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Unified Calibration for Multi-camera Multi-LiDAR Systems
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Abstract—1In this paper, we propose a unified calibration
method for multi-camera multi-LiDAR systems. Only using a
single planar checkerboard, the captured checkerboard frames
by each sensor are classified as either global frames if they are
observed by at least two sensors, or a local frame if observed by
a single camera. Both global and local frames of each camera
are used to estimate its intrinsic parameters, whereas the global
frames between sensors are for computing their relative poses.
In contrast to the previous methods that simply combine the
pairwise poses (e.g., camera-to-camera or camera-to-LiDAR)
that are separately estimated, we further optimize the sensor
poses in the system globally using all observations as the
constraints in the optimization problem. We find that the point-
to-plane distances are effective as camera-to-LiDAR constraints
where the points are 3D positions of the checkerboard corners
and the planes are estimated from the LiDAR point-cloud.
Also, abundant corner observations in the local frames enable
the joint optimization of intrinsic and extrinsic parameters in
a unified framework. The proposed calibration method utilizes
entire observations in a unified global optimization framework,
and it significantly reduces the error caused by a simple compo-
sition of the relative sensor poses. We extensively evaluate the
proposed algorithm qualitatively and quantitatively using real
and synthetic datasets. We plan to make the implementation
open to the public with the paper publication.

I. INTRODUCTION

In many autonomous navigation systems, cameras and
range sensors (e.g., LIDARSs or radars) are commonly used to
perceive surrounding environments and avoid obstacles. For
instance, accurate 3D points from a LiDAR and correspond-
ing RGB images from cameras are jointly utilized to detect
objects’ 3D bounding boxes [1]-[3], estimate vehicle’s ego-
motion [4], or reconstruct surrounding environments [5].
Meanwhile, to integrate individually observed data from het-
erogeneous sensors, calibration of the intrinsic and extrinsic
parameters of the sensors must be preceded.

Calibration of heterogeneous sensors has been studied for
decades. Various approaches [6]-[8] have been proposed
for extrinsic calibration of a camera and a range sensor.
Recently as more and more sensors are used in cars and
robots, multi-sensor extrinsic calibration methods have also
been proposed [9], [10]. The above multi-sensor calibration
methods first estimate the relative poses of the pairs of sen-
sors, e.g., camera-to-camera, LiDAR-to-LiDAR, or camera-
to-LiDAR, and then find the sensor extrinsic by merging
the estimated relative poses. However, when many sensors
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Fig. 1: Examples of our sensor configurations for omni-
directional sensing, which consists of 4 cameras and 1 or
2 LiDARs. The proposed algorithm is capable of handling
general sensor setups.

are involved, the errors in estimated relative poses propagate
in pose composition and the resultant global poses may be
inaccurate.

Furthermore, recent self-driving vehicles [11], [12] have
multiple cameras and range sensors mounted with wide-
baseline to observe surrounding objects in all directions.
Wide field-of-view (FOV) lenses, e.g., fisheye or catadioptric
lenses, are also commonly used to enlarge the sensing areas
and minimize blind spots. However in such configuration
with different FOVs and baselines, the overlapping region
between the sensors may not be large enough for accurate
relative pose estimation.

In this paper, we propose a unified framework for calibrat-
ing intrinsic and extrinsic parameters of multiple cameras
and multiple LiDARs using only a single checkerboard.
Each scene with a different checkerboard pose is captured
by either one or multiple sensors, generating local frames or
global frames, respectively. Similar to the existing methods,
the initial sensor parameters are set using the pairwise
poses between sensors from global frames, and the intrinsic
parameters from all frames.

The main difference of our framework is the global unified
optimization of all sensor parameters using the observations
from the global and local frames. The corners in the local
frames constrain the camera intrinsic parameters, whereas

9033



those in the global frames act on the camera intrinsic and
extrinsic as well as the LiDAR pose parameters. We also
propose to use the point-to-plane distance in camera-to-
LiDAR calibration for easy and reliable plane estimation
and accurate distance computation. As LiDARs provide a
sufficient number of accurate 3D points of the checkerboard,
they can be easily segmented and the 3D plane equation can
be computed robustly. The relative poses between cameras
and LiDARs are optimized to minimize the point-to-plane
distance where the 3D points are built by triangulation of
the checkerboard corners in multiple frames. All camera and
LiDAR observations are modeled into the cost functions in a
unified non-linear optimization problem, and all calibration
parameters of the cameras and LiDARs are jointly updated
to minimize the cost.

While our algorithms can handle various general sensor
layouts, we choose to use the rigs in Fig. |1 for omnidirec-
tional sensing by using only four ultra-wide FOV fisheye
cameras and one or two LiDARs with only 16 vertical
channels. On top of qualitative evaluation using real datasets,
we synthetically render the images and depth readings with
ground-truth sensor poses for quantitative evaluation. The
extensive experiments show that the proposed algorithm
performs well on such extremely distorted fisheye images
and low-resolution LiDAR readings.

Our main contributions are as follows:

(i) We propose a unified calibration method for multi-
camera multi-LiDAR systems. Using a single checker-
board, the observed global and local frames are all
used in initialization as well as global optimization. All
observations are formulated into the cost functions in a
unified non-linear optimization to determine the camera
intrinsic parameters and the 6-DOF sensor poses.

(i) We find that the point-to-plane distance is effective in
camera-to-LiDAR calibration. The checkerboard plane
is estimated by the LiDAR point-could, and the distance
of the 3D corner points from the images to the plane
is optimized.

(iii) We verify our algorithm through extensive experiments
on real and synthetic datasets in both qualitative and
quantitative ways. All datasets and the code will be
made public when the paper is published.

II. RELATED WORK

Mainly there have been two approaches for extrinsic
calibration: with or without calibration objects.

Methods Using Calibration Objects Most calibration
algorithms use known calibration objects such as checker-
boards, AprilTags, or textured images, for accurate and ro-
bust calibration of intrinsic or extrinsic parameters. Among
those reference objects, the checkerboard is one of the most
commonly used objects since it is easy to make and find,
and it can be also used to calibrate the camera intrinsic
parameters. Zhang et al. [13], and Herrera et al. [14] cali-
brate extrinsic between a camera and a range sensor using
a checkerboard. Zhuo et al. [15] also propose a calibration

method for a perspective camera and a LiDAR using line
features and plane correspondences of a checkerboard.

AprilTags are also widely used for extrinsic calibration of
multiple sensors. Tang et al. [9] propose an algorithm for
calibrating extrinsic of multi-sensor systems which equip
multiple cameras and multiple 2D range sensors. Further,
Xie et al. [10] design an infrastructure-based extrinsic cal-
ibration system for multi-sensor setups which aims a mass
production scenario. Meanwhile, textured patterns [16], [17]
or polygons [8] are also used for optimizing the relative pose
between a camera and a LiDAR.

Methods Not Using Calibration Objects Contrary to
the above methods, there have been several methods which
do not need a target object, mainly for on-line calibration.
For autonomous vehicle systems, specific information from
surrounding environments, e.g., planar road or surfaces,
can be utilized for targetless extrinsic calibration. Jeong et
al. [18] calibrate extrinsic between a stereo camera and a
LiDAR by estimating the road from the 3D point-cloud
by the stereo camera and aligning it with the 3D points
from the LiDAR. Similar to [10], Jiao et al. [19] use
a planar infrastructure without any marker to calibrate
the extrinsic parameters of multiple LiDARs. For general
environments, image features from cameras [7], [20] and
estimated motion from a video [21] can be used to align
cameras and range sensors. Bileschi [22] also proposes a
fully automatic calibration method by applying a structure-
from-motion technique on a video stream. In addition, online
extrinsic calibration methods for unstable sensor systems
have been proposed, e.g., [23].

In this paper, we choose to use a moving checkerboard as
the calibration object, for an effective, accurate, and unified
multi-sensor calibration framework. Instead of using edges
or boundaries of the checkerboard which requires a large
overlap between sensors and high-resolution data of range
sensors, we compute the 3D plane parameters from LiDARs’
point-cloud and the 3D corner points from cameras are
matched to the plane. In principle, other planar markers with
matchable corner points (e.g., AprilTags) can be used instead
of the checkerboard.

I1I. METHOD

In this section, we introduce our unified calibration
method for multi-camera multi-LiDAR systems. Our algo-
rithm has the following three steps: intrinsic calibration,
global pose initialization, and global optimization. In the
following subsections, the notations used in this section and
individual steps are described in detail.

A. Notation

K denotes the intrinsic parameters of a camera including
lens distortion parameters, and the projection function II
maps a 3D point P to a 2D image coordinate p as p =
II(P; k). The pose of each sensor is represented as a 6-
DOF extrinsic parameter (r',t "), where r is an axis-angle
rotation vector, t is a translation vector (r,t € R3). The
3 x 4 rigid transformation matrix for the extrinsic parameter
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is given as T = [R(r) t], where R(r) is the 3 x 3 rotation
matrix corresponding to r. We use the vector and matrix
notations interchangeably in the text. The extrinsic matrix
transforms a 3D point P to TxP = T [PT 1}T, and *
and ! denote the composition of transformations and the
inverse transformation respectively.

We use three coordinate systems, world (w), sensor (s),
and checkerboard (b). When needed, the coordinate system
is marked as left super- and sub-scripts, like ;T meaning
the transformation from the world to the sensor coordinate
system (so that YT=ST~"), or P a point in the checker-
board coordinate system. For example, a 2D point p on the
checkerboard image of k-th frame by ¢-th camera is written
as

“pr = IL (3T * T« "P),

where IL; () = TI(+; ;).

B. Intrinsic Calibration

Using a checkerboard, we first capture checkerboard
frames from each sensor simultaneously, with sufficient
variations of the checkerboard’s poses [24] and overlaps
among sensors. Our calibration method only uses the im-
ages by the cameras and the point-clouds by the LiDARs
without any additional efforts. All camera images are used
in the intrinsic calibration step. We follow the conventional
intrinsic calibration methods, for perspective cameras [25]
and for omnidirectional cameras [26], [27] which both
use checkerboard images. Through intrinsic calibration, we
acquire the initial estimate of the intrinsic parameters {.}
of c-th camera and the transformation from the checkerboard
to the camera {* T} of k-th frame.

C. Global Pose Initialization

As in the conventional calibration methods for stereo
camera or camera-to-LiDAR calibration, extrinsics between
i-th and j-th sensors can be computed from the two relative
poses, board to i-th camera and board to j-th camera, that
are simultaneously taken at k-th frame:

S Sj sim—1
%J,Tk = f)Tk* ];Tk ;

where % T},’s are acquired in the intrinsic calibration stage
(Sec. III-B). To avoid choosing a bad relative pose, we
use the relative pose T computed by taking element-
wise median or average of the 6-DOF pose vectors {37 T }.
There might be no common frames between two sensors
when there exist many sensors spread out in space. The
extrinsic parameters between [-th and n-th cameras with no
overlap are computed by composing the relative poses of an
intermediate m-th camera as 2T = " T x*7T.

By integrating all available relative poses, the poses of all
sensors as well as the checkerboards in the global coordinate
system can be initialized: the poses of c-th sensor and k-th
checkerboard are given as

Sc — Sc S1
Wl =gTxyT, and

w Serp—1 | Se
ka = WT * f)Tk,

(D

Global frame
Local frame

Local frame

‘ K\\

(a) Example of a stereo camera setup

& Global frame

Local frame

(b) Example of a camera-LiDAR setup

Fig. 2: Illustration of the global and local frames. We
classify the observed frames according to co-visibility of
the sensors. Global frames are those observed by multiple
Sensors.

where 5.T is the transformation from a reference sensor
(1-st sensor) to the world coordinate system. However, the
errors of each relative pose can be accumulated in the pose
composition process, and choosing the right order of com-
positions can be tricky in complicated layouts. Therefore,
we use the global poses by Eq. 1 only as the initialization,
and we further optimize all calibration parameters, both
intrinsics and extrinsics, in a unified non-linear optimization
framework. The detailed formulation is described in the
following subsection.

D. Global Optimization

The global frames G are the camera images and/or the Li-
DAR point-clouds that are observed by multiple sensors, and
they are used as both intrinsic and extrinsic cost functions.
The local frames L are the other camera images which are
observed by single cameras only. Fig. 2 shows examples
of the global and local frames. We use the intrinsic and
extrinsic parameters by Eq. 1 as the initial parameters for
the global optimization problem.

To use the corner points and/or checkerboard point-clouds
in the global frames, a 3D point on the checkerboard PP in
k-th global frame is transformed to i-th sensor coordinate
system as follows:

SiPj = 5T « YTy, « °P. )

The corner points in the global frames are used in the corner
reprojection errors and in the point-to-plane errors if the
frame includes LiDAR point-clouds.

Corner Reprojection Error In Sec. III-B and Sec. III-C,
the camera intrinsic and extrinsic parameters are computed
using the checkerboard’s corner points. In our global opti-
mization problem, the following reprojection cost function
is used to further refine the camera parameters. Let * py be
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Algorithm 1: Unified calibration framework

Data: Labeled corner points {p} and a plane
parameter pj for each k-th checkerboard
frame.

Result: Intrinsic {r;}, and extrinsic {:T}, {}\ T}

1 Intrinsic Calibration [25]-[27]
2 | return initial {x;}, {3 Ty}
3 Global Pose Initialization (Eq. 1)
| return initial {;T}, {Y T}
5 Global Unified Optimization (Eq. 6)
6 Objective function F
7 for k-th checkerboard frame do
8
9

£

if k£ € GG then
E 4=
Ab Dicc 2op okt Ap D g0 Epkij
10 else if £ € L then
1 ‘ E+=AL Y ico 2ppki
12 end
13 end
14 return {k;}, { T}, {}L Tk} minimizing E
15 end

a 2D corner point of the k-th global frame captured by ¢-th
camera.

Traditional calibration methods measure the 2D pixel
distance error between the labeled point and the projected
checkerboard point:

¥ pr — IL(C P |, 3)

where *Pj is computed by Eq. 2. However, in highly
distorted raw images by >180° FOV lenses, the center and
peripheral regions have different ray density [28]. To fairly
reflect the reprojection error, we use the ray distance as the
COrner reprojection error €p x s

epi = ;i) — Pll?, 4)

where II-1(-) is the inverse camera projection function,
and P is a unit ray P/||P|. Note that ep 5 ; involves the
parameters 3T, T T, and k;.

Point-to-plane Distance Error We model the checkerboard
plane as a 3D plane, whose equation is estimated from
the LiDAR point-cloud using a PCA (principal component
analysis) and RANSAC algorithm [29] to deal with the noisy
points in and around the checkerboard. For k-th global frame
captured by j-th LiDAR, we acquire the plane parameters

R,

-
o Sj A P .
pL = |:S.7 n;, ’ dk} , where 1 is the unit normal vector of

the plane and d is the distance from the origin. We use the
estimated plane equations for optimizing extrinsic parame-
ters of the LiDARs and the checkerboards by computing all
point-to-plane distance error in the checkerboard ¢4 1, ; as

S5 4 2
epng = D (VAL P+ Tdi) 5)
Py

where Py, is computed by Eq. 2. Note that €, j, ; involves
the parameters 2T and | T}.

Local Reprojection Error The local frames are used to
optimize the camera intrinsic parameters. In recent sensor
systems for autonomous agents, the overlap between sensors
are not large or spatially biased (Fig. 2), and it is too unstable
to update camera intrinsics using only the global frames.
We utilize the local frames to prevent the overfitting of
the camera intrinsic parameters to the global frames by the
following local reprojection error g 1 ; for a corner point p
of k-th local frame captured by i-th camera is same as the
corner reprojection error defined in Eq. 4.

Unified Optimization Problem The unified optimization
problem includes the global and local reprojection errors and
the point-to-plane distance errors:

LI I (9 3) SEVEDY pEAR
(ki) ST, ¥T) p Pk, P pik,j

keG i€C p j¢c
ALY DD epkin (O
keLieC P

where C is the set of cameras, and Ap, Ap and \p are
the weights for global reprojection errors, global point-to-
plane errors, and local reprojection errors, respectively. The
final calibration parameters are determined by minimizing
the above non-linear optimization problem. The overall
procedure of our method is described in Algorithm 1.

IV. EXPERIMENTAL RESULTS
A. Experimental Setup

We validate our proposed method on both real-world
(Small and Big) and synthetic data. For the real data, we use
four cameras with 220° FOV fisheye lenses mounted at the
corners of the rectangular rig to perform an omnidirectional
sensing [30]-[32] and two Velodyne VLP-16 LiDARs with
16 vertical channels. 4 x (1600 x 1532) gray images per
frame are captured while being synchronized by the software
trigger, and 2 x (~24K) LiDAR points are measured while
rotating in 600 RPM.

The Small rig is a square-shaped rig (30 x 30 mm) for
drones or robots, and only one LiDAR is mounted at the
center of the rig. For automobiles, the Big rig has an
extremely wide-baseline (15002300 mm), and two LiDARs
are mounted near the center of each long axis. We use a
checkerboard with 12 x 10 grids each of which is 60 x 60
mm for both data. We also generate a synthetic dataset for
quantitative evaluation via a rendering software, Blender,
and the dataset mimics our Big rig setup as well as the
size of the checkerboard. The synthetic dataset consists
of 4 x (800 x 768) fisheye images with 220° FOV and
2 x (~26K) LiDAR points with 16 vertical channels, and
we apply the zero-mean Gaussian noise (with ¢ = 30
mm) to the LiDAR point’s ground-truth depth for a realistic
simulation.

We align the world coordinate system with the first
camera coordinate system in the global pose initialization
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TABLE I: Quantitative comparison of optimization frameworks. We compare our method with multi-stage framework:
optimizing pairwise poses and merging them. After calibrating intrinsic, we optimize pairwise poses (caml-2-3-4, cam2-
LiDAR2, cam4-LiDAR1) and merge them into the global (caml) coordinate system. We also calibrate cameras pose via

proposed global optimization and merge cam-LiDAR poses.

Translation error £y (mm) Rotation error E,- (°)

camsa camz camyg LiDAR; LiDAR2  Avg. came camgz camyg LiDAR; LiDAR2  Avg.
Global pose initialization 3.10  12.11 8.41 777.67 780.82 - 0.20 0.32 0.55 38.76 145.11 -
Merging all pairwise poses 2.10 6.28 9.67 18.67 882 9.1 0.17 0.29 0.54 0.23 095 043
Merging camera rig to LiDARs 3.08 5.59 5.14 17.64 10.08 8.31 0.18 0.30 0.58 0.32 094 047
Global optimization 3.15 4.80 5.86 12.20 482  6.17 0.21 0.23 0.46 0.24 1.93 0.61
= { X Projected LIDAR points 4 Projected corners after global optimization (O Extracted corners from images 1

[—— |
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Fig. 3: Qualitative results of our global optimization (left)
and simple composition of the pairwise poses (right) on
Small dataset. The LiDAR points on the front pillar are
correctly projected (orange points) after global optimization.

(Sec. ITI-C) so that 5. T is the identity transformation, and fix
it in the optimization process. The initial poses of LiDARs
are set to the center of the initialized rig pose. The weight
parameters A\p and Az, for corner reprojection errors are set
to 5x10%, and ) is set to 1074

For quantitative evaluation, the translation error E; is
measured by the euclidean distance between the estimated
and ground-truth sensor position, and the rotation error F,. is
measured by the magnitude of the relative rotation parameter
between the estimated and ground-truth rotation:

Ey = [t —t*| and E, = ||, R(F) = R(r) R(r*), (D)

w»

where (r7,t7)7 is the estimated pose and (r* ', t*7)T i

the ground-truth pose.

B. Evaluation of Global Optimization

We evaluate our proposed unified global optimization
framework quantitatively on the synthetic dataset and qual-
itatively on the Small dataset. Similar to the traditional
multi-sensor calibrations, we estimate the pairwise poses
{&T, 2T, 3T, ...} and combine them to compute the global
poses of the sensors. We also test the intermediate version
that optimizes the camera parameters only. Tbl. I shows
quantitative results of each optimization framework. After
applying our framework to cameras, the translation error of
the lastly merged camy is greatly decreased, and the trans-
lation errors of LiDARs are also decreased after applying
global optimization. Fig. 3 shows qualitative comparison of
our method on Small dataset. The 3D LiDAR points on the
front pillar are projected correctly in the image after the

Fig. 4: Projected checkerboard points after optimization.
The LiDAR points in labeled planes and the checkerboard
points are correctly projected onto the input images after
calibration. (Cyan: LiDAR;, Magenta: LiDAR>)

TABLE II: After global optimization, we validate the cali-
bration results by the root mean squared error (RMSE) of
the corner pixel distances (Eq. 3), and the mean absolute
error (MAE) of the point-to-plane distances (Eq. 5).

Reprojection RMSE (px) Distance MAE (mm)

Dataset cam; camg camg camg LiDAR; LiDARo
Small 0.41 0.42 0.34 0.47 6.43 -
Big 0.40 0.47 0.25 0.19 39.37 29.08
Synthetic 0.14 0.14 0.16 0.17 6.65 11.02

proposed global optimization, whereas using extrinsic from
combined pairwise poses they are misaligned.

C. Validation of the Proposed Framework

In the previous subsection, we quantitatively measure the
calibration error of our algorithm on the synthetic dataset.
Fig. 5 shows qualitative calibration results on synthetic and
real-world datasets. We project 3D LiDAR points onto the
input images, and as shown in Fig. 5, most of the points
from close to far depths are well aligned, whereas in Big
dataset, a small number of misaligned points exists due
to the extremely wide-baseline setup of the sensors. The
optimization result is also detailed in Tbl. II and Fig. 4, and
similar to the qualitative results, the plane distance errors
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Fig. 5: Qualitative calibration results. From left: synthetic, Small, and Big datasets. The LiDAR points are projected
onto the images, and the colors of the projected points encode depths. Note that the points from the background can be
projected onto occluding foreground objects due to the wide-baseline setup.

Fig. 6: Calibration results on various sensor layouts.
Left: camera to LiDAR (top), multi-camera (bottom). Right:
multi-camera multi-LiDAR. Global poses of the sensors and
observed global checkerboard frames are illustrated.

in Big dataset is higher than the other datasets. Fig. 6 also
shows qualitative results of our methods on various sensor
layouts. Calibrated global poses of the sensors and the global
checkerboards frames are illustrated.

We also measure the calibration errors according to the
number of observed frames — we randomly sample a
subset of the observed frames while preserving connectivity
between the sensors and measure the extrinsic errors. The
extrinsic errors are averaged over randomly sampled 100

150 h - - -Pixel distance error 10
& ——Ray distance error s '

'
100 |

500 N\

Rotation error (°)

Translation error (mm)

1 5 10 15 20 1 5 10 15 20
# frames per sensor # frames per sensor

(a) Translation error (b) Rotation error

Fig. 7: Mean and standard deviation of the extrinsic
errors on the synthetic dataset according to the number
of frames. The errors decrease as more frames are used, and
they converge after using 10 frames per sensor. The blue and
red denotes the ray distance error and the pixel distance error
respectively. The results show that the ray distance is more
accurate and stable.

results. As shown in Fig. 7, the errors converge if more
than 10 frames per sensor are used. We also compare the
pixel distance error and the ray distance error used in
optimization (Sec. III-D), and the ray distance error yields
better performance especially for the rotation.

V. CONCLUSIONS

In this paper, we present a novel approach to unified cal-
ibration for multi-camera and multi-LiDAR sensor systems
using a single checkerboard. The proposed framework can
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handle the complete calibration of various sensor layouts and
camera models. The intrinsic and extrinsic parameters of the
sensors estimated by the conventional methods are used as
the initial values of our non-linear optimization problem,
and all observations are formulated as the reprojection and
point-to-plane error terms. The final calibration parameters
are found by solving the optimization problem. Through
this approach, the calibration errors are reduced signifi-
cantly compared to the traditional calibration approaches.
Through extensive experiments using synthetic and real-
world datasets, we show that the proposed unified calibration
method works very well for challenging configurations only
using a single checkerboard.
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