: collisionList

freeTrajectories corresponds to a trajectory in B; the value
of the bit is 0 if the trajectory is safe and 1 if it intersects
an occupied cell in GR. The value of freeTrajectories is
updated by looping over all cells in GR, and applying a bitwise
OR with freeTrajectories and Bi if GR,i is occupied.
This bit masking operation sets the bits of all trajectories
intersecting occupied cells to 1, effectively collision checking
L to compute Lfree.

The online filtering stage of the BiTE algorithm is only a
step of the full planning system, described in more detail in
section IV.

Algorithm 2: Online Trajectory Library Filtering

1 freeTrajectories←bitset< N > ;
2 foreach c ∈ collisionList do
3 if isOccupied(gijk) then
4 freeTrajectories = c|freeTrajectories
5 end
6 Add c to collisionList ;

Result: freeTrajectories

IV. IMPLEMENTATION

A. Autonomy Pipeline

The full online autonomy pipeline consists of a mapping state
and a planning stage, as illustrated in Figure 3.

2512

Fig. 3: Autonomy architecture. The output of the state estimate and depth image is used by the mapping subsystem as described in Section
IV-C. The oriented occupancy grid and offline-computed bitset map representation is used to filter out in-collision trajectories from the
library as described in III. From the filtered trajectories, the best trajectory is selected (Section IV-D) and profiled (Section IV-E).

The mapping step uses the robot state estimate and perception
data to create a scrolling occupancy grid that translates with
the robot frame, but is oriented in the global frame. The
occupancy grid is then rotated into the local frame of the
robot. The mapping step has been tested with RGB-D camera,
stereo camera, and LiDAR data. The mapping algorithm is
described further in Section IV-C.

After fusing the perception data, a set of collision-free
trajectories is computed using the online step of the BiTE
algorithm described in Section III-C. The best trajectory from
this set is then selected as described in section IV-D. The
selected trajectory is then profiled and executed as described
in section IV-E. The autonomy pipeline is run in a receding-
horizon fashion, and has been tested at up to 50Hz.

B. Trajectory Library Generation

The BiTE algorithm is agnostic to the method of trajectory
library generation. However, the planner performance in
cluttered environments depends significantly on the size of
the trajectory library.

We generate a feasible path library in the robot frame by
treating the UAV as a point mass with an initial velocity in
the x direction and apply accelerations up to amax to the
mass at varying angles (θ, ψ). To ensure that the library of
trajectories is feasible, we set the initial velocity at generation
to be the maximum allowable flight velocity, vmax. Due to
a quadrotor’s agility and ability to hover, the UAV will be
able to follow the generated trajectories when v < vmax. The
velocity profile for a selected trajectory is recalculated when
v 6= vmax as described in Section IV-E.

C. Map Representation

The BiTE algorithm operates on a robot-centric and robot-
oriented 3D occupancy grid. The size and resolution of the
occupancy grid is fixed, and must be determined before the
offline collision checking procedure.

Since local planning only needs information from an im-
mediate surrounding area, a map with efficient updates and
constant memory usage is preferred. To allow for various
sensor types we use a dense scrolling occupancy grid library
[23] centered around the robot. The 3D circular buffer allows
for fast indexing operations and constant memory usage, but
the voxels are always aligned with the origin of the world

Fig. 4: The blue grid shows a 2D representation of the robot-centric
scrolling occupancy grid. The green grid shows the rotated robot-
oriented occupancy grid.

frame. This grid is used only for fusing sensor data, while
a separate interface is required for the rotation to match the
expected bitset for the trajectory library.

To acquire this oriented map, the centers of a precomputed
voxel grid are rotated and used to index into the scrolling
grid as seen in Figure 4. The bitset can be filled in directly
by thresholding the log-odds occupancy value. Note that the
dimension of the bitset map and the scrolling grid do not need
to be equal. By separating the grids, the sensing horizon and
the map size for the precomputed library can be decoupled.
Noisy sensor measurements can be used to refine the map
further away during high-speed flight, while only the feasible
space of trajectories needs to be considered for planning.
Efficient sequential processing can be exploited by scaling
the rotation of the robot with the voxel resolution such that
only additions are needed to iterate over the voxel centers.

D. Trajectory Selection

Given a set of collision-free trajectories, the goal of the
planner is to choose the optimal trajectory ξ∗. A simple
method we use for all of the simulation trials and the
forest-like field trials is selecting the collision-free trajectory
that ends the closest to a user-defined goal point. Another
method we use for additional safety in the urban subterranean
environment is minimizing cost based on an Euclidean Signed
Distance Field (ESDF). This approach allows us to to enforce
more optimal behavior, like centering the quadrotor in a
hallway, etc.

2513

Fig. 5: (a) shows an example of a 3D trajectory library used and (b)
shows the velocity profiling of a single path given different starting
velocities.

(a) (b)
Fig. 6: The mean and worst case compute time for the BiTE online
filtering and select steps of the planning pipeline on an Intel NUC i7.
(a) shows how compute time depends on the number of trajectories
in the library. (b) shows how compute time varies with map size.

E. Motion Control

Before the selected trajectory is executed, the time spacing
between waypoints is recalculated to create a velocity profile
that is dynamically feasible. This velocity profile is generated
using a modified version of a time-optimal speed and
acceleration profiling algorithm outlined in Section V-B of
[24]. The velocity and acceleration profiles are generated for
a path given the initial velocity, a goal velocity, and maximum
acceleration constraints by assuming linear uniformly acceler-
ated motion between waypoints. We modified the algorithm
to include deceleration constraints and to end every trajectory
with a zero magnitude velocity. These design choices ensure
that if a new trajectory is not found, the current plan can be
safely executed to completion.

The quadrotor tracks the profiled trajectory using a path
tracker similar to Section IV-B [24]. The feed-forward
velocities and pose errors are converted into an desired attitude
and thrust that are fed to a low-level attitude controller.

V. SIMULATION

A. Computational Load

The BiTE algorithm achieves unprecedented planning rates
by precomputing the collision-checking and using efficient
bitwise operations for trajectory library filtering. We ran
two experiments to evaluate the effects of bitset map and
trajectory library size on the computational load of the filtering
and trajectory selection steps: 1) the trajectory library size
(size of bitset) is varied and the map dimension is fixed at
M = 49, 152 cells with a resolution of 0.3m and 2) the map
dimensions (number of bitsets) are varied and the trajectory
library size is fixed at N = 401. The executed trajectory, ξ∗,

(a) (b)
Fig. 7: (a) The memory requirements of the trajectory library
depends on the number of trajectories and the number of voxels. (b)
The green indicates bitset libraries that are < 512 MB, the yellow
indicates libraries bitset libraries that are 512 MB ≤ B < 1 GB,
and the red are libraries that are ≥ 1 GB or greater.

was selected by choosing the collision-free trajectory closest
to the goal. The experiments were run on an Intel NUC i7
with 8GB of RAM and 8 CPU cores.

Figure 6 shows the mean and worst-case computation time
taken for the filtering and selection steps of the BiTE planning
pipeline. The results in Figure 6a show that the average time to
filter a trajectory library is approximately constant and under
20 µs for up to N = 4896. This result is notable because
the theoretical, computational complexity of the BiTE online
algorithm is linear with N . While the number of operations
is linear, the operation is a bitwise OR, which takes less
than one CPU cycle. The difference in time for 1 − 5000
CPU cycles is much less than 1µs; thus, the computation
time of the filtering step is likely dominated by supporting
operations.

The time of the selection step is linear with N . Intuitively,
this result is expected since the absolute size of Lfree grows
linearly with N , and the executed trajectory, ξ∗, is selected
by calculating the cost for all trajectories in Lfree. The mean
and worst-case selection time at N = 4896 are 3, 960µs and
21, 660µs, respectively.

In general, the selection time is higher than the filtering time.
This result is different from most state-of-the-art planning
pipelines, in which collision checking is the most expensive
step.

B. Bitset Library Memory Requirements

The BiTE algorithm achieves efficient collision checking by
making a tradeoff for increased memory requirements. The
MAV loads the offline-computed bitset library into memory at
the start of each run; thus, the onboard computer’s physical
memory is the limiting factor. Figure 7a shows the size
of the bitset library given the number of voxels and the
trajectory library size; the size of the bitset libraries ranges
from hundreds of megabytes to greater than one gigabyte.

We can choose the map dimensions and trajectory library
size based on the memory constraints of the typical UAV
onboard computers, such as the Intel NUC i7 with 8GB RAM
used in this work. For these systems, the memory for the
bitset library could be limited around 512MB-1GB to allow

2514

for adequate memory for other necessary operations. Figure
7b shows the acceptable ranges for the map and trajectory
library size given the memory constraints of 512MB and 1
GB. The green indicates bitset libraries that are < 512 MB,
the yellow indicates libraries bitset libraries that are between
512 MB ≤ B < 1 GB, and the red are libraries that are 1
GB or greater.

The results show that the memory requirements for the bitset
library substantially restrict the map size and trajectory library
size. This drawback should be addressed in future work.

C. Library Performance

We evaluate the relationship between trajectory library size
and resulting performance on two metrics: the probability
of finding a safe trajectory and the average cost of the
selected trajectory. The experiment was run on 20 randomly
generated forest-like environments in which the quadrotor
was commanded to fly forward for 500 meters.

As shown in Figure 8a, the probability of finding at least one
collision-free trajectory in the library increases with library
size. This result highlights the importance of having a large set
of candidate trajectories for safety-critical flights. Furthermore,
Figure 8b shows that the mean cost of the selected trajectory
decreases with trajectory library size. Intuitively, this result
matches expectations since using a more granular trajectory
library provides more options for selecting a path.

(a) (b)
Fig. 8: (a) The probability of finding at least one feasible trajectory
increases with the size of the trajectory library. (b) The mean cost
of the selected trajectory decreases with the size of the trajectory
library.

D. Reactivity Tests

We evaluate the impact of the planner’s re-planning rate on
the planner’s performance by testing its ability to avoid an
instantaneously appearing obstacle at different planning fre-
quencies. The quadrotor is commanded to fly in a straight line
trajectory at a fixed velocity ranging from 5−10ms−1, and a
1m diameter cylindrical obstacle is generated instantaneously
at a fixed distance (4− 9m) in front of the quadrotor. The
simulated MAV uses a 50Hz RGB-D camera for perception.
We ran the experiment for 100 trials each at 50Hz, 30Hz,
and 10Hz.

Figure 9 shows the results of the reactivity experiment. A re-
planning rate of 50 Hz results in significantly better reactivity
to an instantaneously appearing obstacle. At 50Hz, 75% of the
trials successfully avoided the appearing obstacle, including

(a) (b) (c)
Fig. 9: Heatmaps show the probability of successfully avoiding an
instantaneously generated cylindrical obstacle with a 1m diameter.
The results from the planner run at 50Hz, 30Hz, and 10Hz are
shown in (a),(b),(c), respectively.

Single Trajectory
Coll. Check (µs)

Library (N=160)
Coll. Check (µs)

Computer Mean Max. Mean Max.
DROAN [5] i7 NUC 115 818 18,400 131,000
KD-Tree i7 NUC 80.6 650 12,900 104,000
Florence et al. [8]∗ i7 NUC 56 N/A N/A N/A
Lopez et al. [17]∗ i7-2620M 48 N/A N/A N/A
RAPPIDS [20]∗ i7-8550U 1.2 N/A N/A N/A
Falco[21]∗ i7 NUC 0.005+ 0.007+ N/A N/A
BiTE (ours) i7 NUC 0.003+ 0.09+ 16.6 722

TABLE I: BiTE collision-checking outperforms other common
planning approaches. The experiments for DROAN, KD-Tree
collision checking, and BiTE were conducted on the same hardware
with a trajectory library size of N = 160. ∗The results shown for
these algorithms are the best reported results in their respective
papers. These papers do not report a worst-case result, and the
collision checking time for a library of size N = 160 is unknown.
+The single trajectory collision checking time was calculated as the
average from the largest trajectory library.

82.5% of the trials at 9ms−1. Only 40% of the 30Hz trials
and 3.3% of the 10Hz trials were successful. The results
demonstrate the importance of a high re-planning rate when
operating in unknown environments.

E. Collision Check Time Comparisons

We compare the collision checking performance of BiTE
to state-of-the-art algorithms through both experimentation
and literature review. The results for DROAN [5], KD-Tree
checking, and BiTE were evaluated using the 20 randomly
generated forest-like environments mentioned previously. KD-
tree checking and BiTE simulations use an RGB-D camera
for perception, while DROAN uses a stereo pair. We use a
trajectory library of size 160 for all three methods. Table
I shows the average and worst-case results for both single
trajectory and library collision checking.

Other state-of-the-art algorithms introduced in [8], [17], [20],
[21] are also compared in Table I. We use the best, self-
reported collision check times for comparison. These papers
have different representations of the trajectory space, so
only the single trajectory collision check is represented for
comparability. The results in [8], [17], [20] do not report
a worst-case collision check time. We calculate the mean
collision check time for [21] from the reported total collision
check time for a trajectory library of size 42,875. The same
approach was taken for the mean single trajectory collision
check time for BiTE.

2515

Fig. 10: The flight path of a representative mission in an urban subterranean environment. The trajectory library is visualized at various
points throughout the flight path. Green trajectories are feasible and red trajectories are in-collision. The visualization was post-processed
from a bag file.

Forest-like Urban Sub-T
Num of Trajectories 480 720
Num voxels 49,152 393,216
Voxel size 0.3 m 0.1 m
Collision radius 0.6 m 0.4 m
Max speed 4 m/s 1 m/s

TABLE II: The set of parameters used for field trials.

(a) (b)
Fig. 11: (a) shows the DJI M100 used in the outdoor forest
environment and (b) shows the custom quadrotor used in urban
subterranean environments.

VI. FIELD TRIALS

We present a series of field trials with over 120 minutes that
validate the performance of the BiTE planning approach.
For the purpose of this work, we focus on evaluating
the performance in two environments: outdoor forest-like
environments and urban subterranean environments.

A. Forest Environment

For outdoor forest-like environments, we used a DJI M100
quadrotor shown in Figure 11a. The processing is done on
an Intel NUC i7 with 8GB of RAM and 8 CPU cores. The
platform is equipped with an Intel Realsense T265 tracking
camera for state estimation and an Intel Realsense D400 depth
camera for mapping. The raw output of the depth camera was
processed with a speckle filter to remove spurious points.
1) Overview of trials: We conducted 24 flights in a dense,
forest-like area with goal velocities ranging from 2− 4ms−1.
The goal point was set to be 100 meters from the takeoff
location. Figure 1 shows an example of the forest environment
and the corresponding mapping & planning visualization.

There were two notable failure cases. In one case, a thin
horizontal branch was filtered from the depth image by the
speckle filter. This resulted in a collision since the branch did
not appear in the bitset map. After this trial, the speckle filter
parameters were updated to more conservative values. This
parameter update occasionally caused the map to have false
positive obstacles due to sensor noise. In another case, the
T265 tracking camera driver stopped publishing an odometry,
causing an immediate crash.

B. Subterranean Urban Environment

We tested in subterranean urban environments using a custom
quadrotor design shown in Figure 11b. This quadrotor
was designed specifically for indoor flight for the DARPA
Subterranean Challenge [25]. The platform is equipped with
a Velodyne Puck VLP-16 Lite, with 30◦ vertical field of view,
for mapping. All of the computation is done on an Intel NUC
i7 with 8GB of RAM and 8 CPU cores. We use LOAM [26]
for SLAM, and the output is converted into the Bitset Map
representation.
1) Overview of trials: We conducted 8 flights with an
average time of 11 minutes. Goal waypoints were set by
a global planner that balances exploration and remaining
in communication range. The environments ranged from
open spaces to branching hallways. During these trials, the
quadrotor propeller guards occasionally made contact with
the wall due to tunnel wind effects and control tracking error.
None of these collisions resulted in the missions ending
prematurely.
2) Analysis of a single flight: In this section, we qualitatively
analyze the BiTE algorithm in a long flight. The results used
in this analysis are post-processed for a bag file. This specific
mission was chosen since it demonstrates the benefit of having
a large trajectory library in environments ranging from open
spaces to narrow hallways. The flight path is overlayed on
an occupancy grid shown in Figure 10. For visualization
purposes, the trajectory library was downsampled to 72 2-D
trajectories.

(a) The mission starts with a takeoff in an open area where

2516

none of the trajectories are in collision. (b) The global plan
guides the quadrotor towards a doorway to a narrow hallway,
where a few trajectories turning into the hallway and turning
into another room are feasible. (c) There are several feasible
trajectories that allow the quadrotor to center itself in the
hallway as well as turn around. (d) The hallway has an
entrance to a small room and a 90 degree turn. The resulting
set of feasible trajectories allows the quadrotor to fly straight
into the room or take a right turn. (e) In addition to the
hallway trajectories, there is a single feasible trajectory to
enter a tight doorway. This result would not be possible with
a sparser trajectory library. (f) There are a set of trajectories
for each possible direction at the intersection. (g) (h) (i) The
quadrotor explores an open space with the main obstacles
being the walls and structural pillars. (j) The quadrotor returns
from open space into a narrow hallway. The set of trajectories
allows the quad to safely navigate into the hallway or turn
around to stay in the open room.

VII. CONCLUSION & FUTURE WORK

In this work, we present BiTE: an efficient algorithm
demonstrated to collision-check up to 4896 trajectories in
under 20µs on an onboard computer. This algorithm is
part of a full autonomy pipeline that was validated in over
120 minutes of flight in forest-like and urban subterranean
environments. We conducted extensive statistical simulation
experiments of this planning framework, and demonstrate
that it out performs state-of-the-art approaches with respect
to computation time.

Future work could include reducing the memory require-
ments and optimizing the algorithm for GPU and/or FPGA
parallelization. Furthermore, BiTE can be extended to other
robotic systems. Systems with high degrees of freedom, such
as manipulators, could benefit from the use of large trajectory
libraries that BiTE facilitates.

ACKNOWLEDGMENT

This work was partially supported by DARPA agreement
HR00111820044. We thank Rogerio Bonatti and Ian Higgins
for their help with field trials.

REFERENCES

[1] F. Gao, W. Wu, Y. Lin, and S. Shen, “Online safe trajectory generation
for quadrotors using fast marching method and Bernstein basis
polynomial,” in IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 344–351.

[2] M. Watterson and V. Kumar, “Safe receding horizon control for
aggressive MAV flight with limited range sensing,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2015, pp. 3235–3240.

[3] L. Han, F. Gao, B. Zhou, and S. Shen, “FIESTA: Fast incremental
euclidean distance fields for online motion planning of aerial robots,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Nov 2019.

[4] V. Usenko, L. von Stumberg, A. Pangercic, and D. Cremers, “Real-
time trajectory replanning for MAVs using uniform B-splines and a
3D circular buffer,” IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Sep 2017.

[5] G. Dubey, R. Madaan, and S. Scherer, “DROAN - disparity-space
representation for obstacle avoidance: Enabling wire mapping avoid-
ance,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Oct 2018, pp. 6311–6318.

[6] H. Oleynikova, Z. Taylor, R. Siegwart, and J. Nieto, “Safe local
exploration for replanning in cluttered unknown environments for
microaerial vehicles,” IEEE Robotics and Automation Letters, vol. 3,
no. 3, pp. 1474–1481, 2018.

[7] S. Liu, K. Mohta, N. Atanasov, and V. Kumar, “Search-based motion
planning for aggressive flight in SE(3),” IEEE Robotics and Automation
Letters, vol. 3, no. 3, pp. 2439–2446, 2018.

[8] P. Florence, J. Carter, and R. Tedrake, “Integrated perception and control
at high speed: Evaluating collision avoidance maneuvers without maps,”
in Proceedings of Workshop Algorithmic Foundations of Robotics,
2016.

[9] J. Bellingham, A. Richards, and J. P. How, “Receding horizon control
of autonomous aerial vehicles,” in American Control Conference (IEEE
Cat. No. CH37301), vol. 5. IEEE, 2002, pp. 3741–3746.

[10] M. Ryll, J. Ware, J. Carter, and N. Roy, “Efficient trajectory planning
for high speed flight in unknown environments,” in International
Conference on Robotics and Automation (ICRA), May 2019, pp. 732–
738.

[11] M. Stolle and C. G. Atkeson, “Policies based on trajectory libraries,”
in IEEE International Conference on Robotics and Automation, 2006.
ICRA 2006., May 2006, pp. 3344–3349.

[12] D. Berenson, R. Diankov, Koichi Nishiwaki, Satoshi Kagami, and
J. Kuffner, “Grasp planning in complex scenes,” in 7th IEEE-RAS
International Conference on Humanoid Robots, Nov 2007, pp. 42–48.

[13] D. Dey, T. Y. Liu, B. Sofman, and J. A. Bagnell, “Efficient optimization
of control libraries,” in AAAI, 2012.

[14] C. Goldfeder, M. Ciocarlie, J. Peretzman, H. Dang, and P. K.
Allen, “Data-driven grasping with partial sensor data,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, Oct 2009,
pp. 1278–1283.

[15] E. Frazzoli, M. A. Dahleh, and E. Feron, “Robust hybrid control for
autonomous vehicle motion planning,” in Proceedings of the 39th IEEE
Conference on Decision and Control (Cat. No.00CH37187), vol. 1,
Dec 2000, pp. 821–826 vol.1.

[16] S. Arora, S. Choudhury, D. Althoff, and S. Scherer, “Emergency maneu-
ver library-ensuring safe navigation in partially known environments,”
in IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2015, pp. 6431–6438.

[17] B. T. Lopez and J. P. How, “Aggressive 3-d collision avoidance for
high-speed navigation,” in IEEE International Conference on Robotics
and Automation (ICRA), 2017, pp. 5759–5765.

[18] R. Brockers, A. Fragoso, and L. Matthies, “Stereo vision-based obstacle
avoidance for micro air vehicles using an egocylindrical image space
representation,” in Micro-and Nanotechnology Sensors, Systems, and
Applications VIII, vol. 9836. International Society for Optics and
Photonics, 2016.

[19] A. J. Barry and R. Tedrake, “Pushbroom stereo for high-speed
navigation in cluttered environments,” in IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2015, pp. 3046–3052.

[20] N. Bucki, J. Lee, and M. W. Mueller, “Rectangular pyramid partitioning
using integrated depth sensors (rappids): A fast planner for multicopter
navigation,” 2020.

[21] J. Zhang, C. Hu, R. G. Chadha, and S. Singh, “Maximum likelihood
path planning for fast aerial maneuvers and collision avoidance,”
in Proceedings of (IROS) IEEE/RSJ International Conference on
Intelligent Robots and Systems, November 2019.

[22] P. R. Florence, J. Carter, J. Ware, and R. Tedrake, “NanoMap: Fast,
uncertainty-aware proximity queries with lazy search over local 3D
data,” in IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2018, pp. 7631–7638.

[23] D. Maturana, “dimatura/scrollgrid: First public version,” Jul. 2017.
[Online]. Available: https://doi.org/10.5281/zenodo.832978

[24] G. Hoffmann, S. Waslander, and C. Tomlin, Quadrotor Helicopter
Trajectory Tracking Control.

[25] “DARPA subterranean challenge.” [Online]. Available: http://www.
subtchallenge.com/

[26] J. Zhang and S. Singh, “LOAM: Lidar odometry and mapping in
real-time.” in Robotics: Science and Systems, 2014.

2517

