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Abstract— A method to identify the kinematics model of a
human hand that less suffers from the skin artifact is proposed
based on a fact that the movements of nails with respect to
the corresponding fingertip bones are much smaller than that
of skin. It consists of two stages. In the first (individual) stage,
the most likely combination of joint assignments and angles
of each finger is identified through a dual-phase least squares
method (LSM), where the joint angles are estimated in the
inner LSM and the joint assignments in the outer LSM, from
the movement of the hand dorsum with respect to the base
coordinate frame attached to each nail. In the second (merging)
stage, kinematic models of each finger are merged so as to
compromise the estimated movements of the hand dorsum by
them also through the dual-phase LSM. It is shown that the
identified joint assignments have an advantage over several
existing anthropomorphic robot hands based on the distribution
of pinchability (DOP), which is also proposed in this paper as
a novel index to evaluate the ability of in-hand manipulation.

I. INTRODUCTION

Versatile robot hands that can manipulate objects dexter-
ously have been demanded in order to automate complex
tasks that only humans can do under the current technol-
ogy. It is a reasonable idea to design such robot hands in
similar forms to human hands since the anthropomorphism
is exploited for intuitive implementations and teaching of
humans’ skills for task executions. Although it is not trivial
how to quantify the humans’ manipulation skills, the authors
think that a good starting point for it is to model a hand that
captures kinematic characteristics of the human hand.

Some anatomical works identified joint axes of human
fingers through cadaveric measurement [1], [2], [3]. While
they found that humans’ finger joints can be approximated
by combining revolute joints to some extent, they also
showed that the centers of rotations of the joints vary during
motions due to sliding and rolling of bones. It means that the
kinematic characteristics of the human hand cannot be fully
reconstructed by simply connecting locally identified joint
structures. Hence, dynamic movements of fingertips, which
cannot be measured by the above in vitro approaches, should
be taken into account for an accurate modeling of the human
hand particularly from the viewpoint of task executions.
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Several works to identify joint assignments of a human
hand through in vivo measurement with MRI [4], [5], [6]
and optical motion capture systems [7], [8] have also been
made. Whichever devices are used, a difficulty in measuring
the hand in motion is how to supress an effect of the skin
artifact; it is hard to find a rigid part in a human hand with
which the coordinate frame to describe movements of the
markers can be associated since the human hand is covered
by soft skin, which frequently shrinks and expands during
motions. Some approaches by applying Kalman filter in order
to reduce the effect as a noise [9] and by explicitly estimating
drifts of each marker due to deformation of skin [6] were
taken in order to solve this issue.

This paper proposes another method than the above to
identify the kinematics model of a human hand more easily.
A key fact is that the movements of a nail with respect to
the distal phalanx is negligibly small in general. Based on
this, the proposed method consists of two stages. In the first
stage, the most likely combination of joint assignments and
angles of each finger is identified through a dual-phase least
squares method (LSM), where the joint angles are estimated
by the inner LSM and the joint assignments by the outer
LSM, from the movement of the hand dorsum with respect
to the base coordinate frame attached to the nail. An ill-
posedness of the joint assignments is resolved by referring
nominal centers of joints designated by markers. In the
second stage, the kinematic models of each finger are merged
so as to compromise the estimated movements of the hand
dorsum by them also through the dual-phase LSM. Another
contribution of this paper is to show that the identified
kinematics model has an advantage over several existing
anthropomorphic robot hands based on the distribution of
pinchability (DOP), which is also proposed in this paper as
a novel index to evaluate the ability of in-hand manipulation.

II. KINEMATICS MODEL OF A HUMAN HAND AND
MARKER ARRANGEMENT

Fig. 1 shows the kinematics model of a human hand
employed in this work. It is branched from a fixed point
in the palm to five fingers and the forearm. Though such a
fixed root point is fictitious, it represents movements of the
carpal bones and is supposed to be on the hand dorsum for
an approximation. Note that the objective of this work is not
to reconstruct an anatomically detailed mechanism but to
find a reasonable joint assignments for mechanical design.
The movements of fingers are modeled by combinations
of revolute joints. Each finger except for the thumb has
1-DOF distal interphalangeal (DIP) joint, 1-DOF proximal
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Fig. 1. Kinematics model of
a human hand consisting of 25
revolute joints

Fig. 2. An example of marker ar-
rangements (white: primary markers,
red:auxiliary markers)

interphalangeal (PIP) joint and 2-DOF metacarpophalangeal
(MP) joint. The thumb has 1-DOF interphalangeal (IP) joint,
2-DOF MP joint and 2-DOF carpometacarpal (CM) joint. In
addition, the ring and pinky fingers have 1-DOF CM joints,
which are coaxial with each other but move independently.
Two revolute joints at the wrist are optional. Hence, the
model has 25 DOFs in total.

As detailed in the next section, the identification process is
two-staged. In the first individual stage, motions of markers
attached on each finger are measured by a motion capture
system and the kinematics model of the finger is identified
from them. Then, motions of the markers on the whole hand
are measured, based on which the individual finger models
are merged at the hand dorsum in the second merging stage.
Let us call the measurement experiments in each stage the
individual sessions and the merging session, respectively.
Fig. 2 shows an example arrangement of markers for the
measurement sessions. The markers grouped by white loops
(primary markers) are used in all the sessions, while that
grouped by red loops (auxiliary markers) are only in the
individual sessions. The primary markers include 3 × 5
markers on the nail, 5 on the hand dorsum, 4 on the forearm
and 2 on the wrist, respectively. The auxiliary markers are
attached to both ends of “guessed” joint axes of the finger of
interest (the thumb in the case of the figure) as pairs. They
do not provide reliable estimation of the joint assignments
but help to resolve the ill-posedness in the identification in
addition to define the initial guess.

III. TWO-STAGED IDENTIFICATION PROCESS OF
NAIL-BASED FINGER KINEMATICS

A. Problem set-up and outline

Let us assign numbers from 1 to 5 to the thumb, index,
middle, ring and pinky fingers, respectively, and count the
number of joints of the ith finger (i = 1, · · · , 5) by ni,
i.e., {ni} = {5, 4, 4, 5, 5}. The nail frame ΣNi and joint
frames Σij (j = 1, · · · , ni) are assigned on the ith finger
such that z-axis of Σij is aligned with the jth joint axis. The
hand dorsum frame ΣD and the forearm frame ΣW are also
attached. Any Σ∗ of the above is defined by a combination of

Fig. 3. Parameters to define joint assignments (example: index finger)

position of the origin p∗ and a 3×3 attitude matrix R∗. The
joint assignment of each finger is described by a kinematic
chain defined by the following constant parameters.
Nipi1: position of the origin of Σi1 with respect to ΣNi
Niẑi1: direction of the z-axis of Σi1 with respect to ΣNi

(aij , sij , cij , dij): relative assignment of the jth joint with
respect to the j−1th joint, where sij

def
= sinαij , cij

def
=

cosαij , and (aij , αij , dij , qij) with the jth joint angle
qij conforms to a modified DH notation [10]

aDi: distance between the origins of Σini
and ΣD

iniεD: Euler parameters (a unit quaternion) that represents
the attitude of ΣD with respect to Σini

Niẑi1, sij , cij and iniϵD have to satisfy

∥Niẑi1∥ = 1, s2ij + c2ij = 1, ∥iniϵD∥ = 1. (1)

Fig. 3 illustrates those parameters of the index finger. Let

ϕNi
def
= (Nipi1,

Niẑi1) (2)

ϕJi
def
= {(sij , cij , aij , dij)} (j = 1, · · · , ni − 1) (3)

ϕDi
def
= (aDi,

iniεD) (4)

ϕi
def
= (ϕNi,ϕJi,ϕDi) (5)

ϕ
def
= {ϕi} (i = 1, · · · , 5) (6)

qi
def
= {qij} (j = 1, · · · , ni) (7)

q
def
= {qi} (i = 1, · · · , 5). (8)

The size of ϕ is 122 since aD4 = aD5 and 4n4εD = 5n5εD
due to the coaxial arrangement, while that of q is 23, where
the optional wrist joints are omitted from q. ϕ and q uniquely
determines the configuration of the hand.

Let us denote M∗ = {pM∗j} (j = 1, · · · , nM∗) a set of
positions of the primary markers, where ∗ = D is for the
hand dorsum with nMD = 5, and ∗ = Ni for the nail of the
ith finger with nMNi = 3. A series of M[k] = {M∗}[k]
at discrete time k = 0, · · · , N − 1, where N (∼ 1000
in an ordinary session) is the number of sampled frames,
is measured according to a protocol described in the next
section, and the corresponding series of {Σ∗}[k] is computed
from them as follows. Σ∗[0] are defined such that p∗[0] is the
barycenter of M∗[0], the direction of z-axis ẑ∗[0] is the unit
eigenvector corresponding to the minimum eigenvalue of the
covariance matrix of M∗[0], and the direction of x-axis x̂∗[0]
is the normalized pM∗1[0]− p∗[0]. The ensuing Σ∗[k] (k =
1, · · · , N − 1) are computed based on Horn et al.’s method
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[11]. Then, a series of the relative formations of ΣD[k]
with respect to ΣNi[k], ΣNi→D[k] = (NipD[k],

NiRD[k])
(i = 1, · · · , 5), are obtained. The objective here is to find
the most likely combination of the joint assignments ϕ and
a series of joint angles q[k] of the hand that reproduces
the series of {ΣNi→D}[k]. Note that q[k] varies depending
on k, whereas ϕ is constant in all the sessions, and hence,
the number of parameters to be estimated is 23N + 122.
This work takes an approach to find so many parameters by
solving two-staged dual-phase least squares problem rather
than a batch optimization. A combination of ϕi and qi[k]
is individually identified in the individual stage, and then,
ϕi (i = 1, · · · , 5) are merged into the most likely ϕ in
the merging stage. In each stage, qi[k]/q[k] with respect to
the up-to-date ϕi/ϕ is found in the inner LSM, while ϕi/ϕ
is updated through the outer LSM. The actual computation
processes are detailed in the following subsections.

B. Individual stage

qi[k] is found from (NipD[k],
NiRD[k]) and M[k] pro-

vided ϕi by solving the inverse kinematics. It is basically
unsolvable since ni < 6 for ∀i, and thus, formulated as a
least squares problem with an error function defined as

EIKi[k]
def
= EDi[k] + wJ

ni∑
j=1

EJij [k], (9)

where

EDi[k]
def
= eTPi[k]WPePi[k] + eTAi[k]WAeAi[k] (10)

ePi[k]
def
= NipD[k]− Nip̃D[k] (11)

eAi[k]
def
= a

(
NiRD[k]

NiR̃T
D[k]

)
, (12)

Nip̃D[k] and NiR̃D[k] are the reproduced NipD[k] and
NiRD[k] from given qi[k] and ϕi, respectively, a(R) for
∀R ∈ SO(3) is the equivalent angle-axis vector with R [12],
WP and WA are weighting matrices, EJij [k] is an additional
evaluation function explained later, and wJ is its weight.
EJij [k] in Eq. (9) works for regularizing the problem.

Even though the number of joints of each finger is less
than 6, the inverse kinematics still has a redundancy issue in
which DIP joints might flip. It is also known [13] that the
identification of nearly parallel consecutive axes is sensitive
to the numerical error. In order to resolve the instability
of computation due to the above, “guessed” joint axes are
given by the auxiliary markers attached on the subject’s hand
(refer Fig. 2 again). For 1-DOF joints, reasonable guesses
are suggested by the paired markers and the sum of distances
from the two markers to the modeled axis is evaluated, while
for 2-DOF joints, the guesses are not reliable and the sum
of distances from the midpoint of the paired markers to the
modeled two axes is added. Fig. 4 depicts the idea. qi[k] is
estimated by solving the following least squares problem:

qi[k] = arg min
qi

EIKi(qi;ϕi,M[k]). (13)

IP
MP

Fig. 4. Guessed joint axes from auxiliary markers for regularization

The above solution gives the minimized error E∗
IKi[k] =

EIKi(qi[k];ϕi,M[k]). The total error Ei is defined as

Ei
def
=

N−1∑
k=0

E∗
IKi[k]. (14)

The most likely ϕi is obtained by minimizing Ei. During
the computation, Niẑi1, (sij , cij) and iniϵD are normalized
everytime in order to satisfy Eq. (1). An optional technique to
improve accuracy is to decrease wJ gradually with iteration.

C. Merging stage

The skin artifact particularly reduces reliability of ϕDi

(i = 1, · · · , 5) more than ϕNi and ϕJi. They are corrected
also through the dual-phase LSM in the merging stage.
Let us define Σ̃Di[k] by cascading ΣNi[k] with ΣNi→D[k]
reproduced from qi[k] and ϕi, namely,

p̃Di[k] = pNi[k] +RNi[k]
Nip̃D[k] (15)

R̃Di[k] = RNi[k]
NiR̃D[k]. (16)

Though ΣD[k] is uniquely determined from MD[k], Σ̃Di[k]
(i = 1, · · · , 5) are different from each other due to the error
of identification. The objective of the inner LSM in this stage
is to find q[k] that compromises those differences as

q[k] = arg min
q

 5∑
i=1

EIKi[k] +
∑

(i,j)∈IM

EDij [k]

 , (17)

where

EDij [k]
def
= eTPij [k]WPePij [k] + eTAij [k]WAeAij [k] (18)

IM
def
= {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)} (19)

ePij [k]
def
= p̃Di[k]− p̃Dj [k] (20)

eAij [k]
def
= a

(
R̃Di[k]R̃

T
Dj [k]

)
. (21)

This is also the inverse kinematics problem.
The most likely position p̃D[k] and attitude R̃D[k] of

ΣD[k] are obtained by avaraging p̃Di[k] and R̃Di[k], respec-
tively. Their covariance matrices are also computed as

SDP[k] =

5∑
i=1

WPẽPi[k]ẽ
T
Pi[k]W

T
P (22)

SDA[k] =

5∑
i=1

WAẽAi[k]ẽ
T
Ai[k]W

T
A , (23)

where

ẽPi[k]
def
= p̃D[k]− p̃Di[k] (24)

ẽAi[k]
def
= a

(
R̃D[k]R̃

T
Di[k]

)
. (25)
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Line 1

Line 2

Loop 1

(a) pattern of thumb motion

Loop 2

(b) pattern of index motion

Fig. 5. Patterns for excitations of joint motions

Finally, the most likely {ϕDi} (i = 1, · · · , 5) is obtained by
minimizing the above variance through the outer LSM as

{ϕDi} = arg min
{ϕDi}

N−1∑
k=0

(E∗
IKi[k]

+wSP∥SDP[k]∥+ wSA∥SDA[k]∥) , (26)

where wSP and wSA are weights.

IV. IDENTIFICATION OF KINEMATICS MODEL

A. Protocol of measurement sessions

This section describes a protocol to excite motions of
joints to be identified in the measurement sessions. Fig.
5 (a) shows spatial trajectories that the tip of the thumb
tracks in the individual session. The motion along Line 1
excites the flexion-extention movements of IP and MP joints
in particular, whereas the effect of the skin artifact around
CMC joint is suppressed by maximally abducting the finger.
The motion along Line 2 highlights the abduction-adduction
motion of CMC joint. The motion along Loop 1 sweeps the
boundary of the thumb’s workspace.

In each individual session for the other four fingers,
flexsion-extention movement of PIP joint is measured first,
and a coupled movement of PIP and DIP joints second. After
that, Loop 2 drawn in Fig. 5 (b) is tracked by the fingertip
in order to excite the flexion-extention movement of MP
joint and sweep the boundary of the finger’s workspace. The
abduction-adduction movement of MP joint is also measured
independently. In the sessions of the ring and pinky fingers,
a movement of CM joint is additionally measured.

In the merging session, the excitation movements of each
finger as well as the individual session and motions to touch
the palm by each fingertip are newly observed one-by-one.

VENUS3D system (Nobby Tech. Ltd.) with 11 infrared
cameras (sampling rate=100 Hz) was used for measurement.

B. Result and evaluation of accuracy

The proposed method was implemented with Sugi-
hara method [12] for the inner LSM and Nelder-Mead
method [14] for the outer LSM. The motion measurement
sessions were conducted on a 23-year-old healthy male
subject, and the kinematics model of the subject’s left
hand was identified. The weighting matrices were set for
WP = diag{1/0.0052, 1/0.0052, 1/0.0022} and WA =

TABLE I
IDENTIFIED DH PARAMETERS (UNIT:mm FOR a AND d, rad FOR α AND θ)

Thumb Index Middle Ring Pinky
Base-CM1 Base-MP1 Base-MP1 Base-CM Base-CM

α 1.64 1.64 1.64 1.64 1.64
θ -1.49 -0.21 -0.48 -0.79 -1.07
a 2.93 2.93 2.93 2.93 2.93
d -210.16 -17.53 -11.76 -67.49 -71.13
α 2.73 1.33 1.38 1.72 1.75
θ -1.22 2.75 2.35 -1.83 -1.00
a 53.63 32.95 29.64 63.07 42.42
d -213.94 13.59 -24.52 -60.22 -83.65

CM1-CM2 MP1-MP2 MP1-MP2 CM-MP1 CM-MP1
α 1.56 -1.45 -2.14 0.09 0.27
a -1.72 2.51 -1.17 55.60 56.92
d 13.79 -22.32 8.36 4.60 7.94

CM2-MP1 MP2-PIP MP2-PIP MP1-MP2 MP1-MP2
α -0.91 -1.71 0.91 1.50 1.20
a 17.2 34.25 45.15 3.05 0.96
d 26.4 -3.73 -6.36 8.67 17.15

MP1-MP2 PIP-DIP PIP-DIP MP2-PIP MP2-PIP
α 2.11 0.10 -0.06 1.75 1.58
a -0.39 19.9 25.65 41.21 24.61
d -10.84 -3.04 -2.33 0.33 5.95

MP2-IP PIP-DIP PIP-DIP
α -1.38 0.07 0.36
a 26.05 25.29 17.49
d -6.22 -1.53 -6.72

TABLE II
DEVIATION OF THE HAND DORSUM FRAMES ASSOCIATED WITH EACH

FINGER FROM THE IDENTIFIED FRAME

Position Attitude
finger standard maximum standard maximum

ID deviation deviation deviation deviation
[mm] [mm] [rad] [rad]

1 0.36 1.16 0.018 0.059
2 0.58 2.14 0.028 0.111
3 0.48 1.86 0.021 0.074
4 0.47 1.79 0.025 0.073
5 0.57 2.48 0.027 0.126

1.34 3.19 0.053 0.140

diag{1/0.192, 1/0.192, 1/0.092}, respectively, which sup-
presses translational/twisting variances in/about normal di-
rection to the hand surface, based on the range of deviation
of the attached markers. For the other parameters, wSP =
wSP = 1, and wJ was heuristically set for 1, 1/5, 1/10,
1/20, 1/40 and 1/60 at each iteration, respectively.

The identified joint assignments equivalently converted to
DH parameters of a branched kinematic chain from the hand
dorsum frame to the nail frames are shown in Table I. Note
that the transformation from the first movable joint of each
finger to the hand dorsum frame is represented by two sets
of fixed DH parameters, and θs in the other sets are variable
joint angles. An image of the model is visualized in Fig. 6.

Table II shows standard/maximum deviations of error
between Σ̃Di (i = 1, · · · , 5) and their average frame Σ̄D, and
also between ΣD and Σ̄D on the bottom row. All the values of
the former are less than the latter. It should be additionally
noted that 3 ∼ 5 mm deviations of markers on the hand
dorsum due to the deformation of the skin were observed.
Comparing to it, the hand dorsum frame reprouced from
the model corrected in the merging phase are less variant
than that directly determined from MD[k], which means
that the proposed nail-based method presents a more likely
kinematics model than a naive hand-dorsum-based method.
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Fig. 6. Identified hand kinematics Fig. 7. A mechanical hand design

Fig. 8. 3D-printed prototype of the mechanism

C. Evaluation based on DOP

Figs. 7 and 8 show a robot hand mechanism designed
based on the identified model and its 3D-printed prototype,
respectively. An observation tells that it has a characteristic
structure in which the flexion-extention joint axes are heli-
cally arranged as if it wraps the in-hand space from DIP to
MP rather than aligned in parallel to each other. This seems
that human fingers have a natural mechanism to get together
in hand, which encourages cooperative multifingered motion.
The distribution of pinchability (DOP) has been devised in
this work to quantify the above characteristics from the
viewpoint of the ability to oppose the thumb. Pinchability is
measured by the number of fingertips that can reach a point,
and DOP is defined as a volume of in-hand space where tips
of the thumb and other fingers can reach.

The workspace of each fingertip of the identified hand
model is depicted in Fig. 9 together with some other anthro-
pomorphic robot hands (Gifu hand III [15], Shadow hand
[16], Dexmart hand [17], and Elumotion hand 2 [18]), the
kinematic dimensions of which have been publicized, for
comparison. Since the volume of workspace depends on the
size of the hand, they were normalized in a longitudinal

direction by the sum of the lengths of fingers and in a
lateral direction by the gap between the index and middle
fingers. The workspaces are visualized in a quantized way
by colorizing grids that each fingertip can reach. It seems
that individual workspaces of the fingertips of the identified
hand model are not particularly large comparing with the
others; in fact, that of the thumb is the smallest of the five.
Then, let us see DOP, which is the intersection of them. Fig.
10 shows multiplicities of the individual workspaces at each
grid by color. Obviously, the identified hand model has by far
the highest DOP, namely, more grids with higher multiplicity
than the other hands, in the in-hand space.

V. CONCLUSIONS

A method to identify a kinematics model of a human hand
was proposed. It consists of two-staged dual-phase LSM to
find most likely combinations of the joint angles and the joint
assignments with respect to loci of markers measured by a
motion capture system. A protocol to excite motions of joints
to be identified was also devised. A kinematics model of a
human hand was identified through the proposed method.

An idea to evaluate the hand kinematics based on DOP
was proposed as an index of how multifingered in-hand
manipulation is encouraged. The identified hand model was
evaluated with DOP and found to have even higher score
than some acknowledged anthropomorphic robot hands.
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