
Learning Consistency Pursued Correlation Filters for
Real-Time UAV Tracking

Changhong Fu1,∗, Xiaoxiao Yang2, Fan Li1, Juntao Xu1, Changjing Liu1, and Peng Lu3

Abstract— Correlation filter (CF)-based methods have
demonstrated exceptional performance in visual object tracking
for unmanned aerial vehicle (UAV) applications, but suffer from
the undesirable boundary effect. To solve this issue, spatially
regularized correlation filters (SRDCF) proposes the spatial
regularization to penalize filter coefficients, thereby significantly
improving the tracking performance. However, the temporal
information hidden in the response maps is not considered
in SRDCF, which limits the discriminative power and the
robustness for accurate tracking. This work proposes a novel
approach with dynamic consistency pursued correlation filters,
i.e., the CPCF tracker. Specifically, through a correlation oper-
ation between adjacent response maps, a practical consistency
map is generated to represent the consistency level across
frames. By minimizing the difference between the practical
and the scheduled ideal consistency map, the consistency level
is constrained to maintain temporal smoothness, and rich
temporal information contained in response maps is introduced.
Besides, a dynamic constraint strategy is proposed to further
improve the adaptability of the proposed tracker in complex
situations. Comprehensive experiments are conducted on three
challenging UAV benchmarks, i.e., UAV123@10FPS, UAVDT,
and DTB70. Based on the experimental results, the proposed
tracker favorably surpasses the other 25 state-of-the-art track-
ers with real-time running speed (∼43FPS) on a single CPU.

I. INTRODUCTION

Nowadays, due to the unmatched mobility and portability,
unmanned aerial vehicle (UAV) has aroused widespread
attention for various applications, such as path planning [1],
autonomous landing [2], obstacle avoidance [3], and aerial
cinematography [4]. As the basis of the above applications,
developing a real-time, robust and accurate tracking method
is imperative. However, due to many challenges introduced
by unmanned airborne flight, such as aggressive UAV motion
and viewpoint change, visual tracking in UAV applications
is still a tough task. Besides, the nature of UAV also
presents great challenges for visual tracking, e.g., mechanical
vibration, limited computing power, and battery capacity.

Correlation filter (CF)-based approaches [6]–[9] have been
extensively applied to tackle with the aforementioned prob-
lems in UAV tracking, due to the high computational effi-
ciency and satisfactory tracking performance. By using the
property of a circular matrix, the CF-based methods can
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Fig. 1. Center location error (CLE) comparison between the presented
CPCF tracker and the baseline, i.e., SRDCF [5]. CLE denotes the Euclidean
distance between the estimated center location of the target and the ground
truth. As shown in the sequence car16_2 from UAV123@10FPS, when the
viewpoint change occurs, CPCF shows great adaptability for appearance
changes, while the baseline fails to track the object robustly.
learn correlation filters efficiently in the frequency domain.
The number of negative samples also increases significantly
without producing a heavy computational burden. Nonethe-
less, due to the property of cyclic shift operation, inaccurate
negative samples are introduced by the undesired boundary
effect, which substantially reduces the discriminative power
of the learned model. To tackle this problem, spatially
regularized correlation filters (SRDCF) [5] proposes the
spatial regularization to penalize the filter coefficients in the
background. In this way, the boundary effect is mitigated
and a larger set of negative samples are introduced, which
significantly improves the tracking performance. However,
during a practical tracking process, the continuity between
image frames implies a strong time sequence correlation
worth exploring. Essentially, the time sequence correlation
is caused by the continuity of the object location in the
image, which is finally reflected as the continuity of re-
sponse maps in the time domain. Therefore, the introduction
of response maps has been a crucial issue for exploiting
temporal information efficiently. Notwithstanding, SRDCF
focuses on improving spatial solutions without concerning
the key temporal information in response maps.

To thoroughly explore temporal information in response
maps without losing computation efficiency, this work pro-
poses to pursue dynamic consistency across frames. Specifi-
cally, with the correlation operation between response maps,
the consistency map is produced to evaluate the consistency
level for consecutive two frames. Furthermore, an ideal con-
sistency map with the highest consistency level is designed
as the correlation result between two ideal responses. By
minimizing the difference between the ideal and the practical
consistency map, the consistency is forced to maintain a
high level, and thus the rich temporal information is injected
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efficiently. Moreover, considering the rate of appearance
changes is distinct in various tracking periods, a dynamic
constraint is introduced to avoid the mismatch between the
fixed ideal consistency map and the rate of appearance
changes. Concretely, depending on the quality of response
maps, the ideal consistency map is dynamically adjusted to
meet the requirement of consistency level and further en-
hance the adaptiveness in different UAV tracking scenarios.
As shown in Fig. 1, in case of viewpoint change, the CPCF
tracker is well adapted to the fast appearance changes, while
the baseline fails to track the target robustly.

Therefore, a novel approach with dynamic consistency
pursued correlation filters is proposed, i.e., the CPCF tracker.
The main contributions of this work are as follows:
• A novel method to pursue consistency across frames

is proposed. In this way, rich temporal information
in response maps is exploited thoroughly to boost the
accuracy and robustness in the UAV tracking process.

• A dynamic constraint strategy is introduced to set up an
adaptive restriction on the consistency level. Based on
the quality of the previous response map, the dynamic
constraint can adaptively adjust a suitable consistency
level and further increases the flexibility to cope with
object appearance changes in UAV tracking.

• The CPCF tracker is evaluated exhaustively on three
challenging UAV benchmarks. It is compared with 25
state-of-the-art trackers including both hand-crafted and
deep trackers. Experiments verify that the CPCF tracker
favorably surpasses other trackers in terms of both
accuracy and robustness with satisfactory speed for real-
time tasks on a single CPU.

II. RELATED WORKS
A. Tracking with correlation filters

CF-based approaches have been widely applied in visual
object tracking tasks since the proposal of the minimum
output sum of the squared error (MOSSE) filter [10]. J.
F. Henriques et al. [6] extend MOSSE by exploiting the
kernel trick and multi-channel features to improve the CF-
based method. Besides, the CF-based framework is further
developed by multi-resolution scale [11] and part-based
analysis [12], [13]. For feature extraction methods, the hand-
crafted features including histogram of oriented gradient
(HOG) [14] and color names (CN) [15] have been widely
used in the tracking process. Moreover, to attain a more
comprehensive object appearance representation, some re-
cent works [5], [16] have combined deep features into the
CF-based framework. Nonetheless, the heavy computational
load brought by deep features deprives it of the ability to
be applied in real-time UAV tracking tasks. Consequently,
it is still an open problem to design a tracker with both
outstanding performance and satisfactory running speed.

B. Tracking with spatial information

To improve both the tracking accuracy and robustness,
recent methods utilizing spatial information have been pro-
posed [5], [7], [17], [18]. By integrating the spatial regular-

ization, SRDCF [5] can penalize the background represent-
ing filter coefficients and learn the filter on a significantly
larger set of negative training samples. Background-aware
correlation filter (BACF) [7] directly multiplies the filter
with a binary matrix to expend the search regions. In this
way, BACF can utilize not only the target but also the
real background information for training. In the CSR-DCF
tracker [19], the filter is equipped with spatial reliability
maps to improve the tracking of non-rectangular targets and
suppresses the boundary effects. However, the improvement
brought by spatial information alone is not enough compre-
hensive. In addition to the spatial information, the effective
introduction of both spatial and temporal information has
attracted increasing attention among the CF-based tracking
community.

C. Tracking with temporal information

Considering the strong time sequence correlation between
the video frames, some trackers exploit the temporal infor-
mation to further improve the tracking performance [20]–
[22]. SRDCFdecon [20] reweights its historical training
samples to reduce the problem caused by sample corruption.
However, depending on the size of the training set, the
tracker may need to store and process a great number
of historical samples and thereby sacrificing its tracking
efficiency. STRCF [22] proposes a temporal regularization to
penalize the variation of filter coefficients in an element-wise
manner and ensures the temporal smoothness. However, the
rigid element-wise constraint may fail the filter in learning
critical appearance changes and limit the adaptiveness of
the tracker. Thus, the presented CPCF tracker considers the
temporal information by evaluating the consistency level
between response maps as a whole. Consequently, the CPCF
tracker can maintain the temporal smoothness flexibly and
enhance the robustness of tracking.

III. PROPOSED TRACKING APPROACH
In this work, the proposed CPCF tracker focuses on

pursuing the dynamic consistency across frames. There-
fore, this section first introduces the consistency evaluation
method, then introduces the design process of the dynamic
consistency constraint. Finally, the overall objective of CPCF
is given. Its main workflow can be seen in Fig. 2.

A. Consistency evaluation

To evaluate the consistency across frames, this work pro-
poses to study the similarity between the detection response
Rk and target response R

′

k. Specifically, the responses Rk

and R
′

k are obtained as:{
Rk =

∑D
d=1 w

d
k−1 ? z

d
k

R
′

k =
∑D
d=1 w

d
k ? x

d
k

, (1)

where the subscripts (k−1) and k denote the (k−1)-th and
k-th frame, respectively. The superscript d denotes the d-th
channel. wd

k−1 and wd
k denote the correlation filters. zdk and

xdk denote the detection samples and training samples. The
operator ? denotes the cyclic correlation operation.
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Fig. 2. The main workflow of the proposed CPCF tracker. In the training phase, to evaluate the consistency level between frames, the consistency map
Ck is generated by responses Rk and R

′
k via the correlation operation. Moreover, based on the PSRM scores calculated from Rk , the label lk is

dynamically adjusted to set a self-adaptive constraint on Ck . Combing the spatial regularization, classification error and dynamic consistency regularization,
the filter training objective is solved through an ADMM optimization to obtain filter wk . Note that in the training phase of the k-th frame, the to be
obtained the target filter wk , the target response Rk and the consistency map Ck are represented by dashed lines.

Considering the potent time sequence correlation between
the detection response Rk and the target response R

′

k,
bountiful temporal information is hidden in the consistency
between frames. Therefore, to exploit the temporal informa-
tion, the cyclic correlation operation is adopted to evaluate
the consistency between responses by the following formula:

Ck = R
′

k ?Rk[∆τu,v] , (2)

where Ck ∈ RN denotes the consistency map. The subscripts
u and v indicate the difference between the peak positions
of detection response Rk and the center of the image patch.
The operator [∆τu,v] shifts the peak of Rk to the center of
the response map in the two-dimensional space.

B. Constraint on consistency
In traditional CF-based methods, the responses R

′

k and Rk

are both forced to be equal to the ideal response y in the ideal
situation. Accordingly, considering the generating process of
Ck in Eq. (2), an ideal consistency map should be produced
by two ideal responses y. Thus, the ideal consistency map
can be served as the consistency constraint label for the
practical consistency map Ck, and a fixed constraint label
lf is designed as follows:

lf = y ? y , (3)

where y denotes the ideal response. Besides, since the label
lf is produced by two identical ideal responses y, which
means the highest strength for consistency constraint is
applied to Ck as:

‖lf −Ck‖22 . (4)

By minimizing the squared error between lf and Ck in
Eq. (4), the responses Rk and R

′

k are forced to pursue a high
consistency level, and thus abundant temporal information is
injected efficiently.

Moreover, for the practical tracking process, since the rate
of the object appearance changing varies in different tracking
scenarios, the label lf should adapt to the rate of appearance

changes instead of enforcing a fixed consistency constraint.
Thus, based on the fixed constraint label in Eq. (3), the
dynamic constraint label is further proposed as follows:

lk = hklf , (5)

where the hk indicates the dynamic regulatory factor to
adjust the constraint strength for consistency. The design of
hk is described in detail in Section III-E.

C. Overall objective

The overall objective of the presented CPCF tracker is to
minimize the following loss function:

E(wk) =
1

2
‖y −

D∑
d=1

wd
k ? x

d
k‖22 +

1

2

D∑
d=1

||sdkwd
k||22

+
γ

2

D∑
d=1

‖lk − (

D∑
d=1

wd
k ? x

d
k) ?Rk[∆τu,v]‖22

. (6)

The presented loss function contains three terms, i.e., the
first classification error term, the second spatial regularization
term and the last dynamic consistency regularization term.
For the first term, xdk and wd

k denote the d-th channel of
training sample and correlation filter, respectively. For the
second term, the spatial weight function sdk is introduced to
mitigate the boundary effect. For the third term, γ denotes
the consistency penalty. The detection response Rk can be
expressed as Rk =

∑D
d=1 w

d
k−1 ? z

d
k, and can be considered

as a constant in the training process.

D. Optimization operations

The following optimization is derived in one-dimensional
case, and can be easily extended to two-dimensional case.
To convert Eq. (6) to frequency domain conveniently, the
equation is firstly expressed as matrix form as follows:

E(wk) =
1

2
‖y −Xkwk||22 +

1

2
||skwk||22

+
γ

2
||lk −R>Xkwk||22

, (7)
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where y = [y(1) · · ·y(N)]>, wk = [w1
k
> · · ·wD

k

>
]>, sk =

[s1k
> · · · sDk

>
]>, and Xk = [xk[∆τ1]> · · ·xk[∆τN ]>]>.

xk[∆τn] is the circularly shifted sample. R denotes the
circular matrix generated by the shifted detection response
Rk[∆τu,v]. The operator > denotes the conjugate transpose
operation. In order to improve computing efficiency, Eq. (7)
is further transferred into the frequency domain as follows:

Ê(wk, ĝk) =
1

2
‖ŷ − X̂kĝk||22 +

1

2
||skwk||22

+
γ

2
||̂lk − X̂r

kĝk||22 ,

s.t. ĝk =
√
NFwk

(8)

where ĝk ∈ CDN×1 is introduced as an auxiliary variable.
The superscript ˆ denotes the discrete Fourier Transform
(DFT) of a signal, i.e., α̂ =

√
NFα. The matrix X̂k and X̂r

k

are defined as X̂k = [diag(x̂1
k)>, · · · , diag(x̂Dk )>] of size

N × DN , X̂r
k = [diag(r̂1k � x̂1

k)>, · · · , diag(r̂1k � x̂Dk )>]
of size N × DN , respectively. The operator � indicates
the element-wise multiplication. r̂k is the discrete Fourier
Transform of shifted detection response Rk[∆τu,v].

Considering the convexity of Eq. (8), alternative direction
method of multipliers (ADMM) is introduced to achieve a
globally optimal solution efficiently. Hence Eq. (8) can be
expressed in augmented Lagrangian form as follows:

L(w, ĝ, ζ̂) =
1

2
‖ŷ − X̂kĝk‖22 +

1

2
||skwk||22

+
γ

2
||̂lk − X̂r

kĝk||22

+ ζ̂>(ĝk −
√
NFwk)

+
ν

2
||ĝk −

√
NFwk||22

, (9)

where ζ̂ ∈ CDN×1 denotes the Lagrangian vector in the
Fourier domain which is defined as ζ̂ = [ζ̂1>, · · · , ζ̂D>]>

and ν denotes a penalty factor. To learn filters for the (k+1)-
th frame, ADMM algorithm should be adopted in the k-
th frame. The augmented Lagrangian form can be solved
by alternatingly solving subproblems ĝ∗k+1 and w∗k+1 as
follows:

1) Subproblem w∗k+1:

w∗k+1 = arg min
wk

{ 1

2
||skwk||22 + ζ̂>

(
ĝk −

√
NFwk

)
+
ν

2
‖ĝk −

√
NFwk‖22}

= (S>S + ν)−1(ζ + νg)

,

(10)

where S denotes the DMN × DMN diagonal matrix
concatenating D diagonal matrices diag(s).

2) Subproblem ĝ∗k+1:

ĝ∗k+1 = arg min
ĝk

{1

2
‖ŷ − X̂kĝk||22

+
γ

2
||̂lk − X̂r

kĝk||22

+ ζ̂>
(
ĝk −

√
NFwk

)
+
ν

2
‖ĝk −

√
NFwk‖22}

, (11)

solving the subproblem g∗k+1 directly can bring heavy com-
putational burden due to X̂r

kĝk and X̂kĝk in the function.
Fortunately, X̂k and X̂r

k are sparse banded, and thus each
element in ŷ, i.e., ŷ(n)(n = 1, 2, ..., N) is only dependent
on each x̂k(n) =

[
x̂1
k(n), x̂2

k(n), ..., x̂Dk (n)
]>

and ĝk(n) =[
conj

(
ĝ1
k(n)

)
, . . . , conj

(
ĝDk (n)

)]>
. The operator conj(.)

denotes the complex conjugate. Therefore, the subproblem
g∗k+1 can be divided into N independent objectives as:

ĝ∗k+1(n) = arg min
ĝk(n)

{1

2
‖ŷ(n)− x̂k(n)>ĝk(n)‖22

+
γ

2
‖̂lk(n)− x̂rk(n)>ĝk(n)‖22

+ ζ̂(n)>(ĝk(n)− ŵk(n))

+
ν

2
‖ĝk(n)− ŵk(n)‖22}

, (12)

where ŵk(n) =
[
ŵ1
k(n), . . . , ŵD

k (n)
]

and ŵd
k =
√
DFwd

k.
The solution to each problem is given as follows:

ĝk+1(n)
∗

=
1

1 + γr̂(n)r̂(n)>

(
x̂k(n)x̂k(n)

> +
ν

1 + γr̂(n)r̂(n)>
ID

)−1

(
x̂k(n)ŷk(n) + γx̂r

k(n)̂lk(n)− ζ̂(n) + νŵ(n)
) .

(13)

Remark 1: The solving process of Eq. (12) is shown in the
appendix.

To further increase the computation efficiency, the
Sherman-Morrison formula is employed, i.e., (A +
pq>)−1 = A−1 −A−1p(ID + q>A−1p)−1q>A−1. Thus,
Eq. (13) is identically expressed as below:
ĝk+1(n)∗

=
1

ν

(
x̂k(n)ŷ(n) + x̂rk(n)̂lk(n)− ζ̂(n) + νŵk(n)

)
− x̂k(n)

νb

(
ŝxk

(n)ŷ(n)− γŝxk
(n)̂lk(n)ŝζ(n) + νŝwk

(n)
) ,

(14)
where

ŝxk
(n) = x̂k(n)>x̂k(n)

ŝζ(n) = x̂k(n)>ζ̂

ŝwk
(n) = x̂k(n)>ŵk

b = x̂k(n)>x̂k(n) +
ν

1 + γr̂(n)r̂(n)>

. (15)

Lagrangian parameter ζ is updated in each iteration ac-
cording to the following equation:

ζ̂j+1
k+1 = ζ̂jk+1 + ν

(
ĝ
∗(j+1)
k+1 − ŵ

∗(j+1)
k+1

)
, (16)

where the subscripts j and j + 1 indicate the j-th and (j +

1)-th iteration, respectively. ĝ∗(j+1)
k+1 and ŵ

∗(j+1)
k+1 denote the

solution to subproblem ĝ∗k+1 and ŵ∗k+1 in the (j + 1)-th
iteration, respectively.

E. Dynamic adjusting strategy for label lk
In the practical tracking process, the rate of target appear-

ance variation is various in different scenarios. Therefore, an
intelligent tracker should adjust the strength of consistency
constraint according to the different tracking scenarios. On
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Fig. 3. Illustration of the adjusting process of the dynamic constraint label
lk . The sequence car16_2 in UAV123@10FPS benchmark is shown, and the
blue bounding box denotes the baseline, which fails to track the car robustly
due to the fast appearance changes of the car. The CPCF tracker, denoted
by the red bounding box, appropriately adjusts the constraint strength for
consistency in case of fast appearance changes and still track the target
successfully.
the one hand, in terms of the fast appearance changes,
constraints should be relaxed to render the tracker more
authority to change and thus learn from new appearance
changes. On the other hand, if the appearance change is
smooth, a high-level constraint for consistency is required to
enhance the robustness and accuracy. Thus, depending on the
quality of the detection response Rk, the dynamic regulatory
factor hk is introduced as:

hk = hmin +
PSRM

α
(hmax − hmin) , (17)

where hmin and hmax denote the minimum and maximum
magnitude of lk respectively. α is a normalized coefficient.
PSRM denotes the quality scores of the response map as
follows:

PSRM =
Rmax − µs1

σs1
+ βRmax , (18)

where the first and the second term denote the peak to side-
lobe ratio (PSR) and the peak value (Rmax) in the response
map respectively. µs1 and σs1 denote the mean value and
the standard deviation in the sidelobe, respectively. β is the
weight coefficient to balance two evaluation criterions. The
process of dynamic adjusting is shown in Fig. 3.

F. Model update

In order to improve the robustness for fast motion, view-
point change and other challenges, an online adaptation
strategy is introduced as follows:

x̂modelk = (1− η)x̂modelk−1 + ηx̂k , (19)

where η is the learning rate for the appearance model. k and
(k−1) denote the k-th and the (k−1)-th frame, respectively.

IV. EXPERIMENTS
In this section, the proposed CPCF tracker is evalu-

ated comprehensively on three well-known and widely-
used UAV object tracking benchmarks which are es-
pecially captured by UAV from the aerial view, i.e.,

UAV123@10FPS [24], UAVDT [25], and DTB70 [26], with
243 challenging image sequences. The results are com-
pared with 25 state-of-the-art trackers, i.e., STRCF [22],
MCCT-H [27], KCC [28], Staple_CA [29], SRDCF [5],
SAMF_CA [11], fDSST [30], ECO-HC [17], CSR-DCF [19],
BACF [7], Staple [29], SRDCFdecon [20], SAMF [11],
KCF [6], DSST [31], CFNet [32], MCCT [27], C-COT [18],
ECO [17], IBCCF [33], UDT+ [34], MCPF [35], AD-
Net [36], DeepSTRCF [22], and TADT [37]. Moreover,
the original evaluation criteria defined in three benchmarks
respectively is adopted.

A. Implementation details
CPCF is based on HOG [6] and CN [11] features. The

consistency penalty γ in Eq. (6) is set to 0.9. For the dynamic
constraint strategy, hmin and hmax in Eq. (17) are set to 0.6
and 1.2, respectively. The normalized coefficient α and the
weight coefficient β in Eq. (17) and Eq. (18) are set to 50
and 100, respectively. The learning rate η in Eq. (19) is set
to 0.042. All the 26 trackers are performed with MATLAB
R2018a on a computer with an i7-8700K CPU (3.7GHz),
32GB RAM and Nvidia GeForce RTX 2080. Note that the
CPCF tracker is tested on a single CPU.

B. Comparison with hand-crafted based trackers
Quantitative evaluation: As shown in Fig. 4, the average

overall performance of CPCF and other 15 state-of-the-
art trackers utilizing hand-crafted features is demonstrated.
The CPCF tracker has surpassed all compared trackers on
three UAV benchmarks. In addition, the overall performance
of each benchmark is shown in Fig. 5. Concretely, on
UAV123@10FPS benchmark, CPCF (0.661) outperforms
the second-best CSR-DCF (0.643) and the third-best ECO-
HC (0.634) by 1.8% and 2.7%, respectively in precision,
and has an advantage of 0.4% and 0.9% over the second-
best (ECO-HC, 0.462) and the third-best (STRCF, 0.457),
respectively in AUC. On UAVDT benchmark, CPCF (0.720,
0.444) surpasses the second-best (Staple_CA, 0.695) and the
third-best (BACF, 0.686) by 2.5% and 3.4%, respectively in
precision, as well as an advancement of 1.1% and 2.5% over
BACF (0.433) and SRDCF (0.419), respectively in AUC.
On DTB70 benchmark, CPCF (0.710, 0.481) is followed
by STRCF (0.649) and CSR-DCF (0.646) in precision,
and by ECO-HC (0.453) and CSR-DCF (0.438) in AUC.
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Fig. 4. Comparison between the proposed CPCF tracker and other 15
state-of-the-art trackers based on hand-crafted features. The average value
of precision and success rate are calculated by averaging OPE [23] result
from three benchmarks. The CPCF tracker favorably surpasses other 15
trackers in both precision and AUC.
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(a) UAV123@10FPS benchmark
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Precision plots on UAVDT
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(b) UAVDT benchmark
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Success plots on DTB70
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(c) DTB70 benchmark
Fig. 5. Precision and success plots of CPCF tracker, as well as all other 15 trackers based on hand-crafted features on (a) UAV123@10FPS, (b) UAVDT
and (c) DTB70. The proposed CPCF tracker has the best performance in terms of precision and success rate in three benchmarks.

CPCF KCC fDSST ECO-HC STRCF CSR-DCF MCCT-H SRDCFdecon

SRDCF Staple_CA Staple SAMF_CA SAMF BACF DSST KCF

# 0001 # 0020 # 0056 # 0262 # 0001 # 0022 # 0097 # 0190

# 0099# 0073# 0001# 0158# 0092# 0001 # 0201 # 0047

ChasingDrones

# 0001 # 0177# 0010 # 0144# 0001 # 0020 # 0035 # 0191

S0101

wakeboard3 gruop2_3

RcCar7

S1101

Fig. 6. Qualitative comparisons of the proposed CPCF tracker with other 15 state-of-the-art trackers. From top to bottom, the sequences are wakeboard3
and group2_3 from UAV123@10FPS benchmark, ChasingDrones and RcCar7 from DTB70 benchmark, S0101 and S1101 from UAVDT benchmark.
Code and the UAV tracking video are: https://github.com/vision4robotics/CPCF-Tracker and https://youtu.be/U0O4xI-3dl8.

Qualitative evaluation: The comparisons of our approach
with other trackers are visualized in Fig. 6. It can be seen
that the CPCF tracker performs satisfactorily in different
challenging scenarios.

Speed comparison: The speed of CPCF is sufficient for
real-time UAV tracking applications, and the comparison can
be seen in Tabel I.

Attribute based comparison: To better demonstrate the
ability of CPCF to respond to different challenges, the three
benchmarks classify them into different attributes, such as
viewpoint change and object motion. Examples of attribute-
based comparisons are shown in Fig. 7, which are ranked by
AUC. The comparisons demonstrate that the CPCF tracker
has a great improvement over its baseline SRDCF, due to
the pursuit of consistency across frames.

TABLE I
THE AVERAGE FRAME PER SECOND (FPS) COMPARISON BETWEEN THE

CPCF TRACKER AND OTHER 15 TRACKERS ON ALL THREE

BENCHMARKS [24]–[26]. RED, GREEN AND BLUE COLOR DENOTE THE

FIRST, SECOND AND THIRD PLACE RESPECTIVELY. NOTE THAT THE

PRESENTED CPCF TRACKER IS TESTED ON A SINGLE CPU.

Tracker FPS Venue Tracker FPS Venue

CPCF 42.95 Ours CSR-DCF 12.09 CVPR’17
MCCT-H 59.72 CVPR’18 BACF 56.04 ICCV’17

KCC 46.12 AAAI’18 Staple 65.40 CVPR’16
Staple_CA 58.86 CVPR’17 SRDCFdecon 7.48 CVPR’16

SRDCF 14.01 ICCV’17 SAMF 12.76 ECCV’14
SAMF_CA 11.66 CVPR’17 KCF 651.06 TPAMI’14

fDSST 168.06 TPAMI’17 DSST 106.49 BMVC’14
ECO-HC 69.33 CVPR’17 STRCF 28.51 CVPR’18
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(a) UAV123@10FPS benchmark
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(b) UAVDT benchmark
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Fast camera motion (41) on DTB70
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(c) DTB70 benchmark
Fig. 7. Attribute-based comparisons between the CPCF tracker and other 15 trackers based on hand-crafted features on (a) UAV123@10FPS, (b) UAVDT
and (c) DTB70 benchmarks. All the trackers are ranked by AUC. Details of these attributes can be seen in [24]–[26]. It can be seen that the CPCF tracker
has a competitive performance in these attributes across the benchmarks.

TABLE II
THE FRAME PER SECOND (FPS), PRECISION AND AUC COMPARISON BETWEEN CPCF AND DEEP-BASED TRACKERS ON UAVDT [25] BENCHMARK.

RED, GREEN AND BLUE COLOR DENOTE THE FIRST, SECOND AND THIRD PLACE RESPECTIVELY. THE PRESENTED CPCF TRACKER PERFORMS

FAVORABLY COMPARED WITH OTHER DEEP-BASED TRACKERS.

Tracker CPCF CFNet MCCT C-COT ECO TADT IBCCF UDT+ MCPF ADNet DeepSTRCF

FPS 48.29 41.05 8.60 1.10 16.38 32.48 3.39 60.42 3.63 7.55 6.61

Precison 0.720 0.680 0.671 0.656 0.700 0.677 0.603 0.697 0.660 0.683 0.667

AUC 0.444 0.428 0.437 0.406 0.454 0.431 0.388 0.416 0.399 0.429 0.437

Venue Ours 2017CVPR 2018CVPR 2016ECCV 2017CVPR 2019CVPR 2017CVPR 2019CVPR 2017CVPR 2017CVPR 2018CVPR

GPU X X X X X X X X X X X

C. Comparison with deep-based trackers
In order to fully reflect the performance of CPCF tracker

for UAV tracking applications, the CPCF tracker is also com-
pared with deep-based trackers on the UAVDT benchmark.
In terms of precision, success rate and speed, the CPCF
tracker has performed favorably against other state-of-the-
art compared trackers. The comparisons are shown in Table
II. Note that all deep-based trackers are tested on the GPU,
while the CPCF tracker is tested on a single CPU.

V. CONCLUSIONS
In this work, a novel approach with dynamic consistency

pursued correlation filters, i.e., the CPCF tracker, is proposed.
Generally, by exploiting the consistency across frames, rich
temporal information in the response maps is introduced to
enhance the discriminative power of the tracker. Besides, a
dynamic consistency constraint is proposed to strengthen the
adaptability in complex situations. Considerable experiments
are conducted on three UAV object tracking benchmarks.
The experimental results verify the outstanding performance
of the presented tracker compared with 25 state-of-the-
art trackers. Moreover, the CPCF tracker obtains a real-
time speed (∼43FPS) on a single CPU. From our view,

the temporal information behind response maps is further
explored by consistency representation, which can contribute
to the object tracking on-board UAV.

APPENDIX
Solving process from (12) to (13) :

ĝ∗k+1(n) = argmin
ĝk(n)

{1
2
‖ŷ(n)− x̂k(n)

>ĝk(n)‖22

+
γ

2
‖̂lk(n)− x̂r

k(n)
>ĝk(n)‖22

+ ζ̂(n)>(ĝk(n)− ŵk(n))

+
ν

2
‖ĝk(n)− ŵk(n)‖22}

, (20)

Let G =
1

2
‖ŷ(n)− x̂k(n)

>ĝk(n)‖22

+
γ

2
‖̂lk(n)− x̂m

k (n)>ĝk(n)‖22

+ ζ̂(n)>(ĝk(n)− ŵk(n))

+
ν

2
‖ĝk(n)− ŵk(n)‖22

, (21)

∂G>

∂ĝk(n)
=−

(
ŷ(n)− x̂k(n)

>ĝk(n)
)>

x̂k(t)
>

− γ
(̂
lk(n)− x̂m

k (n)>ĝk(n)
)>

x̂m
k (t)>

+ ζ̂(n)> + ν (ĝ(n)− ŵ(n))> = 0

, (22)
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then Eq. (13) is obtained. �
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